Innovative fabrication of Ceo2 nanoparticles/WO3 nanoplates S-Scheme heterojunction for visible light photocatalytic degradation of nitenpyram insecticide

Document Type : Reasearch Paper

Author

Department of Chemical Engineering, University of Bonab, P.O. Box. 5551761167, Bonab, Iran.

Abstract

In the current study, a novel S-scheme heterojunction photocatalyst was fabricated through a simple hydrothermal method from CeO2 nanoparticles and WO3 nanoplates in presence of tragacanth mucilage as natural surfactant. The prepared heterojunction photocatalyst was used for degradation of Nitenpyram insecticide under visible light irradiation. The successful synthesis of the heterojunction samples was confirmed by FESEM, XRD, PL, DRS, and Mott-Schottky analysis. The results showed that, the photocatalytic performance of the CeO2/WO3 heterojunction sample was higher than that of the pure WO3 and CeO2 samples. The highest photocatalytic activity was obtained for the sample with 30 wt% CeO2 content, which has the reaction rate constant of 0.017 min-1. The improved photocatalytic activity of the nanocomposite sample could be related to the efficient separation of the photoinduced electron-hole pairs at the interfaces of WO3 and CeO2, and enhanced visible light harvesting. Furthermore, according to the active species trapping tests and Mott-Schottky measurements, hydroxide radical was determined as the main active species for degradation of Nitenpyram insecticide, and a S-scheme charge transfer mechanism revealed to be responsible for the enhanced photocatalytic performance.  

Keywords


  1. DiBartolomeis M., Kegley S., Mineau P., Radford R., Klein K., (2019), An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PloS One. 14: e0220029.
  2. Liu J., Xiong W. H., Ye L. Y., Zhang W. S.,Yang H., (2020), Developing a novel nanoscale porphyrinic metal–organic framework: A bifunctional platform with sensitive fluorescent detection and elimination of nitenpyram in agricultural environment. J. Agricult. food Chem. 68: 5572-5578.
  3. Priya R., Ramesh D., Khosla E., (2020), Biodegradation of pesticides using density-based clustering on cotton crop affected by Xanthomonas malvacearum. Environ. Develop. Sustainab. 22: 1353-1369.
  4. Dumée L. F., Maina J. W., Merenda A., Reis R., He L.,Kong L., (2017), Hybrid thin film nano-composite membrane reactors for simultaneous separation and degradation of pesticides. J. Memb. Sci. 528: 217-224.
  5. Narayanan N., Gupta S.,Gajbhiye V. T., (2020), Decontamination of pesticide industrial effluent by adsorption–coagulation–flocculation process using biopolymer-nanoorganoclay composite. Int. J. Environm. Sci. Technol. 17: 4775-4786.
  6. Wang R., Pan J., Qin M.,Guo T., (2019), Molecularly imprinted nanocapsule mimicking phosphotriesterase for the catalytic hydrolysis of organophosphorus pesticides. Europ. Polym. J. 110: 1-8.
  7. Bhat A. P., Gogate P. R., (2021), Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: A review on aliphatic and aromatic amines, dyes, and pesticides. J. Hazard. Mater. 403: 123657.
  8. Akerdi A. G., Bahrami S. H., (2019), Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: A review. J. Environm. Chem. Eng. 7: 103283.
  9. Azari B., Pourahmad A., Sadeghi B., Mokhtary M., (2020), Incorporation of Zinc Oxide nanoparticles in RHA-MTW zeolite and its application for degradation of dye. J. Nanoanalysis. 7: 179-189.
  10. Dutta V., Sharma S., Raizada P., Thakur V. K., Khan A. A. P., Saini V., Asiri A. M., Singh P., (2021), An overview on WO3 based photocatalyst for environmental remediation. J. Environm. Chem. Eng. 9: 105018.
  11. Murillo-Sierra J., Hernández-Ramírez A., Hinojosa-Reyes L., Guzmán-Mar J., (2021), A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications. Chem. Eng. J. Adv. 5: 100070.
  12. Zhang X., Wei Y.,Yu R., (2022), Multidimensional tungsten oxides for efficient solar energy conversion. Small Struct. 3: 2100130.
  13. Mim R. S., Aldeen E. S., Alhebshi A., Tahir M., (2021), Recent advancements in strategies to improve performance of tungsten-based semiconductors for photocatalytic hydrogen production: A review. J. Phys. D: Appl. Phys. 54: 36-42.
  14. Yang G., Zhu X., Cheng G., Chen R., Xiong J., Li W.,Wei Y., (2021), Engineered tungsten oxide-based photocatalysts for CO2 reduction: Categories and roles. J. Mater. Chem. A. 9: 22781-22809.
  15. Samuel O., Othman M. H. D., Kamaludin R., Sinsamphanh O., Abdullah H., Puteh M. H., Kurniawan T. A., (2021), WO3–based photocatalysts: A review on synthesis, performance enhancement and photocatalytic memory for environmental applications. Ceram. Int. 48: 5845-5875.
  16. Liao M., Su L., Deng Y., Xiong S., Tang R., Wu Z., Ding C., Yang L.,Gong D., (2021), Strategies to improve WO3-based photocatalysts for wastewater treatment: A review. J. Mater. Sci. 56: 14416-14447.
  17. Wang F., Di Valentin C.,Pacchioni G., (2012), Doping of WO3 for photocatalytic water splitting: hints from density functional theory. J. Phys. Chem. C. 116: 8901-8909.
  18. Fakhri H., Bagheri H., (2020), Highly efficient Zr-MOF@WO3/graphene oxide photocatalyst: Synthesis, characterization and photodegradation of tetracycline and malathion. Mater. Sci. Semicond. Process. 107: 104815-104819.
  19. Manikandan V., Harish S., Archana J., Navaneethan M., (2022), Fabrication of novel hybrid Z-Scheme WO3@g-C3N4@MWCNT nanostructure for photocatalytic degradation of tetracycline and the evaluation of antimicrobial activity. Chemosphere. 287: 132050-132056.
  20. Farhadian M., Sangpour P., Hosseinzadeh G., (2015), Morphology dependent photocatalytic activity of WO3 nanostructures. J. Energy Chem. 24: 171-177.
  21. Zhao T., Qian R., Zhou G., Wang Y., Lee W. I., Pan J. H., (2021), Mesoporous WO3/TiO2 spheres with tailored surface properties for concurrent solar photocatalysis and membrane filtration. Chemosphere. 263: 128344-128349.
  22. He L., Zhang S., Zhang J., Chen G., Meng S., Fan Y., Zheng X., Chen S., (2020), Investigation on the mechanism and inner impetus of photogenerated charge transfer in WO3/ZnO heterojunction photocatalysts. J. Phys. Chem. C. 124: 27916-27929.
  23. Yang H., (2021), A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bullet. 142: 111406-111411.
  24. Bahadoran A., Farhadian M., Hoseinzadeh G., Liu Q., (2021), Novel flake-like Z-Scheme Bi2WO6-ZnBi2O4 heterostructure prepared by sonochemical assisted hydrothermal procedures with enhanced visible-light photocatalytic activity. J. Alloys and Comp. 883: 160895-160901.
  25. Behara D. K., Priya Alugoti D. V., Sree P. P., (2020), Multi element doped type-II heterostructure assemblies (N, S-TiO2/ZnO) for electrochemical crystal violet dye degradation. Int. J. Nano Dimens. 11: 303-311.
  26. Azari B., Pourahmad A., Sadeghi B., Mokhtary M., (2019), Preparation and photocatalytic study of SiO2/CuS coreshell nanomaterial for degradation of methylene blue dye. Nanoscale. 6: 103-114.
  27. Prajapati P. K., Malik A., Nandal N., Pandita S., Singh R., Bhandari S., Saran S., Jain S. L., (2022), Morphology controlled Fe and Ni-doped CeO2 nanorods as an excellent heterojunction photocatalyst for CO2 reduction. Appl. Surf. Sci. 588: 152912-152918.
  28. Ye K., Li Y., Yang H., Li M., Huang Y., Zhang S., Ji H., (2019), An ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants. Appl. Catal. B: Environm. 259: 118085-118091.
  29. Xu B., Yang H., Zhang Q., Yuan S., Xie A., Zhang M., Ohno T., (2020), Design and synthesis of Sm, Y, La and Nd‐doped CeO2 with a broom‐like hierarchical structure: A photocatalyst with enhanced oxidation performance. Chem. Cat. Chem. 12: 2638-2646.
  30. Zhu C., Wei X., Li W., Pu Y., Sun J., Tang K., Wan H., Ge C., Zou W., Dong L., (2020), Crystal-plane effects of CeO2 {110} and CeO2 {100} on photocatalytic CO2 reduction: Synergistic interactions of oxygen defects and hydroxyl groups. ACS Sustain. Chem. Eng. 8: 14397-14406.
  31. Nie J., Zhu G., Zhang W., Gao J., Zhong P., Xie X., Huang Y., Hojamberdiev M., (2021), Oxygen vacancy defects-boosted deep oxidation of NO by β-Bi2O3/CeO2-δ pn heterojunction photocatalyst in situ synthesized from Bi/Ce(CO3)(OH) precursor. Chem. Eng. J. 424: 130327-130331.
  32. Hao C.-C., Tang Y.-B., Shi W.-L., Chen F.-Y., Guo F., (2021), Facile solvothermal synthesis of a Z-Scheme 0D/3D CeO2/ZnIn2S4 heterojunction with enhanced photocatalytic performance under visible light irradiation. Chem. Eng. J. 409: 128168-128173.
  33. Xiao Y., Ji Z., Zou C., Xu Y., Wang R., Wu J., Liu G., He P., Wang Q., Jia T., (2021), Construction of CeO2/BiOI S-scheme heterojunction for photocatalytic removal of elemental mercury. Appl. Surf. Sci. 556: 149767-149771.
  34. Zhao X., Guan J., Li J., Li X., Wang H., Huo P., Yan Y., (2021), CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction. Appl. Surf. Sci. 537: 147891-147995.
  35. Hu L., Zheng X., Zhu J., He J., (2022), Adsorption performance of CeO2@NS-HNbMoO6 for ethyl mercaptan in methane gas. Chem. Papers. 76: 2495-2504.
  36. Chen J., Xiao X., Wang Y.,Ye Z., (2019), Fabrication of hierarchical sheet-on-sheet WO3/g-C3N4 composites with enhanced photocatalytic activity. J. Alloys Comp. 777: 325-334.
  37. Arya S., Chhina M. K., Choudhary R., Dua V., Singh K., (2022), Growth of different nanocrystalline phases in ZnO–Li2O–B2O3–TiO2–V2O5 glass and their effect on photoluminescence and photocatalytic activity. Ceram. Int. 48: 20619-20626.
  38. Zinatloo-Ajabshir S., Emsaki M., Hosseinzadeh G., (2022), Innovative construction of a novel lanthanide cerate nanostructured photocatalyst for efficient treatment of contaminated water under sunlight. J. Colloid Interf. Sci. 619: 1-13.
  39. Liqiang J., Yichun Q., Baiqi W., Shudan L., Baojiang J., Libin Y., Wei F., Honggang F., Jiazhong S., (2006), Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Mater. Solar Cells. 90: 1773-1787.
  40. Gelderman K., Lee L., Donne S., (2007), Flat-band potential of a semiconductor: Using the Mott–Schottky equation. J. Chem. Educ. 84: 685-692.
  41. Hosseinzadeh G., Zinatloo-Ajabshir S., Yousefi A., (2022), Innovative synthesis of a novel ZnO/ZnBi2O4/graphene ternary heterojunction nanocomposite photocatalyst in the presence of tragacanth mucilage as natural surfactant. Ceram. Int. 48: 6078-6086.
  42. Akhlaghian F., Najafi A., (2018), CuO/WO3/TiO2 photocatalyst for degradation of phenol wastewater. Scientia Iranica. 25: 3345-3353.
  43. Teye G. K., Huang J., Li Y., Li K., Chen L., Darkwah W. K., (2021), Photocatalytic degradation of sulfamethoxazole, nitenpyram and tetracycline by composites of core shell g-C3N4@ZnO, and ZnO Defects in aqueous phase. Nanomater. 11: 2609-2615.
  44. Zhou S., Wang Y., Zhou K., Ba D., Ao Y., Wang P., (2021), In-situ construction of Z-scheme g-C3N4/WO3 composite with enhanced visible-light responsive performance for nitenpyram degradation. Chin. Chem. Lett. 32: 2179-2182.
  45. Pei Z., Wang C., Wang P., Zhou G., (2022), Covalent-anion-driven self-assembled cadmium/molybdenum sulfide hybrids for efficient nitenpyram degradation. J. Environm. Manag. 316: 115269-115274.
  46. Khalid N., Ishtiaq H., Ali F., Tahir M., Naeem S., Ul-Hamid A., Ikram M., Iqbal T., Kamal M. R., Alrobei H., (2022), Synergistic effects of Bi and N doped on ZnO nanorods for efficient photocatalysis. Mater. Chem. Phys. 289: 126423-126429.
  47. Xu Q., Zhang L., Cheng B., Fan J., Yu J., (2020), S-scheme heterojunction photocatalyst. Chem. 6: 1543-1559. Chem. 6: 1543-1559.