اثر کاربرد خارجی گلایسین‌بتائین بر صفات فیزیولوژیکی، فنولوژیکی و عملکرد گوجه‌فرنگی (Solanum lycopersicum) در شرایط بدون تنش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد شیروان

2 دانشگاه آزاد اسلامی، واحد شیروان

چکیده

به منظور بررسی اثرات کاربرد گلایسین‌بتائین بر گوجه‌فرنگی در سال 1394 در مزرعه‌ای واقع در مشهد، آزمایشی دو عاملی (عامل اول مقدار محلول‌پاشی در سه سطح (صفر، سه و شش کیلوگرم در هکتار) و عامل دوم زمان محلول‌پاشی (زمان کشت، شروع گلدهی و شروع میوه‌دهی)) به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار اجرا شد. در این آزمایش محتوای نسبی آب برگ، سطح برگ، نشت الکترولیت، عدد SPAD، طول دوره رشد رویشی و زایشی، عملکرد و اجزای عملکرد گیاه گوجه‌فرنگی مورد بررسی قرار گرفت. نتابج به‌دست آمده از نشت الکترولیت‌ها و محتوای آب نسبی در کلیه تیمارها نشان داد که گیاهان به لحاظ رطوبتی در تنش قرار نداشتند. کاربرد گلایسین‌بتائین در زمان کاشت، سبب افزایش دوره رشد رویشی و کاهش دوره رشد زایشی گیاه شد. کاربرد سه کیلوگرم در هکتار گلایسین‌بتائین در زمان کشت، منجر به افزایش سطح برگ، وزن خشک و عدد SPAD شد. بیشترین تعداد کل میوه (5/42 عدد) در تیمار کاربرد سه کیلوگرم در هکتار گلایسین‌بتائین در زمان کاشت و بیشترین وزن میوه (1/113 گرم) در تیمار شاهد به‌دست آمد. بیشترین میزان عملکرد در تیمار عدم مصرف گلایسین‌بتائین (74 تن در هکتار) مشاهده شد. سه و شش کیلوگرم در هکتار گلایسین‌بتائین، عملکرد را به‌ترتیب 15 و 30 درصد کاهش داد، اما با توجه به افزایش طوره دوره رشد رویشی و افزایش تعداد میوه‌های سبز در تیمار سه کیلوگرم در هکتار، احتمالاً مصرف گلایسین‌بتائین در دوزهای پایین در زمانی تأثیر مثبت خواهد داشت که طول دوره رشدی محدودکننده نباشد. همچنین به نظر می‌رسد کاربرد دوزهای بالای گلایسین‌بتائین در شرایطی که تنش جدی گیاه را تهدید نمی‌کند، سبب بروز اثرات سمی و کاهش عملکرد محصول گوجه‌فرنگی گردید.

کلیدواژه‌ها


1. Ashraf, M., and Foolad, M. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59: 206-216.
2. Cerdan, M., Sanchez-Sanchez, A., Oliver, M., Juarez, M., and Sanchez-Andreu, J., 2008. Effect of foliar and root applications of amino acids on iron uptake by tomato plants. In "IV Balkan Symposium on Vegetables and Potatoes" 830: 481-488.
3. Chen, T. H., and Murata, N. 2008. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in plant science 13 (9): 499-505.
4. Dakora, F. D., and Phillips, D. A. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil 245 (1): 35-47.
5. de la Torre-Gonzalez, A., Albacete, A., Sanchez, E., Blasco, B., and Ruiz, J. M. 2017. Comparative study of the toxic effect of salinity in different genotypes of tomato plants: Carboxylates metabolism. Scientia Horticulturae 217 (3): 173-178.
6. Foolad, M. R. 2000. Genetic bases of salt tolerance and cold tolerance in tomato. Currents in Top of Plant Biology. 2 (1): 35-49.
7. Hsieh, T. H., Lee, J. T., Yang, P. T., Chiu, L. H., Charng, Y. Y., Wang, Y. C., and Chan, M. T. 2002. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant physiology 129 (3): 1086-1094.
8. Ge, T., Song, S., Roberts, P., Jones, D., Huang, D., and Iwasaki, K. 2009. Amino acids as a nitrogen source for tomato seedlings: The use of dual-labeled (13C, 15N) glycine to test for direct uptake by tomato seedlings. Environmental and Experimental Botany 66 (3): 357-361.
9. Hadi, H., and Kalantar, A. 2015. Effect of mycorhizal symbiosis, application of super absorbant gel, glycine-betain and sugar beet extract on physiological traits and seed yield of castor bean (Ricinus communis L.) in drought stress conditions. Iranian Journal of Crop Sciences 17 (3): 236-250. (in Persian with English abstract).
10. Kadkhodaei, H., Sodaeizadeh, H., Mosleh Arany, A., and Hakim Zadeh, M. A. 2016. The role of glycine betain in increasing drought resistance of Sorghum halopens under field condition. Environmental Stresses in Crop Sciences 9 (2): 139-147. (in Persian with English abstract).
11. Klee, H. J. 1993. Ripening physiology of fruit from transgenic tomato (Lycopersicon esculentum) plants with reduced ethylene synthesis. Plant Physiology 102 (3): 911-916.
12. Liu, X. Q., Ko, K. Y., Kim, S. H., and Lee, K. S. 2007. Effect of amino acid fertilization on nitrate assimilation of leafy radish and soil chemical properties in high nitrate soil. Communications in soil science and plant analysis 39 (1): 269-281.
13. Lutts, S. 2000. Exogenous glycinebetaine reduces sodium accumulation in salt-stressed rice plants. International Rice Research Notes. 25 (2): 340-349.
14. Mäkelä, P., Munns, R., Colmer, T., Condon, A., and Peltonen-Sainio, P. 1998. Effect of foliar applications of glycinebetaine on stomatal conductance, abscisic acid and solute concentrations in leaves of salt-or drought-stressed tomato. Functional Plant Biology 25 (6): 655-663.
15. Mäkelä, P., Peltonen-Sainio, P., Jokinen, K., Pehu, E., Setälä, H., Hinkkanen, R., and Somersalo, S. 1996. Uptake and translocation of foliar-applied glycinebetaine in crop plants. Plant science 121 (2): 221-230.
16. Makhdum, I., and Shababuddin, M. 2006. Effect of different doses of glycine betaine and time of spray application on yield of cotton (Gossypium Hirsutum L.). Journal of Research (Science) 17(4): 241-245.
17. Meek, C., Oosterhuis, D., and Gorham, J. 2003. Does Foliar-applied Glycine Betaine Affect Endogenous Betaine Levels and Yield In Cotton? Crop Management 2 (1): 18-28.
18. Miri, H. R., and Zamani Moghadam, A. 2015. The effect of external usage of glycine betaine on corn (Zea mays L.) in drought condition. Iranian Journal of Field Crop Research 12 (4): 704- 717. (in Persian).
19. Mohammadzamani, M., Rabeei, V., and Nejatian, M. 2012 .Effect of proline and glycine betaine application on some physiological characteristics in Grapevine under drought stress. Iranian Journal of Horticultural Science. 43 (4): 393- 401. (in Persian).
20. Moosavifar, B., Behdani, M., Jami Alahmadi, M. J., and Bojd, M. H. 2012. Changes of Chlorophyll Index (SPAD), Relative Water Content, Electrolyte Leakage and Seed Yield in Spring Safflower Genotypes under Irrigation Termination. Iranian Journal of Field Crops Research 9 (3): 525-534. (in Persian).
21. Murata, N., Mohanty, P., Hayashi, H., and Papageorgiou, G. 1992. Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen‐evolving complex. FEBS letters 296 (2): 187-189.
22. Ortiz-Lopez, A., Chang, H. C., and Bush, D. 2000. Amino acid transporters in plants. Biochimica et Biophysica Acta (BBA)-Biomembranes 1465 (1): 275-280.
23. Park, E. J., Jeknić, Z., Chen, T. H., and Murata, N. 2007. The codA transgene for glycinebetaine synthesis increases the size of flowers and fruits in tomato. Plant biotechnology journal 5 (3): 422-430.
24. Park, E. J., Jeknic, Z., Pino, M. T., Murata, N., and Chen, T. H. 2007. Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant, cell & environment 30 (8): 994-1005.
25. Park, E. J., Jeknic, Z., and Chen, T. H. 2006. Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant and cell physiology 47 (6): 706-714.
26. Park, E. J., Jeknić, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Murata, N., and Chen, T. H. H. 2004. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. The Plant Journal 40 (4): 474-487.
27. Somersalo, S., Kyei-Boahen, S., and Pehu, E. 1996. Exogenous glycine betaine application as a possibility to increase low temperature tolerance of crop plants. Nordisk Jordbruksforskning 78 (2): 102-120.
28. Subbarao, G., Levine, L. H., Stutte, G. W., and Wheeler, R. M. 2001. Glycinebetaine accumulation: its role in stress resistance in crops plants. Handbook of plant and crop physiology. Marcel Dekker, New York, 881-907.
29. Sulpice, R., Gibon, Y., Cornic, G., and Larher, F. R. 2002. Interaction between exogenous glycine betaine and the photorespiratory pathway in canola leaf discs. Physiologia Plantarum 116 (4): 460-467.
30. Teixeira, W. F., Fagan, E. B., Soares, L. H., Umburanas, R. C., Reichardt, K., and Neto, D. D. 2017. Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Frontiers in plant science 8: 1-14.
31. Uosukainen, M., Rantala, S., Manninen, A., and Vestberg, M. 1999. Improvement of microplant establishment through in vitro and ex vitro exogenous chemical applications. In "International Symposium on Methods and Markers for Quality Assurance in Micropropagation 530", pp. 325-332.
32. Yancey, P. H. 1994. Compatible and counteracting solutes. Cellular and molecular physiology of cell volume regulation. 81-109.
33. Yang, X., and Lu, C. 2005. Photosynthesis is improved by exogenous glycinebetaine in salt‐stressed maize plants. Physiologia Plantarum 124 (3): 343-352.
34. Zhou, Y., Wen, Z., Zhang, J., Chen, X., Cui, J., Xu, W., and Liu, H. Y. 2017. Exogenous glutathione alleviates salt-induced oxidative stress in tomato seedlings by regulating glutathione metabolism, redox status, and the antioxidant system. Scientia Horticulture 220 (1): 90-101.
CAPTCHA Image