پیش‌بینی جریان ماهانه رودخانه با استفاده از رویکردهای آنتروپی شانون و موجک (مطالعه موردی: رودخانه مارون)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه هیدرولوژی و منابع آب ، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 دانشیار، گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 استادیار، گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

جریان رودخانه از مهمترین اجزاء چرخه هیدرولوژی است که به عوامل اقلیمی متعددی وابسته بوده و برآورد دقیق آن در زمینه-های مختلف مدیریت منابع آب کاربرد دارد. در مطالعه حاضر از مدل‌های جنگل‌های تصادفی (RF) و ماشین بردار پشتیبان (SVM) برای پیش‌بینی جریان ماهانه رودخانه مارون در دوره آماری 1360 تا 1396 استفاده گردید. یکی از مراحل مهم در کاربرد مدل‌های هوش مصنوعی تعریف الگوهای ورودی و شناسایی پارامترهای موثر در فرآیند مدل‌سازی است. برای انتخاب بهینه‌ترین ورودی‌ها از بین بارش، تبخیر و دماهای کمینه، بیشینه و متوسط روش آنتروپی شانون استفاده شد. نتایج نشان داد که وزن بارش و تبخیر در مجموع بیش از 85 درصد بود. در گام بعد، سه ساختار متفاوت برای ورودی مدل‌ها توسعه داده شد. در حالت اول الگوهای اقلیم‌پایه تعریف شدند که از داده‌های هواشناسی به عنوان ورودی استفاده می‌کردند. در حالت دوم خاصیت تناوبی غیرخطی به الگوهای اقلیم‌پایه افزوده شد و در حالت سوم داده‌های ورودی اقلیم‌پایه با استفاده از پنج تابع موجک مادر تجزیه شده و مدل‌های هیبریدی W-RF و W-SVM ایجاد شدند. عملکرد مدل‌های منفرد RF و SVM نشان داد که با افزودن ترم پریودیک، دقت در مقایسه با ورودی‌های اقلیم پایه تا حدودی افزایش می‌یابد، اما تجزیه داده‌ها با تئوری موجک به طور قابل ملاحظه‌ای خطای مدل‌سازی را کاهش داد. در این بین عملکرد دو مدل W-RF و W-SVM بسیار نزدیک به یکدیگر بود، اما با توجه به نمودار ویلونی، مدل W-SVM به عنوان مناسب‌ترین گزینه برای پیش‌بینی جریان ماهانه رودخانه مارون پیشنهاد می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of Monthly Streamflow Using Shannon Entropy and Wavelet Theory Approaches (Case study: Maroon River)

نویسندگان [English]

  • Mohammad Amin Nekoeeyan 1
  • Feridon Radmanesh 2
  • Farshad Ahmadi 3
1 M.Sc. Student, Department of Hydrology and Water Resources, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 Associate Professor, Department of Hydrology and Water Resources, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Assistant Professor, Department of Hydrology and Water Resources, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

River flow is one of the most important components of the hydrological cycle, which depends on several climatic factors and its accurate estimation is used in various fields of water resources management. Therefore, in the present study, random forest (RF) and support vector machine (SVM) models were used to predict the monthly streamflow of the Maroon River in the period of 1981- 2017. One of the important steps in the application of artificial intelligence models is the definition of input patterns and determining the effective variables in the modeling process. The Shannon entropy method was used to select the most efficient inputs among precipitation, evaporation, and minimum, maximum, and average temperatures. The results showed that the total weight of precipitation and evaporation was more than 85 percent. In the next step, three different structures were developed for modeling. In the first case, climate-based patterns were defined that used meteorological data as input. In the second case, nonlinear periodicity was added to the climate-based patterns, and in the third case, the climate-based input data were decomposed using five mother wavelet functions, and W-RF and W-SVM hybrid models were created. The performance evaluation of the standalone RF and SVM models showed that by considering the periodic term, the accuracy is somewhat increased compared to the climate-based inputs, but the analysis of the data with wavelet theory significantly reduced the modeling error. In the meantime, the performance of the two models W-RF and W-SVM was very close to each other, but according to the violin plot, the W-SVM model is suggested as the most suitable option for predicting the monthly streamflow of the Maroon River.

کلیدواژه‌ها [English]

  • Climate based patterns
  • Decomposition level
  • Periodic term
  • Weighting
  1. Aghelpour, P., Bahrami-Pichaghchi, H., & Varshavian, V. (2021). Hydrological drought forecasting using multi-scalar streamflow drought index, stochastic models and machine learning approaches, in northern Iran. Stochastic Environmental Research and Risk Assessment, 1-21.
  2. Ahmadi, F. (2021). Evaluation of the Efficiency of Data Preprocessing Methods on Improving the Performance of Gene Expression Programming Model (Case Study: Ab Zal River). Water and Soil, 35(2), 153-165. (In Persian).
  3. Ahmadi, F., Mehdizadeh, S., Mohammadi, B., Pham, Q. B., Doan, T. N. C., & Vo, N. D. (2021). Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation. Agricultural Water Management, 244, 106622.
  4. Ali, M., Prasad, R., Xiang, Y., & Yaseen, Z. M. (2020). Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts. Journal of Hydrology, 584, 124647.
  5. Baydaroğlu, Ö., Koçak, K., & Duran, K. (2018). River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach. Meteorology and Atmospheric Physics, 130(3), 349-359.
  6. Bednarik, M., Magulová, B., Matys, M., & Marschalko, M. (2010). Landslide susceptibility assessment of the Kraľovany–Liptovský Mikuláš railway case study. Physics and Chemistry of the Earth, Parts A/B/C, 35(3-5), 162-171.
  7. Booker, D. J., & Snelder, T. H. (2012). Comparing methods for estimating flow duration curves at ungauged sites. Journal of Hydrology, 434, 78-94.
  8. Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
  9. Chen, B. H., Wang, X. Z., Yang, S. H., & McGreavy, C. (1999). Application of wavelets and neural networks to diagnostic system development, 1, feature extraction. Computers & Chemical Engineering, 23(7), 899-906.
  10. Choubey, V., Mishra, S., & Pandey, S. K. (2014). Time series data mining in real time surface runoff forecasting through Support Vector Machine. International Journal of Computer Applications, 98(3), 23-30.
  11. Christian, K., Roy, A. F., Yudianto, D., & Zhang, D. (2021). Application of optimized Support Vector Machine in monthly streamflow forecasting: using Autocorrelation Function for input variables estimation. Sustainable Water Resources Management, 7(3), 1-14.
  12. Drisya, J., Kumar, D. S., & Roshni, T. (2021). Hydrological drought assessment through streamflow forecasting using wavelet enabled artificial neural networks. Environment, Development and Sustainability, 23(3), 3653-3672.
  13. Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics.
  14. Ghorbani, M. A., Deo, R. C., Kim, S., Kashani, M. H., Karimi, V., & Izadkhah, M. (2020). Development and evaluation of the cascade correlation neural network and the random forest models for river stage and river flow prediction in Australia. Soft Computing, 1-12.
  15. Ghorbani, M. A., Zadeh, H. A., Isazadeh, M., & Terzi, O. (2016). A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environmental Earth Sciences, 75(6), 476.
  16. Hammad, M., Shoaib, M., Salahudin, H., Baig, M. A. I., Khan, M. M., & Ullah, M. K. (2021). Rainfall forecasting in upper Indus basin using various artificial intelligence techniques. Stochastic Environmental Research and Risk Assessment, 1-23.
  17. Khodakhah, H., Aghelpour, P., & Hamedi, Z. (2021). Comparing linear and non-linear data-driven approaches in monthly river flow prediction, based on the models SARIMA, LSSVM, ANFIS, and GMDH. Environmental Science and Pollution Research, 1-20.
  18. Lohani, A. K., Kumar, R., & Singh, R. D. (2012). Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. Journal of Hydrology, 442, 23-35.
  19. Mallat, S. (1999). A wavelet tour of signal processing. Elsevier.
  20. Mallat, S. G. (2009). A theory for multiresolution signal decomposition: the wavelet representation. In Fundamental Papers in Wavelet Theory (pp. 494-513). Princeton University Press.
  21. Mehdizadeh, S., Ahmadi, F., Mehr, A. D., & Safari, M. J. S. (2020). Drought modeling using classic time series and hybrid wavelet-gene expression programming models. Journal of Hydrology, 587, 125017.
  22. Mirabbasi, R., Kisi, O., Sanikhani, H., & Meshram, S. G. (2019). Monthly long-term rainfall estimation in Central India using M5Tree, MARS, LSSVR, ANN and GEP models. Neural Computing and Applications, 31(10), 6843-6862.
  23. Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J. M.(1996). Wavelet Toolbox for Use with Matlab. The Mathworks, Inc.: Natick, Massachusetts, USA.
  24. Montaseri, M., & Ghavidel, S. (2014). River Flow Forecasting by Using Soft computing. Water and Soil, 28(2), 394-405. (In Persian).
  25. Mukhopadhyay, B., & Khan, A. (2015). Boltzmann–Shannon entropy and river flow stability within Upper Indus Basin in a changing climate. International Journal of River Basin Management, 13(1), 87-95.
  26. Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1-2), 52-66.
  27. Pai, P.F., & Hong, W.C. (2007). A recurrent support vector regression model in rainfall forecasting. Hydrological Process, 21, 819-827.
  28. Pham, L. T., Luo, L., & Finley, A. O. (2020). Evaluation of Random Forest for short-term daily streamflow forecast in rainfall and snowmelt driven watersheds. Hydrology and Earth System Sciences Discussions, 1-33.
  29. Phillies, G. D. (1996). Wavelets: a new alternative to Fourier transforms. Computers in Physics, 10(3), 247-252.
  30. Polikar, R. (1996). Fundamental concepts & an overview of the wavelet theory. The Wavelet Tutorial Part I, Rowan University, College of Engineering Web Servers, 15.
  31. Polikar, R. (1999). Fundamental concepts and overview of the wavelet theory: the wavelet tutorial–part I. Rowan University, College of Engineering Web Servers, 22.
  32. Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier. San Mateo, CA: Morgan Kaurmann. 303 pp.
  33. Roushangar, K., & Ghasempour, R. (2020). Monthly precipitation prediction improving using the integrated model based on kernel-wavelet and complementary ensemble empirical mode decomposition. Amirkabir Journal of Civil Engineering, 52(10), 2649-2660.
  34. Saraiva, S. V., de Oliveira Carvalho, F., Santos, C. A. G., Barreto, L. C., & Freire, P. K. D. M. M. (2021). Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Applied Soft Computing, 102, 107-121.
  35. Saray, M. H., Eslamian, S. S., Klöve, B., & Gohari, A. (2020). Regionalization of potential evapotranspiration using a modified region of influence. Theoretical and Applied Climatology, 140(1), 115-127.
  36. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3-55.
  37. Shataee, S., Kalbi, S., Fallah, A., & Pelz, D. (2012). Forest attribute imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms. International Journal of Remote Sensing, 33(19), 6254-6280.
  38. Tang, T., Liang, Z., Hu, Y., Li, B., & Wang, J. (2020). Research on flood forecasting based on flood hydrograph generalization and random forest in Qiushui River basin, China. Journal of Hydroinformatics, 22(6), 1588-1602.
  39. Vapnik, V.N. (1998). Statistical Learning Theory. Wiley, New York.
  40. Wang, J., Bao, W., Gao, Q., Si, W., & Sun, Y. (2021). Coupling the Xinanjiang model and wavelet-based random forests method for improved daily streamflow simulation. Journal of Hydroinformatics, 23(3), 589-604.
  41. Wang, W., & Ding, J. (2003). Wavelet network model and its application to the prediction of hydrology. Nature and Science, 1(1), 67-71.