کاتالیزگر نانو زیرکونیا سولفوریک اسید به‌عنوان کاتالیزور قابل بازیافت در همنهشت مواد رنگزای آزو بر پایۀ زانتن‌ها و هیدروکسی کومارین‌ها

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار شیمی، دانشگاه پیام نور

چکیده

در دهه­های اخیر، شیمی رنگ­های آلی پیشرفت زیادی کرده که دلیل آن کاربرد رنگ­ها در زمینه­های مختلف مانند دستگاه­های الکترونیکی، اپتیک­های خطی و غیر خطی، چاپ و تکثیر، حسگرها و کاربردهای زیست‌پزشکی است. در تحقیق حاضر، همنهشت مواد رنگزای آزو بر پایۀ نفتول‌ها، زانتن‌ها و هیدروکسی کومارین‌ها در حضور کاتالیست نانو زیرکونیا سولفوریک اسید بررسی شده است. پرهیز از به‌کارگیری حلال‌های مضر برای محیط زیست، شرایط ملایم، سرعت بالا و زمان کوتاه واکنش، سادگی روند جداسازی محصولات، بازده و خلوص بالای مشتقات همنهشت‌شده از برتری‌ها‌ی روش ارائه‌شده است. هم‌چنین کاتالیزور قابل بازیافت بود و در پنج مرحله به کار رفت. روش انتخاب‌شده برای همنهشت مواد رنگزا در حضور کاتالیست زیرکونیا سولفوریک اسید برای تمام مشتقات با گروه‌های الکترون‌دهنده و الکترون‌کشنده با بازده خوب قابل انجام است(98-88%). همان‌طور که در جدول‌های (9-7) دیده شده این پژوهش در مقایسه با روش‌های قبلی با بازده بالاتر و زمان کوتاه‌تر انجام شده است. ساختار ترکیبات همنهشت شده با مقایسۀ خواص فیزیکی آن‌ها با مقادیر گزارش شدۀ قبل و به کمک داده‌های طیف‌سنجی زیر قرمز و 1HNMR تعیین شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis of Azo Dyes Based on Naphthols, Xanthenes, and Hydroxy Coumarins in the Presence of Nano-ZrO2-SO3H

نویسنده [English]

  • B. Baghernejad
B. Baghernejad
چکیده [English]

In recent decades, organic dye chemistry has advanced greatly due to the use of dyes in various fields such as electronic devices, linear and nonlinear optics, printing and duplication, sensors and biomedical applications. In the present study, the synthesis of azo dyes based on naphthols, xanthenes and hydroxy coumarins in the presence of nano-ZrO2-SO3H catalyst was investigated. Avoid harmful solvents for the environment, mild conditions, high speed and short reaction time, simplicity of working up process; high efficiency and purity of the synthesized derivatives and recoverable catalyst utilization were the advantages of the proposed method. The structure of the synthesized compounds was determined by comparing their physical properties with reported and using IR and HNMR spectroscopy data.
 

کلیدواژه‌ها [English]

  • Synthesis of Azo Dye Nano-ZrO2-SO3H
  • Naphthol
  • Xanthen
  • Coumarin
[1]        Zollinger, H., "Color Chemistry, Synthesis, Propertiesand Application of Organic Dyes and Pigments", Wiley-VCH: Weinheim, (2003).
[2]        Gregory, P., "High-Technology Applications of Organic Colorants", Plenum Press: New York, (1991).
[3]        Viscardi, G., Quagliotto, P., Barolo, C., Caputo, G., Digilio, G., Degani, I., Barni, E., "Highly bright and photostable cyanine dye-doped silica nanoparticles for optical imaging", Dyes and Pigments, 57,pp. 87-91, (2003).
[4]        Tanaka, K.,“Solvent-free Organic Synthesis”. Wiley-VCH GmbH & Co. KgaA: Weinheim, Germany. (2003).
[5]        Noroozi-Pesyan, N., Khalafy, J., Malekpoor, Z., "Diazotization of aniline derivatives and diazo Couplings in the Presence of p-Toluenesulfonic Acid by Grinding Color", Color, Colorants and Coatings Journal, 2, pp. 61-65, (2009).
[6]        Roglans, A., Pla-Quintana, A., Moreno-Manas, M., "Diazonium salts as substrates in palladium-catalyzed cross-coupling reaction", Chemical Review, 106,pp. 4622–4643, (2006).
[7]        Mandic, Z., Nigovic, Z., Simunic, B., "The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids", Electrochimica Acta, 49,pp. 607–615, (2004).
[8]        Kub, Y., Maeda, S., Tokita, S., Kubo, M., "Colorimetric chiral recognition by a molecular sensor", Nature, 382, pp. 522-524, (1996).
[9]        Steinstrasser, R., Pohl, L., "Chemistry and applications of liquid crystals", Angewandte Chemie International Edition, 12, pp. 617–630, (1973).
[10]      He, Y., Gu, X., Guo, M., Wang, X., "Dendritic azo compounds as a new type amorphous molecular material with quick photoinduced surface-relief-grating formation ability", Optical Materials, 31,pp. 18-27, (2008).
[11]      Pieraccini, S., Masiero, S., Spada, G. P., Gottarelli, P., "A new axially-chiral photochemical switch", Chemical. Communications, 9, pp. 598–599, (2003).
[12]      Węglarz-Tomczak, E., Górecki, L., "Azodyes–biological activity and synthetic strategy", Chemik, 66, pp. 298–307, (2012).
[13]      Shokoofehpoor, F., Mousavi, S. H., Mohammadi, A., Zanjanchi, M. A., "γ-CD-Functionalized TiO2 Nanoparticles For the Photocatalytic Degradation of Organic", The Progress in Color, Colorants and Coatings Journal (pccc), 13, pp. 23-39, (2020).
[14]      Hay, A. E., Aumond, M. C., Mallet, S., Dumontet, V., Litaudon, M., Rondeau, D., Richomme, P., "Antioxidant xanthones from Garcinia vieillardii", Journal of Natural Products, 67, pp. 707–709, (2004).
[15]      Zelefack, F., Guilet, D., Fabre, N., Bayet, C., Chevalley, S. V., Ngouela, S. R., Lenta, B. N., Valentin, A., Tsamo, E., Dijoux-Franca, M. G. V. "Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea", Journal of Natural Products, 72, pp. 954–957, (2009).
[16]      Khurana, J. M., Magoo, D., Aggarwal, K., Aggarwal, N., Kumar, R., Srivastava, C.,”Synthesis of novel 12-aryl-8, 9, 10, 12-tetrahydrobenzo[a]xanthene-11-thiones and evaluation of their biocidal effects", European Journal of Medicinal Chemistry, 58, pp. 470-477, (2012).
[17]      Niu, S. L., Li, Z. L., Ji, F., Liu, G. Y. Zhao, N., Liu, X. O., Jing, Y. K., Hua, H. M., "Xanthones from the stem bark of Garcinia bracteata with growth inhibitory effects against HL-60 cells", Phytochemistry, 77, pp. 280–286, (2012).
[18]      Laphookhieo, S., Syers, J. K., Kiattansakul, R., Chantrapromma, K., "Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochinchinense", Chemical and Pharmaceutical Bulletin (Tokyo), 54, pp. 745–747, (2006).
[19]      Liama, E. F., del Campo, C., Capo, M., Anadon, M., "Synthesis and antinociceptive activity of 9-phenyl-oxy or 9-acyl-oxy derivatives of xanthene, thioxanthene and acridine", European Journal of Medicinal Chemistry, 24, pp. 391–396, (1989).
[20]      Omolo, J. J., Johnson, M. M., Van Vuuren, S. F., De Koning, C.B. "The synthesis of xanthones, xanthenediones, and spirobenzofurans: their antibacterial and antifungal activity", Bioorganic Medical Chemical Letters. 21, pp. 7085–7088, (2011).
[21]      Jamison, J. M., Krabill, K., Hatwalkar, A., Jamison, E., Tsai, C. C., "Potentiation of the antiviral activity of poly r(A–U) by xanthenes dyes", Cell Biology International Reports, 14, pp. 1075–1084, (1990).
[22]      Hafez, H. N., Hegab, M. I., Ahmed-Farag, I. S., El-Gazzar, A. B. A., "A facile regioselective synthesis of novel spiro-thioxanthene and spiroxanthene-9’,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents", Bioorganic & Medicinal Chemistry Letters, 18, pp. 4538-4543, (2008).
[23]      Merino, E., "Synthesis of azobenzenes: the coloured pieces of molecular materials", Chemical Society Review, 40, pp. 3835–3853, (2011).
[24]      Giri, R., Goodell, J. R., Xing, C., Benoit, A., Kaur, H., Hiasa, H., Ferguson, D.M.”Synthesis and cancer cell cytotoxicity of substituted xanthenes", Bioorganic & Medicinal Chemistry, 18, pp. 1456–1463, (2010).
[25]      Chen, X., Pradhan, T., Wang, F., Kim, J. S., Yoon, J., "Flourescent chemosensors based on spiroring-opening of xanthenes and related derivatives", Chemical. Reviw, 112: pp.1910- 1956, (2011).
[26]      Zhen, W., Han, H., Anguiano, M., Lemere, C., Cho, C. G., Lansbury, P. T. "Synthesis and amyloid binding properties of rhenium complexes: preliminary progress toward a reagent for SPECT imaging of Alzheimer's disease brain", Journal of Medical Chemistry, 42, pp. 2805–2815, (1999).
[27]      Mirjalili, B. F., Bamoniri, A., Akbari, A., "BF3.SiO2: an efficient catalyst for the synthesis of azo dyes at room temperature", Current Chemistry Letters, 1, pp. 109–114, (2012).
[28]      Bokare, A. D., Chikate, R. C., Rode, C. V., Paknikar, K. M., "Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution", Applied Catalysis. B, 79, pp. 270-278, (2008).
[29]      Qian, H., Jiang, D. E., Li, G., Gayathri, C., Das, A., Gil, R. R., Jin, R. Monoplatinum doping of gold nanoclusters and catalytic application. Journal of American Chemical Society, 134, pp. 16159-62, (2012).
[30]      Li, M., Li, J., Liu, B., Zhou, Y., Li, X., Xue, X., Hou, Z., Luo, X., "Crystal Structures, and Anti-Drug-Resistant Staphylococcus Aureus Activities of Novel 4-hydroxycoumarin Derivatives", European Journal of Pharmacol, 721, pp. 151-157 (2013).
[31]      Reilly, R. O., Ohms, J., Motley, C., "Synthesis of furo[3,2-c] benzopyran-4-one through acid catalysed 1,2- elimination", Journal of Biology Chemical, 244, pp. 1303-1305, (1969).
[32]      Zhao, H., Neamati, N., Hong, H., Mazumder, A., Wang, S., Sunder, S., Milne, G.W.A., Pommier, Y., Burke Jr, T. R., "Coumarin-based inhibitors of HIV integrase", Journal of Medical Chemistry, 40, pp. 242-249, (1997).
[34]      Sen, K., Bagchi, P., "Studies on the Ultraviolet Absorption Spectra of Coumarins and Chromones", Journal of Organic Chemistry, 24, pp. 316-319, (1959).
[35]      Bamoniri, A., Mirjalili, B. B. F., Moshtael-Arani, N., "Environmentally green approach to synthesize azo dyes based on 1-naphthol using nano BF3·SiO2 under solvent-free conditions", Green Chemistry Letters Reviews, 7, pp. 393–403, (2014).
[36]      Bamoniri, A., Moshtael-Arani, N., "Nano-Fe3O4 encapsulated-silica supported boron trifluoride as a novel heterogeneous solid acid for solvent-free synthesis of arylazo-1-naphthol derivatives", RSC Adv, 5, pp. 16911-16920, (2015).
[37]      Bamoniri, A., Pourali, A. R., Nazifi, S. M. R., "Facile synthesis of 1-naphthol azo dyes with nano SiO2/HClO4 under solvent-free condition", Bulletin Chemical Society Ethiopia, 27, pp. 439-445, (2013).
[38]      Benkhaya, S., M'rabet, S., "Classifications, properties, recent synthesis and applications of azo dyes", Heliyon, 6, p. e03271, (2020).
[39]      Kwasi Adu, H., Amengor, C. D. K., Mohammed, N. J., "Synthesis and In Vitro Antimicrobial and Anthelminthic Evaluation of Naphtholic and Phenolic Azo Dyes", Tropical Medicine, 2, pp. 1-8, (2020).
[40]      Davasaz Rabbani, M. A., Khalili, B., Saeidian, H., "Novel edaravone-based azo dyes: efficient synthesis, characterization, antibacterial activity, DFT calculations and comprehensive investigation of the solvent effect on the absorption spectra", RSC Advanced, 10, pp. 35729-35739, (2020).
[41]      Gur, M., "Synthesis, Characterization, and Antimicrobial Properties of New 1,3,4‐Thiadiazoles Derived from Azo Dyes", Journal of Heterocyclic chemistry, 56, pp. 980-987, (2019).
[43]      Bamoniri, A., Mirjalili, F., Fouladgar, S., Moshtael-Arani, N., "Nano Silica Phosphoric Acid: A Highly Efficient and Heterogeneous Catalyst for Synthesis of Azo Dyes Based on 1- and 2-Naphthol at Room Temperature", National Academy Science Letters, 39, pp. 1-4, (2015).
[44]      Bamoniri, A., Moshtael-Arani, N., "Nano-Fe3O4 encapsulated-silica supported boron trifluoride as a novel heterogeneous solid acid for solvent-free synthesis of arylazo-1-naphthol derivatives", RSC Adv, 5, pp. 16911–16920, (2015).
[45]      Bamonori, A., Mirjalili, B. B., "Nano Silica Phosphoric Acid: A Highly Efficient and Heterogeneous Catalyst for Synthesis of Azo Dyes Based on 1- and 2-Naphthol at Room Temperature", National Academy Science Letters, 39, pp. 25-28, (2016).
[46]      Rahimizadeh, M., Eshghi, H., Shiri, A., Ghadamyari, Z., Matin, M. M., Oroojalian, F., Pordeli, P., "Fe(HSO4)3 as an Efficient Catalyst for Diazotization and Diazo Coupling Reactions", Journal of Korean Chemical Society. 56, pp. 716-719, (2012).
[47]      Ghaffari, N., Abd Hamid, Sh., Hazarkhanic, H., "TiO2 nanotubes and sonication: Synthesis of azo-linked xanthenes", Inorganic Nano Metal Chemistry, 47, pp. 1-26 (2017).
[48]      Kolvari, E., Koukabi, N., Hosseini, M. M., Vahidian, M., Ghobadi, E., "Nano-ZrO2 sulfuric acid: a heterogeneous solid acid nano catalyst for Biginelli reaction under solvent free conditions", RSC Advances, 6, pp. 7419-7425, (2016).
[49]      Zare Fekri, L., Nikpasand, M., "Synthesis of bis(coumarinyl) methanes-aza linked using ionic liquid[DBU]OAc", Journal of Color Science and Technology, Vol. 2, pp. 137-143, In Persian, (2017).
[50]      Zarei, A., Hajipour, A. R., Khazdooz, L., Mirjalili, B.F., "Najafi A Rapid and efficient diazotization and diazo coupling reactions on silica sulfuric acid under solvent-free conditions", Dye & Pigments, 81, pp. 240-244, (2009).
[51]      Bamoniri, A., Mirjalili, B. F., Ghorbani-Choghamarani, A., Akbari, M. E., Yazdanshenas, A., Shayanfar. A., "Nano silica chromic acid/Wet SiO2 and NaNO2 as an efficient reagent for one-pot synthesis of azo dyes based on 2-naphthol at room temperature under solvent-free conditions", Iranian Journal of Organic Chemistry, 3, pp. 603-606, (2011).
[52]      Ginni, S., Karnawat, R., Sharma, I. K., Verma, P. S., "Synthesıs, Characterısatıon and Antımıcrobıal Screenıng of Some Azo Compounds", International Journal A. Biology Pharmaceutical Technology, 2, pp. 332-338, (2011).
[53]      Bamoniri, A., Pourali, A. R., Nazifi, S. M. R., "Solvent-free synthesis and characterization of antibacterial azo dyes in the presence of Bronsted-acid ionic liquid as a green catalyst", Iranian Journal of Catalysis, 4, pp. 185-189, (2012).
[54]      Bamoniri, A., Mirjalili, B. B. F., Ghorbani-Choghamarani, A., Yazdanshenas, M.E., Shayanfar, A., Akbari, A., "Nanosilica chromic acid/wet SiO2and NaNO2 as an efficient reagent system for synthesis of azo dyes based on 1-naphthol atroom temperature and solvent-free conditions", Iranian Journal of Catalyst, 1, pp. 51-54, (2011).
[55]      Bamoniri, A., Mirjalili, B. B. F., Fouladgari, S., Moshtael-Arani, N., "Nano Silica Phosphoric Acid: A Highly Efficient and Heterogeneous Catalyst for Synthesis of Azo Dyes Based on 1- and 2-Naphthol at Room Temperature", National Academy Science Letters, 39, pp. 25-28, (2016).
[56]      Ghaffari Khaligh, N., Abd Hamid, Sh. B., Mihankhah, T., "TiO2 nanotubes catalyzed the synthesis of azo-linked xanthenes under ultrasonic conditions", Inorganic Nano Metal Chemistry, 47,pp. 1057-1063, (2017).
[57]      Deshmukh, S. N., Shingare, M. S.,”Phosphotungstic acid an efficient catalyst for the synthesis of Bis (4-Hydroxycoumarine)derivatives under ultrasound irradiation”. Chemical Biology Interface, 5, pp. 219-225, (2015).