Atmospheric Aerosol Loading and Properties over India: A review

Document Type : Review Paper

Authors

1 Department of Environmental Science, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India-122005

2 Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, India-124001

Abstract

Atmospheric aerosols are very crucial from air pollution and health perspective as well as for regional and global climate. This paper attempts to summarize the aerosol loading and their properties such as Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA), Angstrom exponent, and Radiative forcing, over India. All the above mentioned parameters have shown significant variability with change in the site and season. From various studies it was observed that AOD is relatively higher over Northern part of India as compared to Southern and Eastern part. Generally, lower values of SSA were observed over all sites during winter and post-monsoon seasons which indicates the dominance of absorbing type aerosol during these seasons. Also the ARF within atmosphere showed comparatively higher values during November-December and lower value during August and September all over the India. The current state of knowledge about aerosol sources, interactions and their effects on environment is limited because of its complexity. Therefore, more focused research in needed to understand the aerosol’s role in climatic phenomenon.

Keywords


Alam, K., Trautmann, T. and Blaschke, T. (2011). Aerosol optical properties and radiative forcing over mega city Karachi. Atmos Res., 101(3), 773–782.
Alam, K., Trautmann, T., Blaschke, T. and Hussain M. (2012). Aerosol optical and radiative properties during summer and winter season over Lahore and Karachi. Atmos Environ., 50, 234–245.
Ancelet, T., Davy, P. K., Trompetter, W. J., Markwitz, A. and Weatherburn, D. C. (2013). Carbonaceous aerosols in a wood burning community in rural New Zealand. Atmos. Pollut. Res., 4, 245–249. doi:10.5094/APR.2013.026.
Andreae, M. O. (1995). Climatic effects of changing atmospheric aerosol levels. (In: Henderson Sellers, H. (Ed.), World Survey of Climatology; Future Climates of the World (341-392). Elsevier, Amsterdam.)
Babu, S. S., Satheesh, S. K. and Moorthy, K. K. (2002). Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys. Res. Lett., 29, 1880. doi: 10.1029/2002GL015826.
Bansal, O., Singh, A., and Singh, D. (2019). Characteristics of Black Carbon aerosols over Patiala Northwestern part of the IGP: Source apportionment using cluster and CWT analysis. Atmos. Pollut. Res., 10, 244–256. https://doi.org/10.1016/j.apr.2018.08.001.
Beegum, S. N., Moorthy, K. K., Gogoi, M. M., Babu, S. S. and Pandey, S. K. (2012). Multi-year investigations of aerosols from an island station, Port Blair, in the Bay of Bengal: Climatology and source impacts. Ann. Geophys., 30, 1113–1127.
Bisht, D. S. , Dumka, U. C.,  Kaskaoutis, D. G., Pipal, A. S., Srivastava, A. K., Soni, V. K., Attri, S. D., Sateesh, M. and Tiwari, S. (2015). Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing. Sci. Total. Environ., 522, 431–445.
Bollasina, M. A., Ming, Y. and Ramaswamy, V. (2011). Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Sci., 334, 502–505.
Bond, T., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, Y., Sarofim, M. C., Schultz, M. G., Schultz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, S., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwart, J. P., Shindell, D., Storelvmo, T.,  Warren, S. G. and Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 5380–5552. doi:10.1002/jgrd.50171.
Brooks, J., Liu, D., Allan, J. D., Williams, P. I., Haywood, J., Highwood, E. J., Kompalli, S. K., Babu, S. S., Satheesh, S. K., Turner, A. G., and Coe, H. (2019). Black carbon physical and optical properties across northern India during pre-monsoon and monsoon seasons. Atmos. Chem. Phys., 19, 13079–13096. https://doi.org/10.5194/acp-19-13079-2019.
Budhavant, K. B., Gawhane, R. D., Rao, P. S. P., Chandrika, H. R., Nair, R. and Safai, P. D. (2020). Physico-chemical characterization and sink mechanism of atmospheric aerosols over South-west India. J. Atmos. Chem., 77, 17–33. https://doi.org/10.1007/s10874-020-09400-x
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley J. R., J. A., Hansen, J. E. and Hofmann, D. J. (1992). Climate forcing by anthropogenic aerosols. Sci., 255, 423–430.
Chatterjee, A., Ghosh, S. K., Adak, A., Singh, A. K., Devara, P. C. S., and Raha, S. (2012). Effect of dust and anthropogenic aerosols on columnar aerosol optical properties 30 over Darjeeling (2200 m asl.), Eastern Himalayas, India. PLoS ONE, 7(7), e40286. doi:10.1371/journal.pone.0011122.
Che, H. Z., Shi, G. Y., Zhang, X. Y., Arimoto, R., Zhao, J. Q., Xu, L., Wang, B. and Chen, Z. H. (2005). Analysis of 40 years of solar radiation data from China, 1961–2000. Geophys. Res. Lett., 32, L06803. doi:10.1029/2004GL022322.
Chung, C. E., Ramanathan, V. and Decremer, D. (2012). Observationally constrained estimates of carbonaceous aerosol radiative forcing. PNAS 109(29), 11624–11629.
Deep, A., Pandey, C. P., Nandan, H., Singh, N., Yadav, G., Joshi, P. C., Purohit, K. D. and Bhatt, S. S. C. (2021). Aerosols optical depth and Ångström exponent over different regions in Garhwal Himalaya, India. Environ. Monit. Assess. 193, 324.  https://doi.org/10.1007/s10661-021-09048-4.
Dey, S. and Girolamo, L. Di. (2011). A decade of change in aerosol properties over the Indian subcontinent. Geophys. Res. Lett., 38, L14811, doi:10.1029/2011GL048153.
Dey, S., Girolamo, L. Di., Van, D. A., Tripathi, S. N., Gupta, T. and Mohan, M. (2012). Variability of outdoor fine particulate (PM2.5) concen- tration in the Indian subcontinent: a remote sensing approach. Remote Sens. Environ., 127, 153–161.
Dolske, D. A. and Gatz, D.F. (1985). A field comparison of methods for the measurement of particle and gas deposition. J. Geophys. Res., 90,, 2076–2084.
Emerson, E. W., Katich, J. M., Schwarz, J. P., McMeeking, G. R. and  Farmer, D. K. (2018). Direct measurements of dry and wet deposition of black carbon over a grassland. J. Geophys. Res. Atmos., 123(12), 277–290.
Fadnavis, S., Müller, R., Kalita, G., Rowlinson, M., Rap, A., Frank, J., Gasparini, B. and Laakso, A. (2019). The impact of recent changes in Asian anthropogenic emissions of SO2 on sulfate loading in the upper troposphere and lower stratosphere and the associated radiative changes. Atmos. Chem. Phys., 19, 9989–10008. https://doi.org/10.5194/acp-19-9989-2019.
Gadhavi, H. and Jayaraman, A. (2010). Absorbing aerosols: contribution of biomass burning and implications for radiative forcing. Ann. Geophys., 28(123), 103–111.
Ganguly, D., Jayaraman, A., Rajesh, T. A. and Gadhavi, H. (2006). Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing. J. Geophys. Res., 111; D15217. doi:10.1029/2005JD007029.
Gautam, R., Hsu, N. C., Kafatos, M. and Tsay, S. C. (2007). Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J. Geophys. Res., 112, 05207. doi:10.1029/2005JD007036.
Gawhane, R. D., Rao, P. S. P., Budhavant, K., Meshram, D. C. and Safai, P. D. (2019). Anthropogenic fine aerosols dominate over the Pune region, Southwest India. Meteorol. Atmos. Phys., 131, 1497–1508. https://doi.org/10.1007/s00703-018-0653-y.
Ge, J. M., Su, J., Ackerman, T. P., Fu, Q., Huang, J. P.and Shi, J. S. (2010). Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China–US joint field experiment. J. Geophys. Res., 115, (D00k12). doi:10.1029/2009JD013263.
Gogoi, M. M., Moorthy, K. K., Babu, S. S. and Bhuyan, P. K. (2009). Climatology of columnar aerosol properties and the influence of synoptic conditions: First-time results from the northeastern region of India. J. Geophys., Res., 114, D08202, doi: 10.1029/2008JD010765.
Govardhan, G., Satheesh, S. K., Moorthy, K. K., and Nanjundiah, R. (2019). Simulations of black carbon over the Indian region: improvements and implications of diurnality in emissions. Atmos. Chem. Phys., 19, 8229–8241. https://doi.org/10.5194/acp-19-8229-2019.
Gu, Y., Liou, K. N., Jiang, J. H., Su, H. and Liu, X. (2012). Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos. Chem. Phys., 12, 1667–1679.
Guleria, R. P., Kuniyal, J. C., Sharma, N.L. and Dhyani, P. P. (2012). Seasonal variability in aerosol optical and physical characteristics estimated using the application of the angstrom formula over Mohali in the northwestern Himalaya. India. J. Earth. Syst. Sci., 121(3), 697–710.
Gulia, S., Goyal, Nitin, Mendiratta, S., Biswas, T., Goyal, S.K. and Kumar, R. (2021). COVID 19 Lockdown - Air Quality Reflections in Indian Cities. Aerosol Air Qual. Res. 21, 200308. https://doi.org/10.4209/aaqr.200308.
Gunthe, S. S., Liu, P. and Panda, U.  (2021). Enhanced aerosol particle growth sustained by high continental chlorine emission in India. Nat. Geosci. 14, 77–84. https://doi.org/10.1038/s41561-020-00677-x
Huang, J., Zhang, C. and Prospero, J. M. (2010). African dust outbreaks: A satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J. Geophys. Res., 115, D05202, doi:10.1029/2009JD012516.
IPCC (Intergovernmental Panel on Climate Change) (2007). Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Chapter 2, 129.
Jiang, J. H., Su, H., Zhai, M., Massie, S. T., Schoeberl, M. R., Colarco, P. R., Platnick, S., Gu, Y. and Liou, K. N. (2011). Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos. Chem. Phys., 11, 457–463. doi:10.5194/acp-11-457-2011.
Kant, Y., Singh, A., Mitra, D., Darshan, S.,Srikanth, P., Madhusudanacharyulu, A. S. and Murthy K. Y. N. V. (2015). Optical and radiative properties of aerosols over two locations in the North-West Part of India during premonsoon season. Adv. Meteorol., http://dx.doi.org/10.1155/2015/ 517434.
Kaskaoutis, D. G., Singh, R. P., Gautam, R., Sharma, M., Kosmopoulos, P. G. and Tripathi, S. N. (2012). Variability and Trends of Aerosol Properties over Kanpur, Northern India Using AERONET Data (2001-10). Environ. Res. Lett., 7(2), 024003.
Kaskaoutis, D. G., Sinha, P. R., Vinoj, V., Kosmopoulos, P. G., Tripathi, S. N., Misra, A., Sharma, M. and Singh, R. P. (2013). Aerosol properties and radiative forcing over Kanpur during severe aerosol loading conditions. Atmos. Environ., 79, 7–19.
Kiehl, J. T. and Briegleb, B. P. (1993). The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Sci., 260(5106), 311–314.
Kumar, A., Singh, N. and Solanki, R. (2018a). Evaluation and utilization of MODIS and CALIPSO aerosol retrievals over a complex terrain in Himalaya. Remote Sens. Environ., 206, 139–155.
Kumar, K. R., Narasinhulu, K., Reddy, R. R., Gopal, K. R., Reddy, L. S. S., Balakrishnaiah, G., Moorthy, K. K. and Babu, S. S. (2009). Temporal and spectral characteristics of aerosol optical depths in a semi-arid region of southern India. Sci. Tot. Environ., 407, 2673–2688.
Kumar, K. T., Gadhavi, H., Jayaraman, A., Sai Suman, M. N. and Rao, V. B. (2013). Temporal and spatial variability of aerosol optical depth over South India as inferred from MODIS, J. Atmos. Sol.-Terr. Phys., 94, 71–80, doi:10.1016/j.jastp.2012.12.010.
Kumar, S., Devara, P. C. S., Sonbawne, S. and Saha, S. (2011). Sun-sky radiometer derived column integrated aerosol optical and physical properties over a tropical urban station during 2004–2009. J. Geophys. Res., 116(D10201), doi:10.1029/ 2010JD014944
Levy, H., Horowitz, L. W., Schwarzkopf, M. D., Ming, Yi., Golaz, J. C., Naik, V. and Ramaswamy, V. (2013) The roles of aerosol direct and indirect effects in past and future climate change. J. Geophys. Res., 118, 4521–4532.
Liu, P. F., Zhao, C. S., Göbel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W. Y., Deng, Z. Z., Ma, N., Mildenberger, K., Henning, S., Stratmann, F. and Wiedensohler, A. (2011). Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain. Atmos. Chem. Phys., 11, 3479–3494, doi:10.5194/acp-11-3479-2011.
Lodhi, N. K., Beegum, S. N. and Singh, S. (2013). Aerosol climatology at Delhi in the western Indo-Gangetic plain: microphysics, long-term trends, and source strengths. J Geophys. Res., 118, 1361–1375.
Lohmann, U. and Feichter, J. (2005). Global indirect aerosol effects: a review. Atmos. Chem. Phys., 5,, 715–737. doi:10.5194/acp-5-715-2005.
Manoj, M. R., Satheesh, S. K., Moorthy, K. K. and Coe, H. (2020). Vertical profiles of submicron aerosol single scattering albedo over the Indian region immediately before monsoon onset and during its development: research from the SWAAMI field campaign. Atmos. Chem. Phys., 20, 4031–4046. https://doi.org/10.5194/acp-20-4031-2020, 2020.
Mishra, M. and Kulshrestha, U. C. (2021). Source Impact Analysis Using Char-EC/soot-EC Ratios in the Central Indo-Gangetic Plain (IGP) of India. Aerosol Air Qual. Res., 21(9), https://doi.org/10.4209/aaqr.200628.
Moorthy, K. K., Babu, S. S. and Satheesh, S. K. (2007). Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station. Part 1: Microphysical and optical properties. Ann. Geophys., 25, 2293–2308.
More, S., Kumar, P. P., Gupta, P., Devara, P. C. S. and Aher, G. R. (2013). Comparison of aerosol products retrieved from AERONET, MICROTOPS, and MODIS over a tropical urban city, Pune, India. Aerosol Air Qual. Res., 13(1), 107–121.
Mori, T., Kondo, Y., Ohata, S., Moteki, N., Matsui, H., Oshima, N. and Iwasaki, A. (2014). Wet deposition of black carbon at a remote site in the East China Sea. J. Geophys. Res. Atmos., 119, 10485–10498. https://doi.org/10.1002/2014JD022103.
Mukherjee, T. and Vinoj, V. (2020). Atmospheric aerosol optical depth and its variability over an urban location in Eastern India. Nat. Hazards, 102, 591–605. https://doi.org/10.1007/s11069-019-03636-x
Nakata, M. (2018) "Analysis of climate change caused by aerosol-cloud-radiaton interaction", Proc. SPIE 10786, Remote Sensing of Clouds and the Atmosphere XXIII, 1078614.  https://doi.org/10.1117/12.2325265.
Pachauri, T., Singla, V., Satsangi, A., Lakhani, A. and Kumari, K. M. (2013). Characterization of carbonaceous aerosols with special reference to episodic events at Agra, India. Atmos. Res., 128, 98–110.
Pandithurai, G., Dipu, S., Dani, K. K., Tiwari, S., Bisht, D. S., Devara, P. C. S. and Pinker, R. T. (2008). Aerosol Radiative Forcing during Dust Events over New Delhi, India. J. Geophys. Res., 113, D13209. doi: 10.1029/2008JD009804.
Pandithurai, G., Pinker, R. T., Devara. P. C. S., Takamura, T. and Dani, K. K. (2007). Seasonal asymmetry in diurnal variation of aerosol optical characteristics over Pune, western India. J. Geophys. Res., 112, D08208. doi:10.1029/2006JD007803,
Pani, S. K. and Verma, S. (2013). Variability of winter and summertime aerosols over eastern India urban environment. Atmos. Res., 137, 112-124. doi:10.1016/j. atmosres.2013.09.014.
Patel, P. N. and Kumar, R. (2015). Estimation of Aerosol Characteristics and Radiative Forcing during Dust Events over Dehradun. Aerosol Air Qual. Res., 15, 2082-2093.
Pathak, B. (2015). Aerosol characteristics in North-East India using ARFINET spectral optical depth measurements. Atmos. Environ., 125, 461-473. DOI:10.1016/j.atmosenv.2015.07.038
Pathak, H. S., Satheesh, S. K., Nanjundiah, R. S., Moorthy, K. K., Lakshmivarahan, S. and Babu, S. N. S. (2019). Assessment of regional aerosol radiative effects under the SWAAMI campaign – Part 1: Quality-enhanced estimation of columnar aerosol extinction and absorption over the Indian subcontinent. Atmos. Chem. Phys., 19, 11865–11886, https://doi.org/10.5194/acp-19-11865-2019. 
Pipal, A. S. and Satsangi, P. G. (2015). Study of carbonaceous species, morphology and sources of fine (PM2.5) and coarse (PM10) particles along with their climatic nature in India. Atmos. Res, 154, 103–115.
Prasad, A. K. and Singh, R. P. (2007). Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo- Gangetic plains using AERONET and MODIS data. J. Geophys. Res., 112, D09208. doi:10.1029/200JD007778.
Prasad, A. K., Singh, R. P. and Singh, A. (2006). Seasonal climatology of aerosol optical depth over the Indian subcontinent: Trend and departures in recent years, Int. J. Remote Sens., 27(12), 2323–2329. doi:10.1080/ 01431160500043665
Ram, K., Sarin and M. M. (2009). Absorption coefficient and site-specific mass absorption efficiency of elemental carbon in aerosols over urban, rural, and high-altitude sites in India. Environ. Sci. Technol., 43, 8233-8239.
Ram, K., Sarin, M. M. and Tripathi, S. N. (2010). A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic plain: characterization, sources and temporal variability. J. Geophys. Res., 115, D24313. http://dx.doi.org/ 10.1029/2010JD014188.
Ram, K., Sarin, M. M. and Tripathi, S. N. (2012b). Temporal trends in atmospheric PM2.5, PM10, EC, OC, WSOC and optical properties: impact of biomass burning emissions in the indo-Gangetic plain. Environ. Sci. Technol., 43, 686–695. http://dx.doi.org/10.1021/ es202857w.
Ram, K., Singh, S., Sarin, M. M., Srivastava, A. K.and Tripathi, S. N. (2016). Variability in aerosol optical properties over an urban site, Kanpur, in the Indo-Gangetic Plain: A case study of haze and dust events. Atmos. Res., 174(175), 52–61.
Ramachandran, S. (2005). Aerosol radiative forcing over Bay of Bengal and Chennai: Comparison with maritime, continental, and urban aerosol models. J. Geophys. Res., 110, D21206. doi:10.1029/2005JD005861.
Ramachandran, S. and Kedia, S. (2012) Radiative effects of aerosols over Indo-Gangetic plain: environmental (urban vs. rural) and seasonal variations. Environ. Sci. Pollut. Res., 19(6), 2159–2171.
Ranjan, R. R., Joshi, H. P. and Iyer, K. N. (2007). Spectral variation of total column aerosol optical depth over Rajkot: a tropical semi-arid Indian station. Aero. Air Qual. Res., 7, 33–45.
Sarkar, S., Chokngamwong, R., Cervone, G., Singh, R. P. annd Kafatos, M. (2006). Variability of aerosol optical depth and aerosol forcing over India. Adv. Space Res., 37, 2153–2159.
Satheesh, S. K., Vinoj, V. and Moorthy, K. K. (2010). Radiative effects of aerosols at an urban location in southern India: observations versus model. Atmos. Environ., 44 (39, 5295–5304.
Schuster, G. L., Dubovik, O. and Holben, B. N. (2006). Ångström exponent and bimodal aerosol size distributions. J Geophys Res- Atmos., 111, D07207. doi:10.1029/2005JD006328.
Shannigrahi, A. S., Fukushima, T. and Ozaki, N. (2005). Comparison of different methods for measuring dry deposition fluxes of particulate matter and polycyclic aromatic hydrocarbons (PAHs) in the ambient air. Atmos. Environ., 39, 653–662.
Sharma, D., Singh, D. and Kaskaoutis, D. G. (2012). Impact of two intense dust storms on aerosol characteristics and radiative forcing over Patiala, Northwestern India. Adv. Meteorol., doi:10.1155/2012/956814.
Sharma, M., Kaskaoutis, D. G., Singh, R. P. and Singh, S. (2014). Seasonal variability of atmospheric aerosol parameters over greater Noida using ground sunphotometer observations. Aerosol Air Qual. Res., 14, 608–622. doi:10.4209/aaqr. 2013.06.0219.
Simpkins, G. (2018). Aerosol–cloud interactions. Nature Clim. Change, 8, 457. https://doi.org/10.1038/s41558-018-0195-9.
Singh, B. P., Srivastava, A. K., Tiwari, S.,  Singh, S.,  Singh, R. K., Bisht, D. S.,  Lal, D. M.,  Singh, A. K., Mall, R. K. and Srivastava M. K.  (2014). Radiative Impact of Fireworks at a Tropical Indian Location: A Case Study.  Adv Meteorol., http://dx.doi.org/10.1155/2014/197072.
Singh, R. P, Dey, S., Tripathi, S. N., Tare, V. and Holben, B. (2004). Variability of aerosol parameters over Kanpur city, northern India. J. Geophys. Res., 109; D23206. doi:10.1029/2004JD004966.
Singh, S., Soni, K., Bano, T., Tanwar, R. S., Nath, S. and Arya, B. C. (2010). Clearsky direct aerosol radiative forcing variations over megacity Delhi. Ann. Geophys., 28, 1157–1166.
Sinha, P. R., Dumka, U. C., Manchanda, R. K., Kaskaoutis, D. G., Sreenivasan, S., Moorthy, K. K. and Suresh, B. S. (2013). Contrasting Aerosol Characteristics and Radiative Forcing over Hyderabad, India Due to Seasonal Mesoscale and Synoptic Scale Processes. Q. J. R. Meteorolog. Soc., 139, 434–450.
Sinha, P. R., Kaskaoutis, D. G., Manchanda, R. K. and Sreenivasan, S. (2012). Characteristics of aerosols over Hyderabad, in Southern Peninsular India with the use of different techniques. Ann. Geophys., 30, 1393-1410.
Sivan, C. and Manoj, M.G. (2019). Aerosol and cloud radiative forcing over various hot spot regions in India. Adv. Space Res., 64(8), 1577-1591. https://doi.org/10.1016/j.asr.2019.07.028.
Soni, K., Singh, S., Bano, T., Tanwar, R. S., Nath, S. and Arya, B. C. (2010). Variations in single scattering albedo and Angstrom absorption exponent during different seasons at Delhi, India. Atmos. Environ., 44, 4355–4363.
Srivastava, A. K., Ram, K., Singh, S., Kumar, S. and Tiwari, S. (2015). Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: Seasonal variability and role of transported aerosols. Sci. Tot. Environ., 502, 287–295.
Srivastava, A. K., Singh, S., Tiwari, S. and Bisht, D. S. (2012). Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo- Gangetic Basin. Environ. Sci. Pollut. Res., 19, 1144–1158.
Srivastava, A. K., Soni, V. K., Singh, S., Kanawade, V. P., Singh, N., Tiwari, S. and Attri, S. D. (2014). An early South Asian dust storm during March 2012 and its impacts on Indian Himalayan foothills: A case study. Sci. Total Environ., 493, 526–34.
Srivastava, A. K., Tiwari, S., Devara, P. C. S., Bisht, D. S., Manoj K. Srivastava, Tripathi, S. N., Goloub, P. and Holben, B. (2011). Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: implications to climatic impact. Ann. Geophys., 29, 789-804. doi:10.5194/angeo-29-789-2011.
Suman, M. N. S., Gadhavi, H., Kiran, V. R., Jayaraman, A. and Rao, S. V. B. (2013). Role of coarse and fine mode aerosols in MODIS AOD retrieval: a case study. Atmos. Meas. Tech. Diss., 6, 9109–9132.
Suresh, T. and Desa, E. (2005). Seasonal variations of aerosol over Dona Paula, a coastal site on the west coast of India. Atmos. Environ., 39, 3471–3480, doi:10.1016/j.atmosenv.2005.01.063.
Tai, A. Y., Chen, L. A., Wang, X., Chow, J.C. and Watson, J.G. (2017). Atmospheric deposition of particles at a sensitive alpine lake: Size-segregated daily and annual fluxes from passive sampling techniques. Sci. Total Environ., 579, 1736–1744.
Takamura, T., Sugimoto, N., Shimizu, A.,  Uchiyama, A., Yamazaki, A., Aoki, K., Nakajima, T., Sohn, B. J. and Takenaka, H. (2007). Aerosol radiative characteristics at Gosan, Korea, during the atmospheric brown cloud East Asian regional experiment 2005. J. Geophys. Res., 112, 22–36.
Tiwari, S. and Singh, A. K. (2013a). Variability of aerosol parameters derived from ground and satellite measurements over Varanasi located in Indo-Gangetic Basin. Aerosol Air Qual. Res., 13, 627–638.
Tiwari, S., Hopke, P. K., Attri, S. D., Soni, V. K. and Singh, A. K. (2016). Variability in optical properties of atmospheric aerosols and their frequency distribution over a mega city ‘New Delhi’, India. Environ. Sci. Pollut. Res. Int., 23(9), 8781–93. doi:10.1007/s11356-016-6060-3.
Tiwari, S., Pandithurai, G., Attri, S. D., Srivastava, A. K., Soni, V. K., Bisht, D. S., Kumar, V. A. and Srivastava, M. K. (2015). Aerosol optical properties and their relationship with meteorological parameters during wintertime in Delhi, India. Atmos. Res., 153, 465–479.
Tiwari, S., Srivastava, A. K. and Singh, A. K. (2013). Heterogeneity in pre- monsoon aerosol characteristics over the Indo-Gangetic basin. Atmos. Environ., 77, 738–747.
Tiwari, S., Srivastava, A. K., Singh, A. K. and Singh, S. (2015a). Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing. Environ. Sci. Pollut. Res., 12(22), 12246-12260. doi:10.1007/s11356-015-4495-6.
Vaishya, A., Babu, S. N. S. , Jayachandran, V., Gogoi, M.M., Lakshmi, N. B., Moorthy, K. K. and Satheesh, S. K. (2018). Large contrast in the vertical distribution of aerosol optical properties and radiative effects across the Indo-Gangetic Plain during the SWAAMI–RAWEX campaign. Atmos. Chem. Phys., 18, 17669–17685. https://doi.org/10.5194/acp-18-17669-2018.
Verma, S., Prakash, D., Ricaud, P., Payra, S., Attié, J. L. and Soni, M. (2015). A new classification of aerosol sources and types as measured over Jaipur, India. AAQR, 15, 985–993, doi: 10.4209/aaqr.2014.07.0143.
Vinod K. A., Jagatheeswari A., Muneeswaran S., Palanivelraja S. and Chockalingam, M. P. (2020). Aerosol Optical Depth and Black Carbon Concentration along the Coast of Bay of Bengal. IJRTE, 8(5), 1493-1496.