Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Silymarin Spray-Dried Proliposomes: Preparation, Characterization and Cytotoxic Evaluation

Author(s): Ahmed Gardouh*, Sherif Shaker, Zainab Z. Ali and Mamdouh Ghorab

Volume 10, Issue 1, 2020

Page: [14 - 23] Pages: 10

DOI: 10.2174/2210303109666190722114211

Price: $65

Abstract

Background: Most liposomes problems are due to stability and consistency. Proliposomes is one of the solutions to overcome the disadvantage of liposomes. They are available in dry powder form, it is easy to distribute, transfer, measure and store.

Objective: The aim of the present study was to find a novel method of preparing Silymarin proliposomes and study the effect of cholesterol concentrations and surfactant types on the physicochemical properties of silymarin proliposomes and its in-vitro release.

Methods: Silymarin proliposomes were prepared by combining two simple methods ethanol injection method for liposomes preparation followed by the spray drying method to get a dry powder. The physicochemical properties including particle size, TEM, SEM, FTIR, encapsulation efficiency and dissolution studies were studied.

Results: The particle size of silymarin liposomes were below 552.36 ± 17.63 nm but after reconstitution of silymarin proliposomes, the particle size was in the micro range due to the influence of the spray drying process. Cholesterol concentration was ranged from 50 to 150 mg per formula. Increasing Cholesterol concentration caused a significant increase in liposomes particle size and reduction in encapsulation efficiency. Three non-ionic surfactants were used to prepare silymarin proliposomes Tween 80, Cremophor RH 40 and Poloxamer 407. Formula F1 prepared with Phosal® 53 MCT (300 mg), Tween 80 (50 mg), cholesterol (50 mg) and Silymarin (140 mg) showed the smallest particle size (2066 ± 164.87 nm) upon reconstitution in water, highest encapsulation efficiency (89.51 ± 0.43%), and fastest in vitro release compared to other formulas. Cytotoxicity of Silymarin, formula F1 and formula F1/blank was assessed using an MTT assay on MCF-7, HepG2 and HBF-4 cells. The cytotoxic effect of silymarin was enhanced by loading it on proliposomes.

Conclusion: Silymarin was successfully formulated into proliposomes combining ethanol injection and spray drying methods. The cytotoxicity of silymarin was improved when loaded on proliposomes owing to the formula.

Keywords: Silymarin, proliposomes, spray drying, Phosal®53 MCT, cytotoxicity, MTT assay.

Graphical Abstract
[1]
Gabizon, A.; Goren, D.; Cohen, R.; Barenholz, Y. Development of liposomal anthracyclines: from basics to clinical applications. J. Control. Release, 1998, 53(1-3), 275-279.
[http://dx.doi.org/10.1016/S0168-3659(97)00261-7] [PMID: 9741935]
[2]
Chrai, S.S.; Murari, R.; Imran, A. Liposomes: a review. Bio. Pharm., 2001, 14(11), 10-14.
[3]
Ulrich, A.S. Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep., 2002, 22(2), 129-150.
[http://dx.doi.org/10.1023/A:1020178304031] [PMID: 12428898]
[4]
Dakota, J.S.; Mark, H.S. Controlled Release of Nitric Oxide from Liposomes. ACS Biomater. Sci. Eng., 2017, 9, 2136-2143.
[5]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102-110.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[6]
Nekkanti, V.; Venkatesan, N.; Betageri, G.V. Proliposomes for oral delivery: progress and challenges. Curr. Pharm. Biotechnol., 2015, 16(4), 303-312.
[http://dx.doi.org/10.2174/1389201016666150118134256] [PMID: 25601600]
[7]
Muneer, S.; Masood, Z.; Butt, S.; Anjum, S.; Zainab, H.; Anwar, N.; Ahmad, N. Proliposomes as Pharmaceutical Drug Delivery System: A Brief Review. J. Nanomed. Nanotechnol., 2017, 8(3), 1-5.
[8]
Lo, Y.L.; Tsai, J.C.; Kuo, J.H. Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J. Control. Release, 2004, 94(2-3), 259-272.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.019] [PMID: 14744478]
[9]
Yang, G.; Zhao, Y.; Zhang, Y.; Dang, B.; Liu, Y.; Feng, N. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo. Int. J. Nanomedicine, 2015, 10, 6633-6644.
[http://dx.doi.org/10.2147/IJN.S92665] [PMID: 26543366]
[10]
Kumar, N.; Rai, A.; Reddy, N.D.; Raj, P.V.; Jain, P.; Deshpande, P.; Mathew, G.; Kutty, N.G.; Udupa, N.; Rao, C.M. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. Pharmacol. Rep., 2014, 66(5), 788-798.
[http://dx.doi.org/10.1016/j.pharep.2014.04.007] [PMID: 25149982]
[11]
Shaker, S.; Gardouh, A.R.; Ghorab, M.M. Factors affecting liposomes particle size prepared by ethanol injection method. Res. Pharm. Sci., 2017, 12(5), 346-352.
[http://dx.doi.org/10.4103/1735-5362.213979] [PMID: 28974972]
[12]
Song, J.; Shi, F.; Zhang, Z.; Zhu, F.; Xue, J.; Tan, X.; Zhang, L.; Jia, X. Formulation and evaluation of celastrol-loaded liposomes. Molecules, 2011, 16(9), 7880-7892.
[http://dx.doi.org/10.3390/molecules16097880] [PMID: 22143548]
[13]
Sonali, D.; Tejal, S.; Vaishali, T.; Tejal, G. Silymarin-solid dispersions: characterization and influence of preparation methods on dissolution. Acta Pharm., 2010, 60(4), 427-443.
[http://dx.doi.org/10.2478/v10007-010-0038-3] [PMID: 21169135]
[14]
Xianzhe, Z.; Xin, W.; Yubin, L.; John, S.; Sophia, J.X.; Chenghai, L. Application of response surface methodology to optimize microwave-assisted extraction of silymarin from milk thistle seeds. Separ. Purif. Tech., 2009, 70, 34-40.
[http://dx.doi.org/10.1016/j.seppur.2009.08.008]
[15]
Khan, I.; Yousaf, S.; Subramanian, S.; Albed Alhnan, M.; Ahmed, W.; Elhissi, A. Proliposome tablets manufactured using a slurry-driven lipid-enriched powders: Development, characterization and stability evaluation. Int. J. Pharm., 2018, 538(1-2), 250-262.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.049] [PMID: 29337185]
[16]
Mao-quan, C.; Hong-chen, G.U.; Guo-jie, L. Study on the preparation of tanshinone proliposomes by spray drying method. Chung Kuo Yao Hsueh Tsa Chih, 2002, 2002-01.
[17]
Faezizadeh, Z.; Gharib, A.; Godarzee, M. In-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus. Iran. J. Pharm. Res., 2015, 14(2), 627-633.
[PMID: 25901172]
[18]
Venugopalarao, G.; Lakshmipathy, R.; Sarada, N.C. Preparation and characterization of cefditoren pivoxil-loaded liposomes for controlled in vitro and in vivo drug release. Int. J. Nanomedicine, 2015, 10(1)(Suppl. 1), 149-157.
[PMID: 26491316]
[19]
Tapan, K.G.; Kulesh, K.; Amit, A.A.; Hemant, B.; Dulal, K.T. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique. Bull. Fac. Pharm. Cairo Univ., 2012, 50, 147-159.
[http://dx.doi.org/10.1016/j.bfopcu.2012.07.002]
[20]
Wang, Z.Y.; Zhang, H.; Yang, Y.; Xie, X.Y.; Yang, Y.F.; Li, Z.; Li, Y.; Gong, W.; Yu, F.L.; Yang, Z.; Li, M.Y.; Mei, X.G. Preparation, characterization, and efficacy of thermosensitive liposomes containing paclitaxel. Drug Deliv., 2016, 23(4), 1222-1231.
[http://dx.doi.org/10.3109/10717544.2015.1122674] [PMID: 26666408]
[21]
Janga, K.Y.; Jukanti, R.; Velpula, A.; Sunkavalli, S.; Bandari, S.; Kandadi, P.; Veerareddy, P.R. Bioavailability enhancement of zaleplon via proliposomes: Role of surface charge. Eur. J. Pharm. Biopharm., 2012, 80(2), 347-357.
[http://dx.doi.org/10.1016/j.ejpb.2011.10.010] [PMID: 22041602]
[22]
Nasr, A.; Gardouh, A.; Ghorab, M. Novel Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) for Oral Delivery of Olmesartan Medoxomil: Design, Formulation, Pharmacokinetic and Bioavailability Evaluation. Pharmaceutics, 2016, 8(3), 20.
[http://dx.doi.org/10.3390/pharmaceutics8030020] [PMID: 27355963]
[23]
Saurav, K.; Kannabiran, K. Cytotoxicity and antioxidant activity of 5-(2,4-dimethylbenzyl)pyrrolidin-2-one extracted from marine Streptomyces VITSVK5 spp. Saudi J. Biol. Sci., 2012, 19(1), 81-86.
[http://dx.doi.org/10.1016/j.sjbs.2011.07.003] [PMID: 23961165]
[24]
Diarce, G.; Gandarias, I. Campos. C.A.; GarcíaRomero, A.; Griesser, U.J. Eutectic mixtures of sugar alcohols for thermal energy storage in the 50–90 0 C temperature range. Sol. Energy Mater. Sol. Cells, 2015, 134, 215-226.
[http://dx.doi.org/10.1016/j.solmat.2014.11.050]
[25]
Solmaz, B.; Christos, S.; Lina, Y.; Ian, F. Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable Microencapsulated L. acidophilus NCIMB 701748. Dry. Technol., 2013, 31(11), 1274-1283.
[http://dx.doi.org/10.1080/07373937.2013.788509]
[26]
Rojanarat, W.; Nakpheng, T.; Thawithong, E.; Yanyium, N.; Srichana, T. Inhaled pyrazinamide proliposome for targeting alveolar macrophages. Drug Deliv., 2012, 19(7), 334-345.
[http://dx.doi.org/10.3109/10717544.2012.721144] [PMID: 22985352]
[27]
Fang, J.Y.; Hwang, T.L.; Huang, Y.L.; Fang, C.L. Enhancement of the transdermal delivery of catechins by liposomes incorporating anionic surfactants and ethanol. Int. J. Pharm., 2006, 310(1-2), 131-138.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.004] [PMID: 16413711]
[28]
Patil-Gadhe, A.; Pokharkar, V. Single step spray drying method to develop proliposomes for inhalation: a systematic study based on quality by design approach. Pulm. Pharmacol. Ther., 2014, 27(2), 197-207.
[http://dx.doi.org/10.1016/j.pupt.2013.07.006] [PMID: 23916767]
[29]
Melzak, K.A.; Melzak, S.A.; Gizeli, E.; Toca-Herrera, J.L. Cholesterol organization in phosphatidylcholine liposomes: A surface plasmon resonance study. Materials (Basel), 2012, 5, 2306-2325.
[http://dx.doi.org/10.3390/ma5112306]
[30]
Duangjit, S.; Pamornpathomkul, B.; Opanasopit, P.; Rojanarata, T.; Obata, Y.; Takayama, K.; Ngawhirunpat, T. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int. J. Nanomedicine, 2014, 9, 2005-2017.
[http://dx.doi.org/10.2147/IJN.S60674] [PMID: 24851047]
[31]
Sansone, F.; Esposito, T.; Lauro, M.R.; Picerno, P.; Mencherini, T.; Gasparri, F.; De Santis, S.; Chieppa, M.; Cirillo, C.; Aquino, R.P. Application of Spray Drying Particle Engineering to a High-Functionality/Low-Solubility Milk Thistle Extract: Powders Production and Characterization. Molecules, 2018, 23(7), 1716.
[http://dx.doi.org/10.3390/molecules23071716] [PMID: 30011893]
[32]
Duangjit, S.; Opanasopit, P.; Rojarata, T.; Obata, Y.; Oniki, Y.; Takayama, K.; Ngawhirunpat, T. The Role of Deformable Liposome Characteristics on Skin Permeability of Meloxicam: Optimal Transfersome as Transdermal Delivery Carriers. Open Conf. Proc. J., 2013, 4, 87-92.
[33]
Hegh, D.Y.; Mackay, S.M.; Tan, E.W. CO2-triggered release from switchable surfactant impregnated liposomes. RSC Advances, 2014, 4, 31771-31774.
[http://dx.doi.org/10.1039/C4RA05387G]
[34]
Madni, A.; Sarfraz, M.; Rehman, M.; Ahmad, M.; Akhtar, N.; Ahmad, S.; Tahir, N.; Ijaz, S.; Al-Kassas, R.; Löbenberg, R. Liposomal drug delivery: a versatile platform for challenging clinical applications. J. Pharm. Pharm. Sci., 2014, 17(3), 401-426.
[http://dx.doi.org/10.18433/J3CP55] [PMID: 25224351]
[35]
Bnyan, R.; Khan, I.; Ehtezazi, T.; Saleem, I.; Gordon, S.; O’Neill, F.; Roberts, M. Surfactant Effects on Lipid-Based Vesicles Properties. J. Pharm. Sci., 2018, 107(5), 1237-1246.
[http://dx.doi.org/10.1016/j.xphs.2018.01.005] [PMID: 29336980]
[36]
Ali, A.M.; Sarhan, H.A.; Magdy, T. Preparation and characterization of phenytoin sodium niosomes for enhanced closure of skin injuries. Int. J. Pharm. Pharm. Sci., 2014, 6, 542-546.
[37]
Pinsuwan, S.; Amnuaikit, T.; Ungphaiboon, S.; Itharat, A. Liposome-containing Hibiscus sabdariffa calyx extract formulations with increased antioxidant activity, improved dermal penetration and reduced dermal toxicity. J. Med. Assoc. Thai., 2010, 93(Suppl. 7), S216-S226.
[PMID: 21294418]
[38]
Tseng, L.P.; Liang, H.J.; Chung, T.W.; Huang, Y.Y.; Liu, D.Z. Liposomes incorporated with cholesterol for drug release triggered by magnetic field. J. Med. Biol. Eng., 2007, 27(1), 29-34.
[39]
Yanyu, X.; Yunmei, S.; Zhipeng, C.; Qineng, P. The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int. J. Pharm., 2006, 307(1), 77-82.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.001] [PMID: 16300915]
[40]
Das, S.; Roy, P.; Auddy, R.G.; Mukherjee, A. Silymarin nanoparticle prevents paracetamol-induced hepatotoxicity. Int. J. Nanomedicine, 2011, 6, 1291-1301.
[PMID: 21753880]
[41]
Voinovich, D.; Perissutti, B.; Magarotto, L.; Ceschia, D.; Guiotto, P.; Bilia, A.R. Solid state mechanochemical simultaneous activation of the constituents of the Silybum marianum phytocomplex with crosslinked polymers. J. Pharm. Sci., 2009, 98(1), 215-228.
[http://dx.doi.org/10.1002/jps.21417] [PMID: 18428992]
[42]
Kun, L.; Haizhao, Z.; Liming, G.; Yue, Z.; Ming, S.; Jian, L.; Chenlin, X.; Junli, C.; Shaohui, C.; Li, J.; Hao, D. Preparation and Characterization of Baicalein-Loaded Nanoliposomes for Antitumor Therapy.In:J. Nanomater; , 2016. 12, 9 pages.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy