Diabetic retinopathy: mechanisms, and upcoming biomarkers

Document Type : Research Paper

Authors

1 Basaksehir Cam and Sakura City Hospital, Department of Gynecology and Obstetrics, University of Health Science, Istanbul, Turkey

2 Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran

Abstract

Obesity is an important issue that affects many people all over the world. This condition contributes to an increase in prevalence of type 2 diabetes. Furthermore, an unexplained rise in the number of type 1 diabetes has occurred. However, due to the recent developments in the field of diabetes care, it is still a significant cause of visual impairment in elderly. Diabetic retinopathy (D.R) is a critical issue for many people with diabetes. Various risk factors have been identified for diabetic retinopathy, including; blood pressure, weight, serum levels of lipid, and glycemic status. This pathology could be detected and treated by regular screening procedures, especially for late-stage of retinopathy. Angiogenesis inhibition is considered a modern therapy using intraocular steroids and intravitreal application of vascular endothelial growth factor (VEGF) treatments. Unfortunately, a majority of patients with diabetic retinopathy are unable to benefit from accessible medications. Diabetic retinopathy is more severe which require modern treatments. Discovering the molecular markers can increase the speed of research on D.R. Thus, there is a significant increase in diabetes and the urgent need for accurate detection of following diabetic retinopathy. Pathology can help in the detection of retinopathy in developing treatments and preventative methods for diabetic vision loss. This article discussed many important biomarker discoveries in these pathologic conditions.

Graphical Abstract

Diabetic retinopathy: mechanisms, and upcoming biomarkers

Highlights

  • Risk of Diabetic retinopathy is closely linked to excessive TNF-a levels in the pediatric population.
  • IL-6 is significantly correlated with macular edema incidence, an accelerated retinopathy marker in children with Diabetes and Diabetic retinopathy.
  • miR146a, miR-200b, and miR-29b have been found to decrease Diabetic retinopathy.
  • IP-10 and RANTES, as well as moderate diabetic retinopathy.
  • A substantial increase in the level of IL-1a, IP-10, and MCP-2 was found in patients with either non-diabetic or early diabetic retinopathy.

Keywords


1. Constantino MI, Molyneaux L, Limacher-Gisler F, Al-Saeed A, Luo C, Wu T, Twigg SM, Yue DK, Wong J. Long-term complications and mortality in young-onset diabetes: type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care 2013; 36(12): 3863-3869.
https://doi.org/10.2337/dc12-2455CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central2. Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol 2012; 60(5): 428.
https://doi.org/10.4103/0301-4738.100542CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central3. Elahy M, Baindur-Hudson S, Cruzat VF, Newsholme P, Dass CR. Mechanisms of PEDF-mediated protection against reactive oxygen species damage in diabetic retinopathy and neuropathy. J Endocrinol 2014; 222(3): R129-R139.
https://doi.org/10.1530/JOE-14-0065CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
4. Qing S, Yuan S, Yun C, Hui H, Mao P, Wen F, Ding Y, Liu Q. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem 2014; 34(5): 1733-1740.
https://doi.org/10.1159/000366374CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
5. Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O'Neal DN, Januszewski AS. Biomarkers in diabetic retinopathy. Rev Diabetic Stud 2015; 12(1-2): 159.
https://doi.org/10.1900/RDS.2015.12.159CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central6. Elamin A, Altahir H, Ismail B, Tuvemo T. Clinical pattern of childhood type 1 (insulin-dependent) diabetes mellitus in the Sudan. Diabetologia 1992; 35(7): 645-648.
https://doi.org/10.1007/BF00400256CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
7. Buchanan TA, Xiang AH, Page KA. Gestational diabetes mellitus: risks and management during and after pregnancy. Nat Rev Endocrinol 2012; 8(11): 639-649.
https://doi.org/10.1038/nrendo.2012.96CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central8. Grunwald JE, Ying GS, Maguire M, Pistilli M, Daniel E, Alexander J, Whittock-Martin R, Parker C, Mohler E, Lo JC, Townsend R. Association between retinopathy and cardiovascular disease in patients with chronic kidney disease (from the Chronic Renal Insufficiency Cohort [CRIC] Study). Am J Cardiol 2012; 110(2): 246-253.
https://doi.org/10.1016/j.amjcard.2012.03.014CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central9. Hahr AJ, Molitch ME. Diabetes, cardiovascular risk and nephropathy. Cardiol Clin 2010; 28(3): 467-475.
https://doi.org/10.1016/j.ccl.2010.04.006CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
10. Son JW, Jang EH, Kim MK, Kim IT, Roh YJ, Baek KH, Song KH, Yoon KH, Cha BY, Lee KW, Son HY. Diabetic retinopathy is associated with subclinical atherosclerosis in newly diagnosed type 2 diabetes mellitus. Diabetes Res Clin Pract 2011; 91(2): 253-259.
https://doi.org/10.1016/j.diabres.2010.11.005CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
11. Zhang X, Saaddine JB, Chou CF, Cotch MF, Cheng YJ, Geiss LS, Gregg EW, Albright AL, Klein BE, Klein R. Prevalence of diabetic retinopathy in the United States, 2005-2008. Jama 2010; 304(6): 649-656.
https://doi.org/10.1001/jama.2010.1111CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central12. Pusparajah P, Lee LH, Abdul Kadir K. Molecular markers of diabetic retinopathy: potential screening tool of the future?. Front Physiol 2016; 7: 200.
https://doi.org/10.3389/fphys.2016.00200CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central13. Cunha-Vaz J, Ribeiro L, Lobo C. Phenotypes and biomarkers of diabetic retinopathy. Prog Retin Eye Res 2014 ; 41: 90-111.
https://doi.org/10.1016/j.preteyeres.2014.03.003CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
14. Wu L, Fernandez-Loaiza P, Sauma J, Hernandez-Bogantes E, Masis M. Classification of diabetic retinopathy and diabetic macular edema. World J Diabetes 2013; 4(6): 290.
https://doi.org/10.4239/wjd.v4.i6.290CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central15. Simó R, Hernández C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 2014; 25(1): 23-33.
https://doi.org/10.1016/j.tem.2013.09.005CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
16. Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol 2011; 21(6_suppl): 3-9.
https://doi.org/10.5301/EJO.2010.6049CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
17. Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, Brownlee M, Deutsch U. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 2002; 51(10): 3107-3112.
https://doi.org/10.2337/diabetes.51.10.3107CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
18. S Stem M, W Gardner T. Neurodegeneration in the pathogenesis of diabetic retinopathy: molecular mechanisms and therapeutic implications. Curr Med Chem 2013; 20(26): 3241-3250.
https://doi.org/10.2174/09298673113209990027CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central19. Holopigian K, Seiple W, Lorenzo M, Carr R. A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Invest Ophthalmol Vis Sci 1992; 33(10): 2773-2780. ISSN: 01460404CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
20. Villarroel M, Ciudin A, Hernández C, Simó R. Neurodegeneration: an early event of diabetic retinopathy. World J Diabetes 2010; 1(2): 57.
https://doi.org/10.4239/wjd.v1.i2.57CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central21. Adams AJ, Bearse Jr MA. Retinal neuropathy precedes vasculopathy in diabetes: a function‐based opportunity for early treatment intervention?. Clin Exp Optom 2012; 95(3): 256-265.
https://doi.org/10.1111/j.1444-0938.2012.00733.xCrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
22. Reis A, Mateus C, Melo P, Figueira J, Cunha-Vaz J, Castelo-Branco M. Neuroretinal dysfunction with intact blood-retinal barrier and absent vasculopathy in type 1 diabetes. Diabetes 2014; 63(11): 3926-3937.
https://doi.org/10.2337/db13-1673CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
23. Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 2013; 34: 19-48.
https://doi.org/10.1016/j.preteyeres.2013.02.001CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
24. Simó-Servat O, Simó R, Hernández C. Circulating biomarkers of diabetic retinopathy: an overview based on physiopathology. J Diabetes Res 2016; 2016.
https://doi.org/10.1155/2016/5263798CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central25. Aveleira CA, Lin CM, Abcouwer SF, Ambrósio AF, Antonetti DA. TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes 2010; 59(11): 2872-2882.
https://doi.org/10.2337/db09-1606CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central26. Suzuki Y, Nakazawa M, Suzuki K, Yamazaki H, Miyagawa Y. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol 2011; 55(3): 256-263.
https://doi.org/10.1007/s10384-011-0004-8CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
27. Gustavsson C, Agardh E, Bengtsson B, Agardh CD. TNF-α is an independent serum marker for proliferative retinopathy in type 1 diabetic patients. J Diabetes Complications 2008; 22(5): 309-316.
https://doi.org/10.1016/j.jdiacomp.2007.03.001CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
28. Doganay S, Evereklioglu C, Er H, Türköz Y, Sevinc A, Mehmet N, Şavli H. Comparison of serum NO, TNF-α, IL-1β, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye 2002; 16(2): 163-170.
https://doi.org/10.1038/sj.eye.6700095CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
29. Klein BE, Knudtson MD, Tsai MY, Klein R. The relation of markers of inflammation and endothelial dysfunction to the prevalence and progression of diabetic retinopathy: Wisconsin epidemiologic study of diabetic retinopathy. Arch Ophthalmol 2009; 127(9): 1175-1182.
https://doi.org/10.1001/archophthalmol.2009.172CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
30. Roy MS, Janal MN, Crosby J, Donnelly R. Inflammatory biomarkers and progression of diabetic retinopathy in African Americans with type 1 diabetes. Invest Ophthalmol Vis Sci 2013; 54(8): 5471-5480.
https://doi.org/10.1167/iovs.13-12212CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central31. Preciado-Puga MC, Malacara JM, Fajardo-Araujo ME, Wröbel K, Kornhauser-Araujo C, Garay-Sevilla ME. Markers of the progression of complications in patients with type 2 diabetes: a one-year longitudinal study. Exp Clin Endocrinol Diabetes 2014; 122(08): 484-490.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
32. Zorena K, Myśliwska J, Myśliwiec M, Balcerska A, Hak Ł, Lipowski P, Raczyńska K. Serum TNF-alpha level predicts nonproliferative diabetic retinopathy in children. Mediators Inflamm 2007; 2007.
https://doi.org/10.1155/2007/92196CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central33. Costagliola C, Romano V, De Tollis M, Aceto F, Romano MR, Pedicino C, Semeraro F. TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy. Mediators Inflamm 2013; 2013.
https://doi.org/10.1155/2013/629529CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central34. Kocabora MS, Telli ME, Fazil K, Erdur SK, Ozsutcu M, Cekic O, Ozbilen KT. Serum and aqueous concentrations of inflammatory markers in diabetic macular edema. Ocul Immunol Inflamm 2016; 24(5): 549-554.
https://doi.org/10.3109/09273948.2015.1034804CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
35. Patel JI, Saleh GM, Hykin PG, Gregor ZJ, Cree IA. Concentration of haemodynamic and inflammatory related cytokines in diabetic retinopathy. Eye 2008; 22(2): 223-228.
https://doi.org/10.1038/sj.eye.6702584CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
36. Murugeswari P, Shukla D, Rajendran A, Kim R, Namperumalsamy P, Muthukkaruppan V. Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and eales’disease. Retina 2008; 28(6): 817-824.
https://doi.org/10.1097/IAE.0b013e31816576d5CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
37. Shimizu E, Funatsu H, Yamashita H, Yamashita T, Hori S. Plasma level of interleukin-6 is an indicator for predicting diabetic macular edema. Jpn J Ophthalmol 2002; 46(1): 78-83.
https://doi.org/10.1016/S0021-5155(01)00452-XCrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
38. Nguyen TT, Alibrahim E, Islam FA, Klein R, Klein BE, Cotch MF, Shea S, Wong TY. Inflammatory, hemostatic, and other novel biomarkers for diabetic retinopathy: the multi-ethnic study of atherosclerosis. Diabetes Care 2009; 32(9): 1704-1709.
https://doi.org/10.2337/dc09-0102CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central39. Le DS, Miles R, Savage PJ, Cornell E, Tracy RP, Knowler WC, Krakoff J. The association of plasma fibrinogen concentration with diabetic microvascular complications in young adults with early-onset of type 2 diabetes. Diabetes Res Clin Pract 2008; 82(3): 317-323.
https://doi.org/10.1016/j.diabres.2008.08.019CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
40. Schram MT, Chaturvedi N, Schalkwijk CG, Fuller JH, Stehouwer CD. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes—the EURODIAB Prospective Complications Study. Diabetologia 2005; 48(2): 370-378.
https://doi.org/10.1007/s00125-004-1628-8CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
41. Christou GA, Tselepis AD, Kiortsis DN. The metabolic role of retinol binding protein 4: an update.https://doi.org/10.1055/s-0031-1295491CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
42. Farjo KM, Farjo RA, Halsey S, Moiseyev G, Ma JX. Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase-and nuclear factor kappa B-dependent and retinol-independent mechanism. Mol Cell Biol 2012; 32(24): 5103.
https://doi.org/10.1128/mcb.00820-12CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central43. Du M, Otalora L, Martin AA, Moiseyev G, Vanlandingham P, Wang Q, Farjo R, Yeganeh A, Quiambao A, Farjo KM. Transgenic mice overexpressing serum retinol-binding protein develop progressive retinal degeneration through a retinoid-independent mechanism. Mol Cell Biol 2015; 35(16): 2771.
https://doi.org/10.1128/mcb.00181-15CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central44. Takebayashi K, Suetsugu M, Wakabayashi S, Aso Y, Inukai T. Retinol binding protein-4 levels and clinical features of type 2 diabetes patients. J Clin endocrinol Metab 2007; 92(7): 2712-2719.
https://doi.org/10.1210/jc.2006-1249CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
45. Cabre A, Lazaro I, Girona J, Manzanares J, Marimon F, Plana N, Heras M, Masana L. Retinol‐binding protein 4 as a plasma biomarker of renal dysfunction and cardiovascular disease in type 2 diabetes. J Int Med 2007; 262(4): 496-503.
https://doi.org/10.1111/j.1365-2796.2007.01849.xCrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
46. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A. Müller cells in the healthy and diseased retina. Prog Retin Eye Res 2006; 25(4): 397-424.
https://doi.org/10.1016/j.preteyeres.2006.05.003CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
47. Hidalgo‐Lanussa O, Baez‐Jurado E, Echeverria V, Ashraf GM, Sahebkar A, Garcia‐Segura LM, Melcangi RC, Barreto GE. Lipotoxicity, neuroinflammation, glial cells and oestrogenic compounds. J Neuroendocrinol 2020; 32(1): e12776.
https://doi.org/10.1111/jne.12776CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
48. Bringmann A, Wiedemann P. Müller glial cells in retinal disease. Ophthalmologica 2012; 227(1): 1-9.
https://doi.org/10.1159/000328979CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
49. Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P. Expression of acute-phase response proteins in retinal Muller cells in diabetes. Invest Ophthalmol Vis Sci 2005; 46(1): 349-357.
https://doi.org/10.1167/iovs.04-0860CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
50. Barber AJ, Antonetti DA, Gardner TW. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. Invest Ophthalmol Vis Sci 2000; 41(11): 3561-3568. ISSN: 01460404CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
51. Sarthy V. Focus on molecules: glial fibrillary acidic protein (GFAP). Exp Eye Res 2006; 84(3): 381-382.
https://doi.org/10.1016/j.exer.2005.12.014CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
52. Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care 2007; 30(11): 2902-2908.
https://doi.org/10.2337/dc07-0332CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
53. Vujosevic S, Micera A, Bini S, Berton M, Esposito G, Midena E. Aqueous humor biomarkers of Müller cell activation in diabetic eyes. Invest Ophthalmol Vis Sci 2015; 56(6): 3913-3918.
https://doi.org/10.1167/iovs.15-16554CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
54. Iandiev I, Pannicke T, Reichenbach A, Wiedemann P, Bringmann A. Diabetes alters the localization of glial aquaporins in rat retina. Neurosci Lett 2007; 421(2): 132-136.
https://doi.org/10.1016/j.neulet.2007.04.076CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
55. Iandiev I, Pannicke T, Hollborn M, Wiedemann P, Reichenbach A, Grimm C, Remé CE, Bringmann A. Localization of glial aquaporin-4 and Kir4. 1 in the light-injured murine retina. Neurosci Lett 2008; 434(3): 317-321.
https://doi.org/10.1016/j.neulet.2008.02.026CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    
56. Zhang Y, Xu G, Ling Q, Da C. Expression of aquaporin 4 and Kir4. 1 in diabetic rat retina: treatment with minocycline. J Int Med Res 2011; 39(2): 464-479.
https://doi.org/10.1177/147323001103900214CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
57. Cui B, Sun JH, Xiang FF, Liu L, Li WJ. Aquaporin 4 knockdown exacerbates streptozotocin-induced diabetic retinopathy through aggravating inflammatory response. Exp Eye Res 2012; 98: 37-43.
https://doi.org/10.1016/j.exer.2012.02.013CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
58. Vujosevic S, Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J Diabetes Res 2013; 2013.
https://doi.org/10.1155/2013/905058CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central59. McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 1995; 21(2): 195-218.
https://doi.org/10.1016/0165-0173(95)00011-9CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
60. Lynch MA. The multifaceted profile of activated microglia. Mol Neurobiol 2009; 40(2): 139-156.
https://doi.org/10.1007/s12035-009-8077-9CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
61. Vujosevic S, Bini S, Midena G, Berton M, Pilotto E, Midena E. Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT. J Diabetes Res 2013; 2013.
https://doi.org/10.1155/2013/491835CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
62. Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol 2008; 126(2): 227-232.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
63. Vujosevic S, Bini S, Torresin T, Berton M, Midena G, Parrozzani R, Martini F, Pucci P, Daniele AR, Cavarzeran F, Midena E. Hyperreflective retinal spots in normal and diabetic eyes: B-scan and en face spectral domain optical coherence tomography evaluation. Retina 2017; 37(6): 1092-1103.
https://doi.org/10.1097/IAE.0000000000001304CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
64. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10(11): 1387-1394.
https://doi.org/10.1038/nn1997CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
65. Vujosevic S, Micera A, Bini S, Berton M, Esposito G, Midena E. Proteome analysis of retinal glia cells‐related inflammatory cytokines in the aqueous humour of diabetic patients. Acta Ophthalmol 2016; 94(1): 56-64.
https://doi.org/10.1111/aos.12812CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
66. Funatsu H, Yamashita H, Noma H, Mimura T, Yamashita T, Hori S. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol 2002; 133(1): 70-77.
https://doi.org/10.1016/S0002-9394(01)01269-7CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
67. Cheung CM, Vania M, Ang M, Chee SP, Li J. Comparison of aqueous humor cytokine and chemokine levels in diabetic patients with and without retinopathy. Mol Vis 2012; 18: 830. CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central68. Antunica AG, Karaman K, Znaor L, Sapunar A, Buško V, Puzović V. IL-12 concentrations in the aqueous humor and serum of diabetic retinopathy patients. Graefe's Arch Clin Exp Ophthalmol 2012; 250(6): 815-821.
https://doi.org/10.1007/s00417-011-1905-4CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
69. Jonas JB, Jonas RA, Neumaier M, Findeisen P. Cytokine concentration in aqueous humor of eyes with diabetic macular edema. Retina 2012; 32(10): 2150-2157.
https://doi.org/10.1097/IAE.0b013e3182576d07CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central
70. Hernandez C, Segura RM, Fonollosa A, Carrasco E, Francisco G, Simo R. Interleukin‐8, monocyte chemoattractant protein‐1 and IL‐10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabetic Med 2005; 22(6): 719-722.
https://doi.org/10.1111/j.1464-5491.2005.01538.xCrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    
71. Hernández C, Garcia-Ramírez M, Simó R. Overexpression of hemopexin in the diabetic eye: a new pathogenic candidate for diabetic macular edema. Diabetes Care 2013; 36(9): 2815-2821.
https://doi.org/10.2337/dc12-2634CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed    PubMed Central72. Cheung PK, Klok PA, Baller JF, Bakker WW. Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int 2000; 57(4): 1512-1520.
https://doi.org/10.1046/j.1523-1755.2000.00996.xCrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
73. Myśliwiec M, Balcerska A, Zorena K, Myśliwska J, Lipowski P, Raczyńska K. The role of vascular endothelial growth factor, tumor necrosis factor alpha and interleukin-6 in pathogenesis of diabetic retinopathy. Diabetes Res Clin Pract 2008; 79(1): 141-146.
https://doi.org/10.1016/j.diabres.2007.07.011CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
74. Funatsu H, Yamashita H, Sakata K, Noma H, Mimura T, Suzuki M, Eguchi S, Hori S. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology 2005; 112(5): 806-816.
https://doi.org/10.1016/j.ophtha.2004.11.045CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
75. Kapojos JJ, Van Den Berg A, Van Goor H, Te Loo MW, Poelstra K, Borghuis T, Bakker WW. Production of hemopexin by TNF-α stimulated human mesangial cells. Kidney Int. 2003; 63(5): 1681-1686.
https://doi.org/10.1046/j.1523-1755.2003.00907.xCrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
76. Chan AK, Chiu RW, Lo YD. Cell-free nucleic acids in plasma, serum and urine: a new tool in molecular diagnosis. Ann Clin Biochem 2003; 40(2): 122-130.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
77. Hamaoui K, Butt A, Powrie J, Swaminathan R. Concentration of circulating rhodopsin mRNA in diabetic retinopathy. Clin Chem 2004; 50(11): 2152-2155.
https://doi.org/10.1373/clinchem.2004.037168CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
78. Hargrave PA. Rhodopsin structure, function, and topography the Friedenwald lecture. Invest Ophthalmol Vis Sci 2001; 42(1): 3-9. ISSN: 01460404CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
79. Butt A, Ahmad MS, Powrie J, Swaminathan R. Assessment of diabetic retinopathy by measuring retina-specific mRNA in blood. Expert Opin Biol Ther 2012; 12: S79-S84.
https://doi.org/10.1517/14712598.2012.688947CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
80. Shalchi Z, Sandhu HS, Butt AN, Smith S, Powrie J, Swaminathan R. Retina‐Specific mRNA in the Assessment of Diabetic Retinopathy. Ann N.Y. Acad Sci 2008; 1137(1): 253-257.
https://doi.org/10.1196/annals.1448.008CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
81. Ambros V. The functions of animal microRNAs. Nature. 2004; 431(7006): 350-355.
https://doi.org/10.1038/nature02871CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
82. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-297.
https://doi.org/10.1016/S0092-8674(04)00045-5CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
83. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-233.
https://doi.org/10.1016/j.cell.2009.01.002CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed  
84. Rajasekar P, O’Neill CL, Eeles L, Stitt AW, Medina RJ. Epigenetic changes in endothelial progenitors as a possible cellular basis for glycemic memory in diabetic vascular complications. J Diabetes Res 2015; 2015.
https://doi.org/10.1155/2015/436879CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed   
85. Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, Feldman RD, Chakrabarti S. miR-146a–mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 2011; 60(11): 2975-2984.
https://doi.org/10.2337/db11-0478
86. Yang M, Abdalrahman H, Sonia U, Mohammed AI, Vestine U, Wang M, Ebadi AG, Toughani M. The application of DNA molecular markers in the study of Codonopsis species genetic variation, a review. Cell Mol Biol 2020; 66(2): 23-30.
87. Yang M, Shi D, Wang Y, Ebadi AG, Toughani M. Study on Interaction of Coomassie Brilliant Blue G-250 with Bovine Serum Albumin by Multispectroscopic. Int J Pept Res Ther 2021; 27(1): 421-431.
89. Silva VA, Polesskaya A, Sousa TA, Corrêa VM, André ND, Reis RI, Kettelhut IC, Harel-Bellan A, De Lucca FL. Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis 2011; 17: 2228.
90. de la Torre NG, Fernández-Durango R, Gómez R, Fuentes M, Roldán-Pallarés M, Donate J, Barabash A, Alonso B, Runkle I, Durán A, Rubio MA. Expression of angiogenic microRNAs in endothelial progenitor cells from type 1 diabetic patients with and without diabetic retinopathy. Invest Ophthalmol Vis Sci 2015; 56(6): 4090-4098.
https://doi.org/10.1167/iovs.15-16498
91. Wen L, Zhang Y, Yang B, Han F, Ebadi AG, Toughani M. Knockdown of Angiopoietin-like protein 4 suppresses the development of colorectal cancer. Cell Mol Biol 2020; 66(5): 117-124.
CrossRef    Google Scholar    full-text PDF    Mendeley    PubMed