Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Mini-Review Article

Research Progress and Discussion of Waxy Crude Pour Point Depressants: A Mini Review

Author(s): Zhengnan Sun, Jing Zhang, Guolin Jing*, Yang Liu and Shuo Liu

Volume 13, Issue 4, 2020

Page: [323 - 331] Pages: 9

DOI: 10.2174/2405520413666200316162139

Price: $65

Abstract

The crude oils exploited in oilfields are mainly high-wax crude oils. Paraffins precipitate, crystallize, and form a three-dimensional network structure, when the temperature falls below the Wax Appearance Temperature (WAT), which decreases crude oil fluidity. This poses huge challenges to oil exploitation and transportation, as well as cost control. To date, the addition of chemical pour point depressants has been a convenient and economical method to improve low-temperature fluidity in crude oils. This article reviews the types of pour point depressants of crude oil and their performance mechanisms, and introduces the main research methods and progress made in the study of the performance mechanisms of pour point depressants in waxy crude oils. Finally, the development direction of pour point depressants is prospected.

Keywords: Waxy crude oil, pour point depressant, performance mechanisms, co-crystallization, flow behavior, rheology.

Graphical Abstract
[1]
Wu YM, Ni GD, Yang F, Li CX, Dong GL. Modified Maleic anhydride co-polymers as pour-point depressants and their effects on waxy crude oil rheology. Energy Fuels 2012; 26(2): 995-1001.
[http://dx.doi.org/10.1021/ef201444b]
[2]
Chen SK, Oye G, Sjoblom J. Rheological properties of model and crude oil systems when wax precipitate under quiescent and flowing conditions. J Dispers Sci Technol 2007; 28(7): 1020-9.
[http://dx.doi.org/10.1080/01932690701522525]
[3]
Alcazar-Vara LA, Garcia-Martinez JA, Buenrostro-Gonzalez E. Effect of asphaltenes on equilibrium and rheological properties of waxy model systems. Fuel 2012; 93: 200-12.
[http://dx.doi.org/10.1016/j.fuel.2011.10.038]
[4]
Mahto V, Verma D, Singh H. Kinetic study of wax deposition in the flow lines due to Indian crude oil. Int J Oil Gas Coal Technol 2015; 10(3): 293-305.
[http://dx.doi.org/10.1504/IJOGCT.2015.071506]
[5]
Feng B, Dong FJ, Zhang H. Influences of shearing action and depressant on the rheological property of waxy crude 2007.
[6]
Liang QC, Zhou ZR, Lu L, et al. The research status of flow improver for crude oil. J Chongqing Univer Sci Technol Nat Sci Ed 2014; 16(3): 37-9.
[7]
Yang F, Li CX, Lin MZ. Depressive effects evaluation of ethylene-vinyl acetate copolymer on waxy crude oils. J China Uni Petrol 2009; 33(5): 108-12.
[8]
Machado ALC, Lucas EF, González G. Poly (ethylene-co-vinyl acetate) (EVA) as wax inhibitor of a Brazilian crude oil: Oil viscosity, pour point and phase behavior of organic solutions. J Petrol Sci Eng 2001; 32(2-4): 159-65.
[http://dx.doi.org/10.1016/S0920-4105(01)00158-9]
[9]
Oliveira GE, Mansur CRE, Lucas EF, et al. The effect of asphaltenes, naphthenic acids, and polymeric inhibitors on the pour point of paraffin solutions. J Dispers Sci Technol 2007; 28(3): 349-56.
[http://dx.doi.org/10.1080/01932690601107526]
[10]
Taraneh JB, Rahmatollah G, Hassan A, et al. Effect of wax inhibitors on pour point and rheological properties of Iranian waxy crude oil. Fuel Process Technol 2008; 89(10): 973-7.
[http://dx.doi.org/10.1016/j.fuproc.2008.03.013]
[11]
Lashkarbolooki M, Esmaeilzadeh F, Mowla D. Mitigation of wax deposition by wax-crystal modifier for Kermanshah crude oil. J Dispers Sci Technol 2011; 32(7): 975-85.
[http://dx.doi.org/10.1080/01932691.2010.488514]
[12]
Jafari Ansaroudi HR, Vafaie-Sefti M, Masoudi S, et al. Study of the morphology of wax crystals in the presence of ethylene-co-vinyl acetate copolymer. J Petrol Sci Technol 2013; 31(6): 643-51.
[http://dx.doi.org/10.1080/10916466.2011.632800]
[13]
Zhang J, Wu C, Li W, et al. DFT and MM calculation: The performance mechanism of pour point depressants study. Fuel 2004; 83(3): 315-26.
[http://dx.doi.org/10.1016/j.fuel.2003.08.010]
[14]
Jiang QZ, Yue G, Song ZZ. The performance mechanism and the structure of ethylene-vinyl acetate study. Ind Eng Chem Res 2012; 51(23): 7884-90.
[15]
Marie E, Chevalier Y, Eydoux F, Germanaud L, Flores P. Control of n-alkanes crystallization by ethylene-vinyl acetate copolymers. J Colloid Interface Sci 2005; 290(2): 406-18.
[http://dx.doi.org/10.1016/j.jcis.2005.04.054] [PMID: 15950981]
[16]
Wang J, Li LH, Zhang JS. The development and application fields of crude oil pour point today. Yingyong Huagong 2016; 45(8): 1558-62.
[17]
Yang YS, Qi GW, Peng HY. Synthesis of poly (nbehenyl acrylate) and it’s application as flow impover. Acta Petrol Sin 2001; 17(5): 60-5. [Petroleum Processing Section].
[18]
Yang F, Xiao ZQ, Yao B, et al. Influence of poly-octadecylacrylate-vinylacetate comb-like copolymers on rheological and crystallization. Chem J Chin Univ 2016; 37(7): 1395-401.
[19]
Chen G, Tang Y, Yu HJ. Synthesis of a poly-depressant for heavy oil and its performance. J Xi’an Shiyou University 2010; 25(3): 66-8.
[20]
Duan QQ, Jing JQ, Lei LL. Research on improvement of crude oil liquidity at the first station of Assai line. Natural Gas Oil 2012; 30(3): 11-4.
[21]
Liu T, Fang L, Liu X, et al. Preparation of a kind of reactive pour point depressant and its action mechanism. Fuel 2015; 143: 448-54.
[http://dx.doi.org/10.1016/j.fuel.2014.11.094]
[22]
Zhao SH, Liu FF, Wang SL, et al. Research progress and application of waxy crude oil pour point depressant. J Changzhou University 2015; 27(3): 45-50.
[23]
Li S, Blackmon J, Demange A, et al. Linear sulfonate detergents as pour point depressants. Lubr Sci 2004; 16(2): 127-37.
[http://dx.doi.org/10.1002/ls.3010160204]
[24]
Hussain F, Hojjati M, Okamoto M, et al. Review article polymer-matrix nanocomposites, processing, manu-facturing, and application: An overview. J Compos Mater 2006; 40(17): 1511-75.
[http://dx.doi.org/10.1177/0021998306067321]
[25]
Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polymer (Guildf) 2008; 49(15): 3187-204.
[http://dx.doi.org/10.1016/j.polymer.2008.04.017]
[26]
Wang F, Zhang DM, Ding YF, et al. The effect of nano-hybrid materials on the pour-point and viscosity depressing of waxy crude oil. Chin Sci Bull 2011; 56(1): 14-7.
[http://dx.doi.org/10.1007/s11434-010-4174-4]
[27]
Li CH, Dai W, Fu JQ. Preparation of nano Ni-Cu/ Al2O3 catalyst for selective hydrogenation of C2 by microemulsion. China Pet Process 2009; 38(7): 723-7.
[28]
Deng S, Li HQ, Zhang Y. Oxidative dehydrogenation of ethane with carbon dioxide to ethylene over nanosized Cr2O3 catalysts. Chin J Catal 2003; 24(10): 744-50.
[29]
Hashemi R, Nassar NN, Almao PP. Nanoparticle technology for heavy oil in-situupgrading and recovery enhancement: Opportunities and challenges. Appl Energy 2014; 133: 374-87.
[http://dx.doi.org/10.1016/j.apenergy.2014.07.069]
[30]
Sun Q, Li ZM, Li SY, et al. Experimental study on interface properties and oil displacement efficiency of foams stabilized by SiO2 nanoparticles. Ed Nat Sci J China Uni Petrol 2014; 38(4): 124-31.
[31]
Wang LX, Zhang KL, Ren L. The research progress of polymer layered silicate nanocomposites. Acta Materiae Compositae Sinica 2001; 18(3): 5-9.
[32]
Pasadakis N, Sourligas S, Foteinopoulos C. Prediction of the distillation profile and cold properties of diesel fuels using mid-IR spectroscopy and neural networks. Fuel 2006; 85(7-8): 1131-7.
[http://dx.doi.org/10.1016/j.fuel.2005.09.016]
[33]
Yang F, Paso K, Norrman J, et al. Hydrophilic nanoparticles facilitate wax inhibition. Energy Fuels 2015; 29(3): 1368-74.
[http://dx.doi.org/10.1021/ef502392g]
[34]
Norrman J, Solberg A, Sjoblom J, et al. Nanoparticles for waxy crudes: Effect of polymer coverage and the effect on wax crystallization. Energy Fuels 2016; 30(6): 5108-14.
[http://dx.doi.org/10.1021/acs.energyfuels.6b00286]
[35]
Yao B, Li C, Yang F, et al. Structural properties of gelled Changqing waxy crude oil benefitted with nanocomposite pour point depressant. Fuel 2016; 184: 544-54.
[http://dx.doi.org/10.1016/j.fuel.2016.07.056]
[36]
He C, Ding Y, Chen J, et al. Influence of the nano-hybrid pour point depressant on flow properties of waxy crude oil. Fuel 2016; 167: 40-8.
[http://dx.doi.org/10.1016/j.fuel.2015.11.031]
[37]
Zhao Z, Xue Y, Xu G, et al. Effect of the nano-hybrid pour point depressants on the cold flow properties of diesel fuel. Fuel 2017; 193: 65-71.
[http://dx.doi.org/10.1016/j.fuel.2016.12.020]
[38]
Yang F, Zhang Y, Li C, et al. Effects of pour point depressant of EVA/nano MMT composites on Changqing crude oil. CIESC J 2015; 66(11): 4611-7.
[39]
Yu H, Sun Z, Jing G, et al. Effect of a magnetic nanocomposite pour point depressant on the structural properties of Daqing waxy crude oil. Energy Fuels 2019; 33(7): 6069-75.
[http://dx.doi.org/10.1021/acs.energyfuels.9b00689]
[40]
Huang H, Wang W, Peng Z, et al. Magnetic organic-inorganic nanohybrid for efficient modification of paraffin hydrocarbon crystallization in model oil. Langmuir 2020; 36(2): 591-9.
[http://dx.doi.org/10.1021/acs.langmuir.9b03278] [PMID: 31909630]
[41]
Al-Sabagh AM, Betiha MA, Osman DI, et al. A new covalent strategy for functionalized montmorillonite–poly(methyl methacrylate) for improving the flowability of crude oil. Rsc Adv 2016; 6(111): 109460-72.
[http://dx.doi.org/10.1039/C6RA21319G]
[42]
Al‐Sabagh AM, Betiha MA, Osman DI, et al. Synthesis and characterization of nanohybrid of poly (octadecylacrylates derivatives)/montmorillonite as pour point depressants and flow improver for waxy crude oil. J Appl Polym Sci 2019; 136(17): 47333.
[http://dx.doi.org/10.1002/app.47333]
[43]
Zhang HM, Jiang RL, Qi XY, et al. Preparation of nano-sized PSMA-AM/SiO2 composite material and application in pour point and viscosity depressing of heavy oil. J Nucl Mater 2015; 43(11): 210-2.
[44]
Yang F, Li CX, Lin MZ. Research progress and discussion of the performance mechanisms between pour point depressants and wax in waxy crude oils. Polym Bull 2009; (8): 24-31.
[45]
Zhang FX, Fang L, Nie ZG. Preparation and mechanism of a pour point depressant for high pour point crude oil. Petrol Proc Sec Acta Petrol Sin 2009; 25(6): 801-5.
[46]
Zhen Z, Jing G, Sun Z, et al. Nano-composite pour point depressants in improving the rheology of waxy crude oil. Petrol Sci Technol 2018; 36(17): 1325-31.
[http://dx.doi.org/10.1080/10916466.2018.1479421]
[47]
Wang LJ, Tian J. Study on the mechanisms of function and applying of polymer pour point depressant for crude oil 1997; 5 :23
[48]
Zhang FX, Fang L, Nie ZG. Preparation and mechanism of a pour point depressant for high pour point crude oil. Petrol Proc Sec Acta Petrol Sin 2009; 25(6): 801-5.
[49]
El-Gamal IM, Atta AM, Al-Sabbagh AM. Polymeric structures as cold flow improvers for waxy residual fuel oil. Fuel 1997; 76(14-15): 1471-8.
[http://dx.doi.org/10.1016/S0016-2361(97)00062-8]
[50]
Baltzer Hansen A, Larsen E, Batsberg Pedersen W, et al. Wax precipitation from North Sea crude oils. 3. Precipitation and dissolution of wax studied by differential scanning calorimetry. Energy Fuels 1991; 5(6): 914-23.
[http://dx.doi.org/10.1021/ef00030a021]
[51]
Ashbaugh HS, Guo X, Schwahn D, et al. Interaction of paraffin wax gels with ethylene/vinyl acetate co-polymers. Energy Fuels 2005; 19(1): 138-44.
[http://dx.doi.org/10.1021/ef049910i]
[52]
Cao K, Wei X, Li B, et al. Study of the influence of imidization degree of poly (styrene-co-octadecyl maleimide) as waxy crude oil flow improvers. Energy Fuels 2013; 27(2): 640-5.
[http://dx.doi.org/10.1021/ef301336n]
[53]
Borthakur A, Laskar NC, Mazumdar RK, et al. Synthesis and evaluation of alkyl fumarate–vinyl acetate copolymers in combination with alkyl acrylates as flow improvers for Borholla crude oil. J Chem Technol Biotechnol 1995; 62(1): 75-80.
[http://dx.doi.org/10.1002/jctb.280620112]
[54]
Zhang J, Zhang M, Wan J, Li W. Theoretical study of the prohibited mechanism for ethylene/vinyl acetate co-polymers to the wax crystal growth. J Phys Chem B 2008; 112(1): 36-43.
[http://dx.doi.org/10.1021/jp073052k] [PMID: 18072759]
[55]
Wu C, Zhang J, Li W, et al. Molecular dynamics simulation guiding the improvement of EVA-type pour point depressant. Fuel 2005; 84(16): 2039-47.
[http://dx.doi.org/10.1016/j.fuel.2004.12.009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy