Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Nano-biosensors from Agriculture to Nextgen Diagnostic Tools

Author(s): Deepika Sharma, Ghanshyam Teli, Komal Gupta, Garima Bansal, Ghanshyam Das Gupta and Pooja A. Chawla*

Volume 7, Issue 2, 2022

Published on: 22 April, 2022

Page: [110 - 138] Pages: 29

DOI: 10.2174/2405461507666220131104843

Price: $65

Abstract

Nanotechnology is thriving these days and plays a great role in the expansion of biosensors. A range of nanomaterials is used in the growth of biosensors in order to boost the performance and sensitivity of biosensors. Nanomaterials like nanowire, nanoparticles, carbon nanotubes, quantum dots, etc., are helpful in increasing different properties like enzyme loading capacity, bioanalyte loading, good absorption as well as immobilization of enzymes. The skill of nanobiosensors becomes extra accurate and reliable as it allows quick selection of diverse analytes at little cost. The main target for nanobiosensor research includes the development of novel technologies in order to make improvements in the field of marker detection of human and animal disease, identification and study of therapeutic compounds, characterization of nano and bio-materials and the development of biocatalysts. This paper has reviewed basic principles and various nano-structure based biosensors along with their applications in different areas such as biomedical and forensic, environmental, agricultural and the food sector and recent advancements.

Keywords: Biosensors, nanobiosensors, agriculture, food packaging, diagnosis, DNA.

Next »
Graphical Abstract
[1]
Mehrotra P. Biosensors and their applications - A review. J Oral Biol Craniofac Res 2016; 6(2): 153-9.
[http://dx.doi.org/10.1016/j.jobcr.2015.12.002] [PMID: 27195214]
[2]
Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 1999; 71(12): 2333-48.
[http://dx.doi.org/10.1351/pac199971122333]
[3]
Zhou Q, Son K, Liu Y, Revzin A. Biosensors for cell analysis. Annu Rev Biomed Eng 2015; 17: 165-90.
[http://dx.doi.org/10.1146/annurev-bioeng-071114-040525] [PMID: 26274599]
[4]
Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK. Nanobiosensors: concepts and variations. Int Sch Res Notices 2013; 2013: 327435.
[http://dx.doi.org/10.1155/2013/327435]
[5]
Sagadevan S, Periasamy M. Recent trends in nanobiosensors and their applications-a review. Rev Adv Mater Sci 2014; 2014(36): 62-9.
[6]
Alhadrami HA. Biosensors: Classifications, medical applications, and future prospective. Biotechnol Appl Biochem 2018; 65(3): 497-508.
[http://dx.doi.org/10.1002/bab.1621] [PMID: 29023994]
[7]
Bahadır EB, Sezgintürk MK. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal Biochem 2015; 478: 107-20.
[http://dx.doi.org/10.1016/j.ab.2015.03.011] [PMID: 25790902]
[8]
Ali J, Najeeb J, Ali MA, Aslam MF, Raza A. Biosensors: their fundamentals, designs, types and most recent impactful applications: a review. J Biosens Bioelectron 2017; 8(1): 1-9.
[http://dx.doi.org/10.4172/2155-6210.1000235]
[9]
Raliya R, Tarafdar J, Gulecha K, et al. Scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotechnol 2013; 1(3): 041-4.
[http://dx.doi.org/10.7324/JABB.2013.1307]
[10]
Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L. Nanotechnology and biosensors. Biotechnol Adv 2004; 22(7): 505-18.
[http://dx.doi.org/10.1016/j.biotechadv.2004.03.004] [PMID: 15262314]
[11]
Aguilar ZP. NanoBiosensors. Nanomaterials for Medical Applications. 1st ed. Amsterdam: Elsevier 2013; pp. 127-79.
[http://dx.doi.org/10.1016/B978-0-12-385089-8.00004-2]
[12]
Touhami A. Biosensors and nanobiosensors: Design and applications. Nanomedicine (Lond) 2014; 15: 374-403.
[13]
Omanović-Mikličanina E, Maksimović M. Nanosensors applications in agriculture and food industry. Bull. Chem. Technol. Bosnia. Herzegovina 2016; 47: 59-70.
[14]
Rai V, Acharya S, Dey N. Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 2012; 3: 315-24.
[http://dx.doi.org/10.4236/jbnb.2012.322039]
[15]
Velasco-Garcia M. In optical biosensors for probing at the cellular level: A review of recent progress and future prospects Semin Cell Dev Biol 2009; 20(1): 27-33.
[http://dx.doi.org/10.1016/j.semcdb.2009.01.013] [PMID: 19429488]
[16]
Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green ML. Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry 2003; 9(16): 3732-9.
[http://dx.doi.org/10.1002/chem.200304872] [PMID: 12916096]
[17]
Sotiropoulou S, Gavalas V, Vamvakaki V, Chaniotakis NA. Novel carbon materials in biosensor systems. Biosens Bioelectron 2003; 18(2-3): 211-5.
[http://dx.doi.org/10.1016/S0956-5663(02)00183-5] [PMID: 12485767]
[18]
Zhao Y-D, Zhang W-D, Chen H, Luo Q-M, Li SFY. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sens Actuators B Chem 2002; 87(1): 168-72.
[http://dx.doi.org/10.1016/S0925-4005(02)00232-0]
[19]
Patolsky F, Lieber CM. Nanowire nanosensors. Mater Today 2005; 8(4): 20-8.
[http://dx.doi.org/10.1016/S1369-7021(05)00791-1]
[20]
Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001; 293(5533): 1289-92.
[http://dx.doi.org/10.1126/science.1062711]
[21]
Stern E, Klemic JF, Routenberg DA, et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007; 445(7127): 519-22.
[http://dx.doi.org/10.1038/nature05498] [PMID: 17268465]
[22]
MacKenzie R, Auzelyte V, Olliges S, Spolenak R, Solak HH, Vörös J. Nanowire development and characterization for applications in biosensing. In: Micheli G, Leblebici Y, Gijs M, Vörös J, Eds. Nanosystems Design and Technology. . Boston, MA: Springer 2009; pp. 143-73.
[http://dx.doi.org/10.1007/978-1-4419-0255-9_7]
[23]
Huang Y, Zhang W, Xiao H, Li G. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens Bioelectron 2005; 21(5): 817-21.
[http://dx.doi.org/10.1016/j.bios.2005.01.012] [PMID: 16242622]
[24]
Sadeghi SM. In Quantum bio-nanosensors based on quantum dot-metallic nanoparticle systems, Frontiers in biological detection: From nanosensors to systems V. International Society for Optics and Photonics 2013; 8570: 85700J.
[http://dx.doi.org/10.1117/12.2003079]
[25]
Zhu N, Zhang A, He P, Fang Y. Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization. Analyst (Lond) 2003; 128(3): 260-4.
[http://dx.doi.org/10.1039/b211987k] [PMID: 12705385]
[26]
Luo X, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006; 18(4): 319-26.
[http://dx.doi.org/10.1002/elan.200503415]
[27]
Merkoçi A, Aldavert M, Marın S, Alegret S. New materials for electrochemical sensing V: Nanoparticles for DNA labeling. Trends Analyt Chem 2005; 24(4): 341-9.
[http://dx.doi.org/10.1016/j.trac.2004.11.007]
[28]
Wang J. Nanoparticle-based electrochemical DNA detection. Anal Chim Acta 2003; 500(1-2): 247-57.
[http://dx.doi.org/10.1016/S0003-2670(03)00725-6]
[29]
Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 2004; 16(1-2): 19-44.
[http://dx.doi.org/10.1002/elan.200302930]
[30]
Thakur MS, Ragavan KV. Biosensors in food processing. J Food Sci Technol 2013; 50(4): 625-41.
[http://dx.doi.org/10.1007/s13197-012-0783-z] [PMID: 24425965]
[31]
Su X, Chew FT, Li SF. Design and application of piezoelectric quartz crystal-based immunoassay. Anal Sci 2000; 16(2): 107-14.
[http://dx.doi.org/10.2116/analsci.16.107]
[32]
Safarík I, Safaríková M. Use of magnetic techniques for the isolation of cells. J Chromatogr B Biomed Sci Appl 1999; 722(1-2): 33-53.
[http://dx.doi.org/10.1016/S0378-4347(98)00338-7] [PMID: 10068132]
[33]
Chemla YR, Grossman HL, Poon Y, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc Natl Acad Sci USA 2000; 97(26): 14268-72.
[http://dx.doi.org/10.1073/pnas.97.26.14268] [PMID: 11121032]
[34]
Haun JB, Yoon TJ, Lee H, Weissleder R. Magnetic nanoparticle biosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(3): 291-304.
[http://dx.doi.org/10.1002/wnan.84] [PMID: 20336708]
[35]
Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes PJ. Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life 2010; 1(2): 17-32.
[http://dx.doi.org/10.1142/S1793984410000067] [PMID: 24348868]
[36]
Abdulbari HA, Basheer EA. Electrochemical biosensors: electrode development, materials, design, and fabrication. ChemBioEng Reviews 2017; 4(2): 92-105.
[http://dx.doi.org/10.1002/cben.201600009]
[37]
Cai H, Xu C, He P, Fang Y. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem (Lausanne) 2001; 510(1-2): 78-85.
[http://dx.doi.org/10.1016/S0022-0728(01)00548-4]
[38]
Crumbliss AL, Perine SC, Stonehuerner J, et al. Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng 1992; 40(4): 483-90.
[http://dx.doi.org/10.1002/bit.260400406] [PMID: 18601142]
[39]
Xu X, Liu S, Ju H. A novel hydrogen peroxide sensor via the direct electrochemistry of horseradish peroxidase immobilized on colloidal gold modified screen-printed electrode. Sensors (Basel) 2003; 3(9): 350-60.
[http://dx.doi.org/10.3390/s30900350]
[40]
Curri M, Agostiano A, Leo G, Mallardi A, Cosma P, Della Monica M. Development of a novel enzyme/semiconductor nanoparticles system for biosensor application. Mater Sci Eng C 2002; 22(2): 449-52.
[http://dx.doi.org/10.1016/S0928-4931(02)00191-1]
[41]
González-García MB, Fernández-Sánchez C, Costa-García A. Colloidal gold as an electrochemical label of streptavidin-biotin interaction. Biosens Bioelectron 2000; 15(5-6): 315-21.
[http://dx.doi.org/10.1016/S0956-5663(00)00074-9] [PMID: 11219743]
[42]
Zhao J, O’daly J, Henkens R, Stonehuerner J, Crumbliss A. A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications. Biosens Bioelectron 1996; 11(5): 493-502.
[http://dx.doi.org/10.1016/0956-5663(96)86786-8]
[43]
Lim T-C, Ramakrishna S. A conceptual review of nanosensors. Z Naturforsch A 2006; 61(7-8): 402-12.
[http://dx.doi.org/10.1515/zna-2006-7-815]
[44]
Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem 2016; 60(1): 91-100.
[http://dx.doi.org/10.1042/EBC20150010] [PMID: 27365039]
[45]
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008; 108(2): 462-93.
[http://dx.doi.org/10.1021/cr068107d] [PMID: 18229953]
[46]
Maxwell DJ, Taylor JR, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 2002; 124(32): 9606-12.
[http://dx.doi.org/10.1021/ja025814p] [PMID: 12167056]
[47]
Sze S. Solar cells Physics of Semiconductor Devices. 2nd ed. New York, NY, USA: John Wiley & Sons 1981; pp. 790-838.
[48]
Cullum BM, Griffin GD, Miller GH, Vo-Dinh T. Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal Biochem 2000; 277(1): 25-32.
[http://dx.doi.org/10.1006/abio.1999.4341] [PMID: 10610686]
[49]
Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001; 291(5505): 851-3.
[50]
Umar A, Rahman MM, Al-Hajry A, Hahn Y-B. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta 2009; 78(1): 284-9.
[http://dx.doi.org/10.1016/j.talanta.2008.11.018] [PMID: 19174239]
[51]
Tyagi S, Pandey VK. Nanoparticles: an overview of preparation. Res. Rev. J. Pharm Nanotechnol 2016; 4(2): 1-12.
[52]
Tîlmaciu C-M, Morris MC. Carbon nanotube biosensors. Front Chem 2015; 3: 59.
[http://dx.doi.org/10.3389/fchem.2015.00059] [PMID: 26579509]
[53]
Azamian BR, Davis JJ, Coleman KS, Bagshaw CB, Green ML. Bioelectrochemical single-walled carbon nanotubes. J Am Chem Soc 2002; 124(43): 12664-5.
[http://dx.doi.org/10.1021/ja0272989] [PMID: 12392405]
[54]
Guiseppi-Elie A, Lei C, Baughman RH. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 2002; 13(5): 559.
[http://dx.doi.org/10.1088/0957-4484/13/5/303]
[55]
Wohlstadter JN, Wilbur JL, Sigal GB, et al. Carbon nanotube‐based biosensor. Adv Mater 2003; 15(14): 1184-7.
[http://dx.doi.org/10.1002/adma.200304259]
[56]
Wu W, Zhang S, Li Y, et al. PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer. Macromolecules 2003; 36(17): 6286-8.
[http://dx.doi.org/10.1021/ma034513c]
[57]
Wang J. Stripping analysis at bismuth electrodes: A review. Electroanalysis 2005; 17(15-16): 1341-6.
[http://dx.doi.org/10.1002/elan.200403270]
[58]
Lin VS-Y, Motesharei K, Dancil K-PS, Sailor MJ, Ghadiri MR. A porous silicon-based optical interferometric biosensor. Science 1997; 278(5339): 840-3.
[http://dx.doi.org/10.1126/science.278.5339.840] [PMID: 9346478]
[59]
Backmann N, Kappeler N, Braun T, et al. Sensing surface PEGylation with microcantilevers. Beilstein J Nanotechnol 2010; 1(1): 3-13.
[http://dx.doi.org/10.3762/bjnano.1.2] [PMID: 21977390]
[60]
Alvarez M, Zinoviev K, Moreno M, Lechuga LM. Cantilever Biosensors. In: Ligler FS, Taitt CR, Eds. Optical Biosensors Elsevier. 2008; pp. 419-52.
[http://dx.doi.org/10.1016/B978-044453125-4.50012-7]
[61]
Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL. A whole blood immunoassay using gold nanoshells. Anal Chem 2003; 75(10): 2377-81.
[http://dx.doi.org/10.1021/ac0262210] [PMID: 12918980]
[62]
Jain KK. Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 2005; 358(1-2): 37-54.
[http://dx.doi.org/10.1016/j.cccn.2005.03.014] [PMID: 15890325]
[63]
Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 2003; 125(34): 10192-3.
[http://dx.doi.org/10.1021/ja036409g] [PMID: 12926940]
[64]
Van Gerwen P, Laureyn W, Laureys W, et al. Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens Actuators B Chem 1998; 49(1-2): 73-80.
[http://dx.doi.org/10.1016/S0925-4005(98)00128-2]
[65]
Pak SC, Penrose W, Hesketh PJ. An ultrathin platinum film sensor to measure biomolecular binding. Biosens Bioelectron 2001; 16(6): 371-9.
[http://dx.doi.org/10.1016/S0956-5663(01)00152-X] [PMID: 11672651]
[66]
McKendry R, Zhang J, Arntz Y, et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Natl Acad Sci USA 2002; 99(15): 9783-8.
[http://dx.doi.org/10.1073/pnas.152330199] [PMID: 12119412]
[67]
Arntz Y, Seelig JD, Lang H, et al. Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 2002; 14(1): 86.
[http://dx.doi.org/10.1088/0957-4484/14/1/319]
[68]
Su M, Li S, Dravid VP. Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 2003; 82(20): 3562-4.
[http://dx.doi.org/10.1063/1.1576915]
[69]
Clark HA, Hoyer M, Philbert MA, Kopelman R. Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 1999; 71(21): 4831-6.
[http://dx.doi.org/10.1021/ac990629o] [PMID: 10565274]
[70]
Clark HA, Kopelman R, Tjalkens R, Philbert MA. Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors. Anal Chem 1999; 71(21): 4837-43.
[http://dx.doi.org/10.1021/ac990630n] [PMID: 10565275]
[71]
Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal Chem 2003; 75(15): 3784-91.
[http://dx.doi.org/10.1021/ac0342323] [PMID: 14572044]
[72]
Sumner JP, Aylott JW, Monson E, Kopelman R. A fluorescent PEBBLE nanosensor for intracellular free zinc. Analyst (Lond) 2002; 127(1): 11-6.
[http://dx.doi.org/10.1039/b108568a] [PMID: 11827375]
[73]
Bakker E, Simon W. Selectivity of ion-sensitive bulk optodes. Anal Chem 1992; 64(17): 1805-12.
[http://dx.doi.org/10.1021/ac00041a012]
[74]
Kurihara K, Ohtsu M, Yoshida T, Abe T, Hisamoto H, Suzuki K. Micrometer-sized sodium ion-selective optodes based on a “tailed” neutral ionophore. Anal Chem 1999; 71(16): 3558-66.
[http://dx.doi.org/10.1021/ac981206+]
[75]
Mohr GJ, Murkovic I, Lehmann F, Haider C, Wolfbeis OS. Application of potential-sensitive fluorescent dyes in anion and cation-sensitive polymer membranes. Sens Actuators B Chem 1997; 39(1-3): 239-45.
[http://dx.doi.org/10.1016/S0925-4005(97)80211-0]
[76]
Shortreed M, Bakker E, Kopelman R. Miniature sodium-selective ion-exchange optode with fluorescent pH chromoionophores and tunable dynamic range. Anal Chem 1996; 68(15): 2656-62.
[http://dx.doi.org/10.1021/ac960035a] [PMID: 8694263]
[77]
Shortreed MR, Dourado S, Kopelman R. Development of a fluorescent optical potassium-selective ion sensor with ratiometric response for intracellular applications. Sens Actuators B Chem 1997; 38(1-3): 8-12.
[http://dx.doi.org/10.1016/S0925-4005(97)80166-9]
[78]
Demir E. Genotoxicology of quantum dots used in medical and pharmaceutical sciences. Hereditary Genet 2015; 4(3): 1000151.
[http://dx.doi.org/10.4172/2161-1041.1000151]
[79]
Nikalje A P. Nanotechnology and its applications in medicine. Med Chem 2015; 5(2): 081-9.
[http://dx.doi.org/10.4172/2161-0444.1000247]
[80]
Milewska-Hendel A, Gawecki R, Zubko M, Stróż D, Kurczyńska E. Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants. 2016; 4: 1-9.
[http://dx.doi.org/10.5586/aa.1694]
[81]
Satvekar R, Tiwale B, Pawar S. Emerging trends in medical diagnosis: a thrust on nanotechnology. Med Chem 2014; 4(3): 4-10.
[82]
Chandrasekaran AR. DNA nanobiosensors: an outlook on signal readout strategies. J Nanomater 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/2820619]
[83]
Arotiba O. The development of electrochemical aptamer biosensors based on polyamidoamine dendrimer-streptavidin supramolecular architecture 2017; 14-8.
[84]
Stefan R-I, van Staden JF, Aboul-Enein HY. Immunosensors in clinical analysis. Fresenius J Anal Chem 2000; 366(6-7): 659-68.
[http://dx.doi.org/10.1007/s002160051560] [PMID: 11225777]
[85]
Ibrahim EA. Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 2016; 192: 38-46.
[http://dx.doi.org/10.1016/j.jplph.2015.12.011] [PMID: 26812088]
[86]
Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 2017; 7(1): 8263.
[http://dx.doi.org/10.1038/s41598-017-08669-5] [PMID: 28811584]
[87]
DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y. Nanotechnology in fertilizers. Nat Nanotechnol 2010; 5(2): 91-1.
[http://dx.doi.org/10.1038/nnano.2010.2] [PMID: 20130583]
[88]
Khodakovskaya M, Dervishi E, Mahmood M, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 2009; 3(10): 3221-7.
[http://dx.doi.org/10.1021/nn900887m] [PMID: 19772305]
[89]
Valadkhan M, Mohammadi K, Nezhad MK. Effect of priming and foliar application of nanoparticles on agronomic traits of chickpea Biol Forum, Research Trend 2015; 7(2): 599-602.
[90]
Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 2008; 42(15): 5580-5.
[http://dx.doi.org/10.1021/es800422x] [PMID: 18754479]
[91]
Simonian A, Good T, Wang S-S, Wild J. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal Chim Acta 2005; 534(1): 69-77.
[http://dx.doi.org/10.1016/j.aca.2004.06.056] [PMID: 17723332]
[92]
Wu S, Lan X, Zhao W, et al. Controlled immobilization of acetylcholinesterase on improved hydrophobic gold nanoparticle/Prussian blue modified surface for ultra-trace organophosphate pesticide detection. Biosens Bioelectron 2011; 27(1): 82-7.
[http://dx.doi.org/10.1016/j.bios.2011.06.020] [PMID: 21752626]
[93]
Li H, Xie C, Li S, Xu K. Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos. Colloids Surf B Biointerfaces 2012; 89: 175-81.
[http://dx.doi.org/10.1016/j.colsurfb.2011.09.010] [PMID: 21955508]
[94]
Vamvakaki V, Chaniotakis NA. Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 2007; 22(12): 2848-53.
[http://dx.doi.org/10.1016/j.bios.2006.11.024] [PMID: 17223333]
[95]
Zhang W, Tang H, Geng P, Wang Q, Jin L, Wu Z. Amperometric method for rapid detection of Escherichia coli by flow injection analysis using a bismuth nano-film modified glassy carbon electrode. Electrochem Commun 2007; 9(4): 833-8.
[http://dx.doi.org/10.1016/j.elecom.2006.11.019]
[96]
Seo S, Dobozi-King M, Young RF, Kish LB, Cheng M. Patterning a nanowell sensor biochip for specific and rapid detection of bacteria. Microelectron Eng 2008; 85(7): 1484-9.
[http://dx.doi.org/10.1016/j.mee.2007.12.046]
[97]
Zhao X, Hilliard LR, Mechery SJ, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci USA 2004; 101(42): 15027-32.
[http://dx.doi.org/10.1073/pnas.0404806101] [PMID: 15477593]
[98]
Weeks BL, Camarero J, Noy A, Miller AE, Stanker L, De Yoreo JJ. A microcantilever-based pathogen detector. Scanning 2003; 25(6): 297-9.
[http://dx.doi.org/10.1002/sca.4950250605] [PMID: 14696978]
[99]
Dobozi-King M, Seo S, Kim J, Young R, Cheng M, Kish L. Rapid detection and identification of bacteria: SEnsing of Phage-Triggered Ion Cascade (SEPTIC). J Biol Phys Chem 2005; 5: 3-7.
[http://dx.doi.org/10.4024/1050501.jbpc.05.01]
[100]
Maki WC, Mishra NN, Cameron EG, Filanoski B, Rastogi SK, Maki GK. Nanowire-transistor based ultra-sensitive DNA methylation detection. Biosens Bioelectron 2008; 23(6): 780-7.
[http://dx.doi.org/10.1016/j.bios.2007.08.017] [PMID: 17936611]
[101]
Cao C, Kim JH, Yoon D, Hwang E-S, Kim Y-J, Baik S. Optical detection of DNA hybridization using absorption spectra of single-walled carbon nanotubes. Mater Chem Phys 2008; 112(3): 738-41.
[http://dx.doi.org/10.1016/j.matchemphys.2008.07.129]
[102]
Zhang W, Yang T, Huang D, Jiao K, Li G. Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene. J Membr Sci 2008; 325(1): 245-51.
[http://dx.doi.org/10.1016/j.memsci.2008.07.038]
[103]
Zhang W, Yang T, Huang DM, Jiao K. Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film. Chin Chem Lett 2008; 19(5): 589-91.
[http://dx.doi.org/10.1016/j.cclet.2008.03.012]
[104]
Galandova J, Ziyatdinova G, Labuda J. Disposable electrochemical biosensor with multiwalled carbon nanotubes-chitosan composite layer for the detection of deep DNA damage. Anal Sci 2008; 24(6): 711-6.
[http://dx.doi.org/10.2116/analsci.24.711] [PMID: 18544857]
[105]
McKenzie F, Faulds K, Graham D. Sequence-specific DNA detection using high-affinity LNA-functionalized gold nanoparticles. Small 2007; 3(11): 1866-8.
[http://dx.doi.org/10.1002/smll.200700225] [PMID: 17935063]
[106]
Brock DA, Douglas TE, Queller DC, Strassmann JE. Primitive agriculture in a social amoeba. Nature 2011; 469(7330): 393-6.
[http://dx.doi.org/10.1038/nature09668] [PMID: 21248849]
[107]
Baudoin E, Benizri E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 2003; 35(9): 1183-92.
[http://dx.doi.org/10.1016/S0038-0717(03)00179-2]
[108]
Butler JL, Williams MA, Bottomley PJ, Myrold DD. Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 2003; 69(11): 6793-800.
[http://dx.doi.org/10.1128/AEM.69.11.6793-6800.2003] [PMID: 14602642]
[109]
Tarafdar J, Agrawal A, Raliya R, Kumar P, Burman U, Kaul R. ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus fungi. Adv Sci 2012; 4(4): 324-8.
[http://dx.doi.org/10.1166/asem.2012.1160]
[110]
Pickup JC, Hussain F, Evans ND, Sachedina N. In vivo glucose monitoring: The clinical reality and the promise. Biosens Bioelectron 2005; 20(10): 1897-902.
[http://dx.doi.org/10.1016/j.bios.2004.08.016] [PMID: 15741056]
[111]
Barone PW, Baik S, Heller DA, Strano MS. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 2005; 4(1): 86-92.
[http://dx.doi.org/10.1038/nmat1276] [PMID: 15592477]
[112]
Kong J, Franklin N R, Zhou C, et al. Nanotube molecular wires as chemical sensors. Science 2000; 287(5453): 622-5.
[http://dx.doi.org/10.1126/science.287.5453.622] [PMID: 10649989]
[113]
Deuschle K, Chaudhuri B, Okumoto S, Lager I, Lalonde S, Frommer WB. Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 2006; 18(9): 2314-25.
[http://dx.doi.org/10.1105/tpc.106.044073] [PMID: 16935985]
[114]
Pei J, Tian F, Thundat T. Glucose biosensor based on the microcantilever. Anal Chem 2004; 76(2): 292-7.
[http://dx.doi.org/10.1021/ac035048k] [PMID: 14719873]
[115]
Gao X, Nie S. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol 2003; 21(9): 371-3.
[http://dx.doi.org/10.1016/S0167-7799(03)00209-9] [PMID: 12948664]
[116]
Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21(1): 41-6.
[http://dx.doi.org/10.1038/nbt764] [PMID: 12459735]
[117]
Voura EB, Jaiswal JK, Mattoussi H, Simon SM. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 2004; 10(9): 993-8.
[http://dx.doi.org/10.1038/nm1096] [PMID: 15334072]
[118]
Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969-76.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[119]
Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003; 348(25): 2491-9.
[http://dx.doi.org/10.1056/NEJMoa022749] [PMID: 12815134]
[120]
Grimm J, Perez JM, Josephson L, Weissleder R. Novel nanosensors for rapid analysis of telomerase activity. Cancer Res 2004; 64(2): 639-43.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2798] [PMID: 14744779]
[121]
Ebrahimi A, Nikokar I, Zokaei M, Bozorgzadeh E. Design, development and evaluation of microRNA-199a-5p detecting electrochemical nanobiosensor with diagnostic application in triple negative breast cancer. Talanta 2018; 189: 592-8.
[http://dx.doi.org/10.1016/j.talanta.2018.07.016] [PMID: 30086965]
[122]
Alterman M, Sjöbom H, Säfsten P, et al. P1/P1′ modified HIV protease inhibitors as tools in two new sensitive surface plasmon resonance biosensor screening assays. Eur J Pharm Sci 2001; 13(2): 203-12.
[http://dx.doi.org/10.1016/S0928-0987(01)00109-9] [PMID: 11297905]
[123]
Agrawal S, Prajapati R. Nanosensors and their pharmaceutical applications: A review. Int J Pharm Sci Technol 2012; 4: 1528-35.
[http://dx.doi.org/10.37285/ijpsn.2011.4.4.2]
[124]
Nam J-M, Stoeva SI, Mirkin CA. Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 2004; 126(19): 5932-3.
[http://dx.doi.org/10.1021/ja049384+] [PMID: 15137735]
[125]
Georganopoulou DG, Chang L, Nam J-M, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 2005; 102(7): 2273-6.
[http://dx.doi.org/10.1073/pnas.0409336102] [PMID: 15695586]
[126]
Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR. Electronic detection of DNA by its intrinsic molecular charge. Proc Natl Acad Sci USA 2002; 99(22): 14142-6.
[http://dx.doi.org/10.1073/pnas.232276699] [PMID: 12386345]
[127]
Oropesa-Nuñez R, Zardán Gómez de la Torre T, Stopfel H, Svedlindh P, Strömberg M, Gunnarsson K. Insights into the Formation of DNA-Magnetic Nanoparticle Hybrid Structures: Correlations between morphological characterization and output from magnetic biosensor measurements. ACS Sens 2020; 5(11): 3510-9.
[http://dx.doi.org/10.1021/acssensors.0c01623] [PMID: 33141554]
[128]
Bayer EA, Wilchek M. Biotin-binding proteins: overview and prospects. Methods Enzymol 1990; 184: 49-51.
[http://dx.doi.org/10.1016/0076-6879(90)84258-I] [PMID: 2201883]
[129]
Hahm J-i, Lieber CM. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 2004; 4(1): 51-4.
[http://dx.doi.org/10.1021/nl034853b]
[130]
Jensen KK, Ørum H, Nielsen PE, Nordén B. Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 1997; 36(16): 5072-7.
[http://dx.doi.org/10.1021/bi9627525] [PMID: 9125529]
[131]
Höök F, Ray A, Nordén B, Kasemo B. Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements. Langmuir 2001; 17(26): 8305-12.
[http://dx.doi.org/10.1021/la0107704]
[132]
Stockwell BR. Frontiers in chemical genetics. Trends Biotechnol 2000; 18(11): 449-55.
[http://dx.doi.org/10.1016/S0167-7799(00)01499-2] [PMID: 11058785]
[133]
Cullum B, Vo-Dinh T. Optical Nanosensors for Biological Applications-Spectroscopic Techniques at the Cellular Level. In: Morkoç H, Ed. Advanced Semiconductor and Organic Nano-Techniques. Elsevier 2003; pp. 225-50.
[http://dx.doi.org/10.1016/B978-012507060-7/50025-8]
[134]
Kneipp J, Kneipp H, Wittig B, Kneipp K. Novel optical nanosensors for probing and imaging live cells. Nanomedicine 2010; 6(2): 214-26.
[http://dx.doi.org/10.1016/j.nano.2009.07.009] [PMID: 19699322]
[135]
Fehr M, Okumoto S, Deuschle K, et al. Development and use of fluorescent nanosensors for metabolite imaging in living cells. Biochem Soc Trans 2005; 33(Pt1): 287-90.
[http://dx.doi.org/10.1042/BST0330287] [PMID: 15667328]
[136]
Scognamiglio V, Arduini F, Palleschi G, Rea G. Biosensing technology for sustainable food safety. Trends Analyt Chem 2014; 62: 1-10.
[http://dx.doi.org/10.1016/j.trac.2014.07.007]
[137]
Ghasemi-Varnamkhasti M, Rodríguez-Méndez ML, Mohtasebi SS, et al. Monitoring the aging of beers using a bioelectronic tongue. Food Control 2012; 25(1): 216-24.
[http://dx.doi.org/10.1016/j.foodcont.2011.10.020]
[138]
Arora P, Sindhu A, Dilbaghi N, Chaudhury A. Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 2011; 28(1): 1-12.
[http://dx.doi.org/10.1016/j.bios.2011.06.002] [PMID: 21763122]
[139]
Ercole C, Del Gallo M, Mosiello L, Baccella S, Lepidi A. Escherichia coli detection in vegetable food by a potentiometric biosensor. Sens Actuators B Chem 2003; 91(1-3): 163-8.
[http://dx.doi.org/10.1016/S0925-4005(03)00083-2]
[140]
Mishra RK, Dominguez RB, Bhand S, Muñoz R, Marty J-L. A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk. Biosens Bioelectron 2012; 32(1): 56-61.
[http://dx.doi.org/10.1016/j.bios.2011.11.028] [PMID: 22221795]
[141]
Serna-Cock L, Perenguez-Verdugo JG. Biosensors applications in agri-food industryEnvironmental Biosensors . 2011; 2011: pp. 43-64.
[142]
Geng T, Morgan MT, Bhunia AK. Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Appl Environ Microbiol 2004; 70(10): 6138-46.
[http://dx.doi.org/10.1128/AEM.70.10.6138-6146.2004] [PMID: 15466560]
[143]
Tang H, Zhang W, Geng P, et al. A new amperometric method for rapid detection of Escherichia coli density using a self-assembled monolayer-based bienzyme biosensor. Anal Chim Acta 2006; 562(2): 190-6.
[http://dx.doi.org/10.1016/j.aca.2006.01.061]
[144]
Wei D, Oyarzabal OA, Huang T-S, Balasubramanian S, Sista S, Simonian AL. Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. J Microbiol Methods 2007; 69(1): 78-85.
[http://dx.doi.org/10.1016/j.mimet.2006.12.002] [PMID: 17258830]
[145]
Fung YS, Wong YY. Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect Salmonella in aqueous solution. Anal Chem 2001; 73(21): 5302-9.
[http://dx.doi.org/10.1021/ac010655y] [PMID: 11721933]
[146]
Gardner LK, Lawrence GD. Benzene production from decarboxylation of benzoic acid in the presence of ascorbic acid and a transition-metal catalyst. J Agric Food Chem 1993; 41(5): 693-5.
[http://dx.doi.org/10.1021/jf00029a001]
[147]
Rasinger JD, Marrazza G, Briganti F, Scozzafava A, Mascini M, Turner AP. Evaluation of an FIA operated amperometric bacterial biosensor, based on pseudomonas putida F1 for the detection of benzene, toluene, ethylbenzene, and xylenes (BTEX). Anal Lett 2005; 38(10): 1531-47.
[http://dx.doi.org/10.1081/AL-200065793]
[148]
Otles S, Yalcin B. Review on the application of nanobiosensors in food analysis. Acta Sci Pol Technol Aliment 2012; 11(1): 7-18.
[PMID: 22230970]
[149]
Pal M. Nanotechnology: A new approach in food packaging. J Food Microbiol Saf Hyg 2017; 2(02): 8-9.
[http://dx.doi.org/10.4172/2476-2059.1000121]
[150]
Kim EJ, Lee Y, Lee JE, Gu MB. Application of recombinant fluorescent mammalian cells as a toxicity biosensor. Water Sci Technol 2002; 46(3): 51-6.
[http://dx.doi.org/10.2166/wst.2002.0052] [PMID: 12227603]
[151]
Purohit H. Biosensors as molecular tools for use in bioremediation. J Clean Prod 2003; 11(3): 293-301.
[http://dx.doi.org/10.1016/S0959-6526(02)00072-0]
[152]
Larsen LH, Kjær T, Revsbech NP. A microscale NO3-biosensor for environmental applications. Anal Chem 1997; 69(17): 3527-31.
[http://dx.doi.org/10.1021/ac9700890] [PMID: 21639276]
[153]
Kulys J, Higgins I, Bannister J. Amperometric dertermination of phosphate ions by biosensor. Biosens Bioelectron 1992; 7(3): 187-91.
[http://dx.doi.org/10.1016/0956-5663(92)87014-G]
[154]
Wollenberger U, Schubert F, Scheller FW. Biosensor for sensitive phosphate detection. Sens Actuators B Chem 1992; 7(1-3): 412-5.
[http://dx.doi.org/10.1016/0925-4005(92)80335-U]
[155]
Somerset V. Environmental Biosensors. 1st ed. London: InTechOpen Limited 2011; pp. 1-57.
[http://dx.doi.org/10.5772/929]
[156]
Audrey S, Beatriz P-S, Jean-Louis M. Biosensors for pesticide detection: New trends. Am J Analyt Chem 2012; 3(3): 210-32.
[http://dx.doi.org/10.4236/ajac.2012.33030]
[157]
Cavalieri RP, José I. Biosensors. Encyclopedia of agricultural, food, and biological engineering 2003; 1: 119-23.
[158]
Rogers KR. Biosensors for environmental applications. Biosens Bioelectron 1995; 10(6-7): 533-41.
[http://dx.doi.org/10.1016/0956-5663(95)96929-S]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy