تبدیل گلوکز به اسید فرمیک با استفاده از نانوذرات ZnO-Ag سنتزشده با روش سبز

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار مهندسی شیمی، دانشگاه بناب

چکیده

اسید فرمیک با توجه به ویژگی­های منحصر به فردش، کاربردهای فراوانی در صنایع مختلف دارد؛ بنابراین تولید این اسید با روش­های ساده و سبز- مانند استفاده از گیاهان بهعنوان عامل کاهنده بهجای مواد شیمیایی و با کمک امواج- از اهمیت ویژه­ای برخوردار است.
 در این پژوهش، نانوذرات
ZnO با استفاده از گیاه تاجخروس و با کمک امواج، سنتز شد. هم‌چنین نانوذرات نقره نیز بر روی نانوذرات اکسید روی دوپ شد (ZnO-Ag) و از این نانوذرات بهعنوان نانوکاتالیست برای تبدیل گلوکز به اسید فرمیک در دماهای مختلف بررسی شد. در پایان ویژگی­های فیزیکی و ساختاری نانوذرات سنتزشده با تجزیه‌های XRD، DLS، و SEM تحلیل شد. نتایج این تحلیل نشان داد که با افزایش دما تا °C 200 درصد تبدیل گلوکز به اسید فرمیک افزایش یافت که بیشترین درصد تولید اسید فرمیک در حضور نانوذرات ZnO-Ag و در دمای °C 200 حدود 75٪ حاصل شد؛ اما با گذشت زمان این مقدار در حضور نانوذرات ZnO-Ag و دمای °C 200، کاهش یافت و حدود 68٪ شد. بررسی نتایج نهایی حاصل از این تولید اسید فرمیک با گذشت زمان، نشان داد که اسید فرمیک پس از مدتی در حضور نانوذرات ZnO-Ag بهعنوان کاتالیست تخریب می‌شود و از بین خواهد رفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Conversion of Glucose to Formic Acid Using Synthesized ZnO-Ag Nanoparticles by the Green Method

نویسنده [English]

  • Z. Sayyar
Assistant Professor of Chemical Engineering, University of Bonab
چکیده [English]

Formic acid has different applications in various industries because of its unique properties, therefore, the production of this acid (using plants as a reducing agent instead of chemicals and waves) is important. In this study, ZnO nanoparticles were synthesized using green method by plant of Amaranthus Retroflexus and irradiation assisted. Silver nanoparticles were also doped on zinc oxide nanoparticles (ZnO-Ag). These synthesized nanoparticles were examined to convert glucose to formic acid at different temperatures. Physical properties and morphology of the synthesized nanoparticles were analyzed using XRD, DLS, and SEM techniques. Increasing the temperature to 200 ºC caused increase of the glucose conversion to formic acid, which in the presence of ZnO-Ag nanoparticles and at temperature of 200 ºC, conversion was about 75%. But during reaction time in the presence of ZnO-Ag nanoparticles, that amount of conversion dropped to about 68%. These results showed that formic acid can be decomposed and eliminated in the presence of ZnO-Ag nanoparticles as catalysts during reaction.

کلیدواژه‌ها [English]

  • Zinc Oxide Nanoparticles
  • Silver Nanoparticles
  • Green Method
  • Microwave
  • Glucose
  • Formic Acid

 

[1]        Jin, B., Yao, G., Wang, X., Ding, K., Jin, F., "Photocatalytic oxidation of glucose into formate on nano TiO2 catalyst", ACS Sustainable Chemistry & Engineering, 5, pp. 6377-6381, (2017).
[2]        Jin, F., Yun, J., Li, G., Kishita, A., Tohji, K., Enomoto, H., "Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures", Green Chemistry, 10, pp. 612-615, (2008).
[3]        Li, J., Ding, D. J., Deng, L., Guo, Q. X., Fu, Y., "Catalytic Air Oxidation of Biomass‐Derived Carbohydrates to Formic Acid", ChemSusChem, 5, pp. 1313-1318, (2012).
[4]        Zhou, B., Song, J., Zhou, H., Wu, T., Han, B., "Using the hydrogen and oxygen in water directly for hydrogenation reactions and glucose oxidation by photocatalysis", Chemical science, 7, pp. 463-468, (2016).
[5]        Bellardita, M., García-López, E.I., Marcì, G., Palmisano, L., "Photocatalytic formation of H2 and value-added chemicals in aqueous glucose (Pt)-TiO2 suspension", international journal of hydrogen energy, 41, pp. 5934-5947, (2016).
[6]        Chong, R., Li, J., Ma, Y., Zhang, B., Han, H., Li, C., "Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts", Journal of catalysis, 314, pp. 101-108, (2014).
[7]        Pan, H., Risley, V. A., Martindale, K. R., Heagy, M. D., "Photocatalytic Reduction of Bicarbonate to Formic Acid Using Hierarchical ZnO Nanostructures", ACS Sustainable Chemistry & Engineering, 7, pp. 1210-1219, (2018).
[8]        Mohamed, R., Aazam, E. S., "H2 production with low CO selectivity from photocatalytic reforming of glucose on Ni/TiO2-SiO2", Chinese Journal of Catalysis, 33, pp. 247-253, (2012).
[9]        Albert, J., Wölfel, R., Bösmann, A., Wasserscheid, P., "Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators", Energy & Environmental Science, 5, pp. 7956-7962, (2012).
[10]      Atanda, L., Mukundan, S., Shrotri, A., Ma, Q., Beltramini, J., "Catalytic Conversion of Glucose to 5‐Hydroxymethyl‐furfural with a Phosphated TiO2 Catalyst", ChemCatChem, 7, pp. 781-790, (2015).
[11]      Da Vià, L., Recchi, C., Gonzalez-Yañez, E. O., Davies, T. E., Lopez-Sanchez, J. A., "Visible light selective photocatalytic conversion of glucose by TiO2", Applied Catalysis B: Environmental, 202, pp. 281-288, (2017).
[12]      Lanzianoa, C. S., Rodriguezb, F., Rabeloc, S. C., Guirardellod, R., Victor, T., Rodella, C. B., "Catalytic conversion of glucose using TiO2 catalysts", Chemical Engineering Transactions, (2014).
[13]      Liu, Y., Yao, W., Liu, D., Zong, R., Zhang, M., Ma, X., Zhu, Y., "Enhancement of visible light mineralization ability and photocatalytic activity of BiPO4/BiOI", Applied Catalysis B: Environmental, 163, pp. 547-553, (2015).
[14]      Fu, Y., Liang, W., Guo, J., Tang, H., Liu, S., "MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity", Applied Surface Science, 430, pp. 234-242, (2018).
[15]      Du, J., Zhang, J., Liu, Z., Han, B., Jiang, T., Huang, Y., "Controlled synthesis of Ag/TiO2 core− shell nanowires with smooth and bristled surfaces via a one-step solution route", Langmuir, 22, pp. 1307-1312, (2006).
[16]      Gao, R., Jiao, Z., Wang, Y., Xu, L., Xia, S., Zhang, H., "Eco-friendly synthesis of rutile TiO2 nanostructures with controlled morphology for efficient lithium-ion batteries", Chemical Engineering Journal, 304, pp. 156-164, (2016).
[17]      Sayyar, Z., Babaluo, A. A., Shahrouzi, J. R., "Kinetic study of formic acid degradation by Fe3+ doped TiO2 self-cleaning nanostructure surfaces prepared by cold spray", Applied Surface Science, 335, pp. 1-10, (2015).
[18]      Colmenares, J. C., Magdziarz, A., Chernyayeva, O., Lisovytskiy, D., Kurzydłowski, K., and Grzonka, J., "Sonication‐Assisted Low‐Temperature Routes for the Synthesis of Supported Fe–TiO2 Econanomaterials: Partial Photooxidation of Glucose and Phenol Aqueous Degradation", ChemCatChem, 5, pp. 2270-2277, (2013).
[19]      Udomcharoensab, T., Praserthdam, P., "A Comparative Study of the Divalent Transition Metal Oxide Supported on Magnesium Oxide Catalyst for Lactic Acid Production from Glucose", in IOP Conference Series: Materials Science and Engineering, 2019, vol. 559, no. 1, p. 012016: IOP Publishing.
[20]      Mirescu, A., Berndt, H., Martin, A., Prüße, U., "Long-term stability of a 0.45% Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions", Applied Catalysis A: General, 317, pp. 204-209, (2007).
[21]      Yudasari, N., Anugrahwidya, R., Tahir, D., Suliyanti, M. M., Herbani, Y., Imawan, C., Khalil, M., Djuhana, D., "Enhanced photocatalytic degradation of rhodamine 6G (R6G) using ZnO–Ag nanoparticles synthesized by pulsed laser ablation in liquid (PLAL)", Journal of Alloys and Compounds, 886, p: 161291, (2021).
[22]      Fouladi-Fard, R., Aali, R., Mohammadi-Aghdam, S., Mortazavi-derazkola, S., "The surface modification of spherical ZnO with Ag nanoparticles: A novel agent, biogenic synthesis, catalytic and antibacterial activities", Arabian Journal of Chemistry, 15, p. 103658, (2022).
[23]      Phuruangrat, A., Wongwiwat, N., Thongtem, T., Thongtem, S., "Microwave-assisted solution synthesis and photocatalytic activity of Ag nanoparticles supported on ZnO nanostructure flowers", Research on Chemical Intermediates, 44, pp. 7427-7436, (2018).
[24]      Senthilkumar, N., Ganapathy, M., Arulraj, A., Meena, M., Vimalan, M., Potheher, I.V., "Two step synthesis of ZnO/Ag and ZnO/Au core/shell nanocomposites: structural, optical and electrical property analysis", Journal of Alloys and Compounds, 750, pp. 171-181, (2018).