Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Formulation and Evaluation of Isradipine Nanosuspension and Exploring its Role as a Potential Anticancer Drug by Computational Approach

Author(s): Prasanta Kumar Mohapatra*, Rajnish Srivastava, Krishna Kumar Varshney and S. Haresh Babu

Volume 22, Issue 10, 2022

Published on: 06 January, 2022

Page: [1984 - 2001] Pages: 18

DOI: 10.2174/1871520621666210805125426

Price: $65

Abstract

Background: T-type calcium channels are aberrantly expressed in different human cancers and regulate cell cycle progression, proliferation, migration, and survival. FAK-1 can promote tumor protein degradation (p53) through ubiquitination, leading to cancer cell growth and proliferation. Similar findings are obtained regarding protease inhibitors' effect on cytokine-induced neutrophil activation that suppresses Granulocyte-macrophage colony-stimulatingfactor (GM-CSF) TNF-α-induced O2 release and adherence in human neutrophils without affecting phosphorylation of Extracellular signal-regulated kinase (ERK) and p38. Nanosuspensions are carrier-free, submicron colloidal dispersions, which consist of pure drugs and stabilizers. Incorporating drug loaded in nanosuspensions offer a great advantages of passive drug targeting with improved solubility, stability, and bioavailability, as well as lower systemic toxicity.

Objective: The present investigation objective was to establish a molecular association of Protease and Focal Adhesion Kinase 1 as cancer targets for isradipine, a calcium channel blocker (CCB). Furthermore, the study also aimed to formulate its optimized nanosuspension and how the physical, morphological, and dissolution properties of isradipine impact nanosuspension stability.

Methods: Five different molecular targets, namely Cysteine Proteases (Cathepsin B), Serine Proteases (Matriptase), Aspartate Proteases, Matrix Metalloproteases (MMP), and FAK-1 were obtained from RCSB-PDB, which has some potential associations with inhibition in cancer pathogenesis. Molecular interactions of these targets with CCB isradipine were identified and established by molecular simulation docking studies. Isradipine-loaded nanosuspension was prepared by precipitation technique by employing a 23 factorial design. PVP K-30, poloxamer 188, and sodium lauryl sulfate (SLS) were used as polymer, co-polymer, and surfactant, respectively. The nanosuspension particles were assessed for particle size, zeta potential, viscosity, polydispersity index (PDI), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), In-vitro drug release kinetics, and short-term stability study.

Results: Considerable interactions were found with Cysteine, Serine, Aspartate, Threonine, and Matrix metalloproteases with binding energies of -3.91, -6.7, -3.48, -8.42, respectively. Furthermore, the interaction of isradipine with FAK-1 was compared with 7 native ligands and was found to show significant interaction with binding energies of - 8.62, -7.27, -7.69, -5.67, -5.41, -7.44, -8.21, respectively. The optimized nanosuspension was evaluated and exhibited a particle size of 754.9 nm, zeta potential of 32.5 mV, viscosity of 1.287 cp, and PDI of 1.000. The In-vitro dissolution of the optimized formulation (F8) was found to be higher (96.57%) as compared to other formulations.

Conclusion: Isradipine could act as a potential inhibitor of different proteases and FAK-1 associated with tumor growth initiation, progression, and metastasis. Furthermore, isradipine-loaded nanosuspension with optimized release could be utilized to deliver the anticancer drug in a more targeted way as emerging cancer nanotechnology.

Keywords: FAK-1, isradipine, nanosuspension, proteases, tumor, cancer, molecular simulation, in vitro.

Graphical Abstract
[1]
Capiod, T.; Shuba, Y.; Skryma, R.; Prevarskaya, N. Calcium sig-nalling and cancer cell growth. Subcell. Biochem., 2007, 45, 405-427.
[http://dx.doi.org/10.1007/978-1-4020-6191-2_15] [PMID: 18193646]
[2]
Xu, M.; Seas, A.; Kiyani, M.; Ji, K.S.Y.; Bell, H.N. A temporal examination of calcium signaling in cancer- from tumorigenesis, to immune evasion, and metastasis. Cell Biosci., 2018, 8, 25.
[http://dx.doi.org/10.1186/s13578-018-0223-5] [PMID: 29636894]
[3]
Phan, N.N.; Wang, C-Y.; Chen, C-F.; Sun, Z.; Lai, M-D.; Lin, Y-C. Voltage-gated calcium channels: Novel targets for cancer therapy. Oncol. Lett., 2017, 14(2), 2059-2074.
[http://dx.doi.org/10.3892/ol.2017.6457] [PMID: 28781648]
[4]
Stewart, T.A.; Yapa, K.T.D.S.; Monteith, G.R. Altered calcium signaling in cancer cells. Biochim. Biophys. Acta, 2015, 1848(10 Pt B), 2502-2511.
[http://dx.doi.org/10.1016/j.bbamem.2014.08.016] [PMID: 25150047]
[5]
Varghese, E.; Samuel, S.M.; Sadiq, Z.; Kubatka, P.; Liskova, A.; Benacka, J.; Pazinka, P.; Kruzliak, P.; Büsselberg, D. Anti-cancer agents in proliferation and cell death: The calcium connection. Int. J. Mol. Sci., 2019, 20(12), 3017.
[http://dx.doi.org/10.3390/ijms20123017] [PMID: 31226817]
[6]
Joyce, J.A.; Hanahan, D. Multiple roles for cysteine cathepsins in cancer. Cell Cycle, 2004, 3(12), 1516-1619.
[http://dx.doi.org/10.4161/cc.3.12.1289] [PMID: 15539953]
[7]
Tu, C.; Ortega-Cava, C.F.; Chen, G.; Fernandes, N.D.; Cavallo-Medved, D.; Sloane, B.F.; Band, V.; Band, H. Lysosomal cathepsin B participates in the podosome-mediated extracellular matrix deg-radation and invasion via secreted lysosomes in v-Src fibroblasts. Cancer Res., 2008, 68(22), 9147-9156.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5127] [PMID: 19010886]
[8]
Hirai, K.; Yokoyama, M.; Asano, G.; Tanaka, S. Expression of cathepsin B and cystatin C in human colorectal cancer. Hum. Pathol., 1999, 30(6), 680-686.
[http://dx.doi.org/10.1016/S0046-8177(99)90094-1] [PMID: 10374777]
[9]
Kandalaft, P.L.; Chang, K.L.; Ahn, C.W.; Traweek, S.T.; Mehta, P.; Battifora, H. Prognostic significance of immunohistochemical analysis of cathepsin D in low-stage breast cancer. Cancer, 1993, 71(9), 2756-2763.
[http://dx.doi.org/10.1002/1097-0142(19930501)71:9<2756:AID-CNCR2820710912>3.0.CO;2-1] [PMID: 8385566]
[10]
Michl, P. Targeting cathepsins: a new glimmer of hope for pancre-atic cancer therapy? Gut, 2012, 61(6), 790-791.
[http://dx.doi.org/10.1136/gutjnl-2011-301816] [PMID: 22287597]
[11]
Saleh, Y.; Wnukiewicz, J.; Andrzejak, R.; Trziszka, T.; Siewinski, M.; Ziolkowski, P.; Kopec, W. Cathepsin B and cysteine protease inhibitors in human tongue cancer: Correlation with tumor staging and in vitro inhibition of cathepsin B by chicken cystatin. J. Cancer Mol, 2006, 2, 67-72.
[12]
Fujise, N.; Nanashim, A.; Taniguchi, Y.; Matsuo, S.; Hatano, K.; Matsumoto, Y.; Tagawa, Y.; Ayabe, H. Prognostic impact of ca-thepsin B and matrix metalloproteinase-9 in pulmonary adenocar-cinomas by immunohistochemical study. Lung Cancer, 2000, 27(1), 19-26.
[http://dx.doi.org/10.1016/S0169-5002(99)00088-4] [PMID: 10672780]
[13]
DeClerck, Y.A.; Mercurio, A.M.; Stack, M.S.; Chapman, H.A.; Zutter, M.M.; Muschel, R.J.; Raz, A.; Matrisian, L.M.; Sloane, B.F.; Noel, A.; Hendrix, M.J.; Coussens, L.; Padarathsingh, M. Proteases, extracellular matrix, and cancer: a workshop of the path B study section. Am. J. Pathol., 2004, 164(4), 1131-1139.
[http://dx.doi.org/10.1016/S0002-9440(10)63200-2] [PMID: 15039201]
[14]
Vashishta, A.; Ohri, S.S.; Vetvicka, V. Pleiotropic effects of ca-thepsin D. Immune Disord. Drug Targets, 2009, 9(4), 385-391.
[http://dx.doi.org/10.2174/187153009789839174]
[15]
Nicotra, G.; Castino, R.; Follo, C.; Peracchio, C.; Valente, G.; Isidoro, C. The dilemma: Does tissue expression of cathepsin D re-flect tumor malignancy? the question: Does the assay truly mirror cathepsin D mis-function in the tumor? cancer biomark. sect. A Dis. Mark, 2009, 7(1), 47-64.
[16]
Radisky, E.S.; Radisky, D.C. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J. Mammary Gland Biol. Neoplasia, 2010, 15(2), 201-212.
[http://dx.doi.org/10.1007/s10911-010-9177-x] [PMID: 20440544]
[17]
Masson, O.; Prébois, C.; Derocq, D.; Meulle, A.; Dray, C.; Daviaud, D.; Quilliot, D.; Valet, P.; Muller, C.; Liaudet-Coopman, E. Cathepsin-D, a key protease in breast cancer, is up-regulated in obese mouse and human adipose tissue, and controls adipogenesis. PLoS One, 2011, 6(2) ,e16452.
[http://dx.doi.org/10.1371/journal.pone.0016452] [PMID: 21311773]
[18]
Vashishta, A.; Ohri, S.S.; Proctor, M.; Fusek, M.; Vetvicka, V. Ribozyme-targeting procathepsin D and its effect on invasion and growth of breast cancer cells: an implication in breast cancer thera-py. Int. J. Oncol., 2007, 30(5), 1223-1230.
[http://dx.doi.org/10.3892/ijo.30.5.1223] [PMID: 17390025]
[19]
Huang, H.; Pierstorff, E.; Osawa, E.; Ho, D. Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and bio-functional multilayer nanofilm. ACS Nano, 2008, 2(2), 203-212.
[http://dx.doi.org/10.1021/nn7000867] [PMID: 19206620]
[20]
Ohri, S.S.; Vashishta, A.; Proctor, M.; Fusek, M.; Vetvicka, V. The propeptide of cathepsin D increases proliferation, invasion and me-tastasis of breast cancer cells. Int. J. Oncol., 2008, 32(2), 491-498.
[http://dx.doi.org/10.3892/ijo.32.2.491] [PMID: 18202773]
[21]
Anastasov, A.; Vihinen, P.; Nikkola, J.; Pyrhonen, S.; Vlaykova, T. Matrix metalloproteinses in development and progression of skin malignant melanoma Med; Baltimore, 2011.
[22]
Evrosimovska, B.; Velickovski, B.; Dimova, C.; Veleska-Stefkovska, D. Matrix metalloproteinases (with accent to colla-genases. J. Cell Anim. Biol., 2011, 5(7), 113-120.
[23]
Rakashanda, S.; Rana, F.; Rafiq, S.; Masood, A.; Amin, S. Role of proteases in cancer: A review. Biotechnol. Mol. Biol. Rev., 2012, 7(4), 90-101.
[http://dx.doi.org/10.5897/BMBR11.027]
[24]
Eatemadi, A.; Aiyelabegan, H.T.; Negahdari, B.; Mazlomi, M.A.; Daraee, H.; Daraee, N.; Eatemadi, R.; Sadroddiny, E. Role of pro-tease and protease inhibitors in cancer pathogenesis and treatment. Biomed. Pharmacother., 2017, 86, 221-231.
[http://dx.doi.org/10.1016/j.biopha.2016.12.021] [PMID: 28006747]
[25]
Lee, B.Y.; Timpson, P.; Horvath, L.G.; Daly, R.J. FAK signaling in human cancer as a target for therapeutics. Pharmacol. Ther., 2015, 146, 132-149.
[http://dx.doi.org/10.1016/j.pharmthera.2014.10.001] [PMID: 25316657]
[26]
Wang, B.; Qi, X.; Li, D.; Feng, M.; Meng, X.; Fu, S. Expression of pY397 FAK promotes the development of non-small cell lung can-cer. Oncol. Lett., 2016, 11(2), 979-983.
[http://dx.doi.org/10.3892/ol.2015.3992] [PMID: 26893679]
[27]
Crompton, B.; Wang, S.; Hwang, E.; Guha, R.; Boxer, M.; McKnight, C.; Shen, M.; Melong, N.; Veinotte, C.; Conway, A.; Berman, J.; Hall, M.; Davis, M.; Stegmaier, K. Abstract 1943: high-throughput chemical screening identifies focal adhesion ki-nase and aurora kinase B inhibition as a synergistic treatment com-bination in ewing sarcoma. Tumor Biology; American Association for Cancer Research, 2017.
[http://dx.doi.org/10.1158/1538-7445.AM2017-1943]
[28]
Alexopoulou, A.N.; Lees, D.M.; Bodrug, N.; Lechertier, T.; Fer-nandez, I.; D’Amico, G.; Dukinfield, M.; Batista, S.; Tavora, B.; Serrels, B.; Hodivala-Dilke, K. Focal Adhesion Kinase (FAK) tyro-sine 397E mutation restores the vascular leakage defect in endothe-lium-specific FAK-kinase dead mice. J. Pathol., 2017, 242(3), 358-370.
[http://dx.doi.org/10.1002/path.4911] [PMID: 28444899]
[29]
Huang, Y-H.; Yang, H-Y.; Huang, S-W.; Ou, G.; Hsu, Y-F.; Hsu, M-J. Interleukin-6 induces vascular endothelial growth factor-C expression via Src-FAK-STAT3 signaling in lymphatic endothelial cells. PLoS One, 2016, 11(7) ,e0158839.
[http://dx.doi.org/10.1371/journal.pone.0158839] [PMID: 27383632]
[30]
Tan, Y.; Wood, A.R.; Jia, Q.; Zhou, W.; Luo, J.; Yang, F.; Chen, J.; Chen, J.; Sun, J.; Seong, J.; Tajik, A.; Singh, R.; Wang, N. Soft ma-trices downregulate FAK activity to promote growth of tumor-repopulating cells. Biochem. Biophys. Res. Commun., 2017, 483(1), 456-462.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.122] [PMID: 28007596]
[31]
Hwang, J.S.; Eun, S.Y.; Ham, S.A.; Yoo, T.; Lee, W.J.; Paek, K.S.; Do, J.T.; Lim, D.S.; Seo, H.G. PPARδ modulates oxLDL-induced apoptosis of vascular smooth muscle cells through a TGF-β/FAK signaling axis. Int. J. Biochem. Cell Biol., 2015, 62, 54-61.
[http://dx.doi.org/10.1016/j.biocel.2015.02.014] [PMID: 25732738]
[32]
Homayun, B.; Lin, X.; Choi, H-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics, 2019, 11(3), 129.
[http://dx.doi.org/10.3390/pharmaceutics11030129] [PMID: 30893852]
[33]
Gupta, S.; Kesarla, R.; Omri, A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm., 2013, 2013 ,848043.
[http://dx.doi.org/10.1155/2013/848043] [PMID: 24459591]
[34]
Hannan, P.A.; Khan, J.A.; Khan, A.; Safiullah, S. Oral dispersible system: A new approach in drug delivery system. Indian J. Pharm. Sci., 2016, 78(1), 2-7.
[http://dx.doi.org/10.4103/0250-474X.180244] [PMID: 27168675]
[35]
Wilkinson, J.M. Nanotechnology applications in medicine. Med. Device Technol., 2003, 14(5), 29-31.
[PMID: 12852120]
[36]
Sharma, P.; Denny, W.A.; Garg, S. Effect of wet milling process on the solid state of indomethacin and simvastatin. Int. J. Pharm., 2009, 380(1-2), 40-48.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.029] [PMID: 19576976]
[37]
Roco, M.C. Nanotechnology: convergence with modern biology and medicine. Curr. Opin. Biotechnol., 2003, 14(3), 337-346.
[http://dx.doi.org/10.1016/S0958-1669(03)00068-5] [PMID: 12849790]
[38]
Roco, M.C. The Long View of Nanotechnology Development: The National Nanotechnology Initiative at 10 Years. Nanotechnology Research Directions for Societal Needs in 2020; Springer Nether-lands: Dordrecht, 2011, pp. 1-28.
[http://dx.doi.org/10.1007/978-94-007-1168-6_1]
[39]
Singh, B.; Chakkal, S.K.; Ahuja, N. Formulation and optimization of controlled release mucoadhesive tablets of atenolol using re-sponse surface methodology. AAPS PharmSciTech, 2006, 7(1), E19-E28.
[http://dx.doi.org/10.1208/pt070103] [PMID: 28290018]
[40]
Verma, S.; Kumar, S.; Gokhale, R.; Burgess, D.J. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ost-wald ripening. Int. J. Pharm., 2011, 406(1-2), 145-152.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.027] [PMID: 21185926]
[41]
Hussain, M.S. Abdul baquee ahmed and jiban debnath, nanosus-pension: A promising drug delivery system for poorly water-soluble drug and enhanced bioavailability. IJPSR, 2020, 11(10), 4822-4832.
[42]
Mohapatra, P.K. Sireesha, Rathore, Verma, H.C.; Rath, B.P.; Sa-hoo, S. Nanosuspension: A promising drug delivery system for poorly water-soluble drug and enhanced bioavailability. Int. J. App. Pharm., 2020, 12(5), 286-294.
[http://dx.doi.org/10.22159/ijap.2020v12i5.38865]
[43]
Patel, V.R.; Agrawal, Y.K. Nanosuspension: An approach to en-hance solubility of drugs. J. Adv. Pharm. Technol. Res., 2011, 2(2), 81-87.
[http://dx.doi.org/10.4103/2231-4040.82950] [PMID: 22171298]
[44]
Kulkarni, R.R.; Phadtare, D.G.; Saudagar, R.B. A novel approach towards nanosuspension. Asian J. Pharm. Res., 2015, 5(4), 186.
[http://dx.doi.org/10.5958/2231-5691.2015.00029.5]
[45]
Bhowmik, D.; Harish, G.; Duraivel, S.; Kumar, B.P.; Raghuvanshi, V.; Kps, K. Nanosuspension -A novel approaches in drug delivery system. Pharma Innov. J., 2013, 1(12), 50-63.
[46]
Christensen, H.R.; Antonsen, K.; Simonsen, K.; Lindekaer, A.; Bonde, J.; Angelo, H.R.; Kampmann, J.P. Bioavailability and pharmacokinetics of isradipine after oral and intravenous admin-istration: half-life shorter than expected? Pharmacol. Toxicol., 2000, 86(4), 178-182.
[http://dx.doi.org/10.1034/j.1600-0773.2000.d01-32.x] [PMID: 10815751]
[47]
Venugopal, V.; Kumar, K.J.; Muralidharan, S.; Parasuraman, S.; Raj, P.V.; Kumar, K.V. Optimization and in-vivo evaluation of is-radipine nanoparticles using box-behnken design surface response methodology. Open Nano., 2016, 1, 1-15.
[http://dx.doi.org/10.1016/j.onano.2016.03.002]
[48]
Jacobs, C.; Kayser, O.; Müller, R.H. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int. J. Pharm., 2000, 196(2), 161-164.
[http://dx.doi.org/10.1016/S0378-5173(99)00412-3] [PMID: 10699709]
[49]
Kakran, M.; Sahoo, N.G.; Li, L.; Judeh, Z.; Wang, Y.; Chong, K.; Loh, L. Fabrication of drug nanoparticles by evaporative precipita-tion of nanosuspension. Int. J. Pharm., 2010, 383(1-2), 285-292.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.030] [PMID: 19781606]
[50]
Viçosa, A.; Letourneau, J-J.; Espitalier, F.; Inês Ré, M. An Innova-tive Antisolvent Precipitation Process as a Promising Technique to Prepare Ultrafine Rifampicin Particles. J. Cryst. Growth, 2012, 342(1), 80-87.
[http://dx.doi.org/10.1016/j.jcrysgro.2011.09.012]
[51]
Sadeghi, F.; Ashofteh, M.; Homayouni, A.; Abbaspour, M.; Nokhodchi, A.; Garekani, H.A. Antisolvent precipitation tech-nique: A very promising approach to crystallize curcumin in pres-ence of polyvinyl pyrrolidon for solubility and dissolution en-hancement. Colloids Surf. B Biointerfaces, 2016, 147, 258-264.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.004] [PMID: 27518458]
[52]
Pandya, V.M.; Patel, J.K.; Patel, D.J. Formulation, optimization and characterization of simvastatin nanosuspension prepared by nanoprecipitation technique. Der. Pharmacia. Lettre., 2011, 3(2), 129-140.
[53]
Shelar, D.B.; Pawar, S.K.; Vavia, P.R. Fabrication of isradipine nanosuspension by anti-solvent microprecipitation-high-pressure homogenization method for enhancing dissolution rate and oral bi-oavailability. Drug Deliv. Transl. Res., 2013, 3(5), 384-391.
[http://dx.doi.org/10.1007/s13346-012-0081-3] [PMID: 25788346]
[54]
Kancharla, S.; Kolli, P.; Gopaiah, D. K. V. Nanosuspension formu-lation & evaluation of ritonavir & valsartan by using poloxamer as a stabilizing agent to enhance the oral bio availability. Int. J. Heal Care Bio. Sci., 2021, 4-17.,
[55]
Raju, V.; Murthy, K.V.R. Development and validation of new discriminative dissolution method for carvedilol tablets. Indian J. Pharm. Sci., 2011, 73(5), 527-536.
[http://dx.doi.org/10.4103/0250-474X.99000] [PMID: 22923865]
[56]
Canchi, A.; Khosa, A.; Singhvi, G.; Banerjee, S.; Dubey, S.K. Design and characterization of polymeric nanoparticles of pioglita-zone hydrochloride and study the effect of formulation variables using QbD approach. Curr. Nanomater., 2018, 2(3), 162-168.
[http://dx.doi.org/10.2174/2405461503666180501115359]
[57]
Pandey, N. DrSah, A. N.; Mahara, K. Formulation and evaluation of floating microspheres of nateglinide. Int. J. Pharm. Sci. Res., 2016, 7(11), 453-464.
[58]
Revathi, S.; Dhanaraju, M.D. Optimization and characterization Ezogabine-loaded nanosuspension for enhancement of bioavailabil-ity by “bottom-up” technology using 32 factorial design. J. Drug Deliv. Ther., 2019, 9(3), 227-237.
[59]
Bilati, U.; Allémann, E.; Doelker, E. Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech, 2005, 6(4), E594-E604.
[http://dx.doi.org/10.1208/pt060474] [PMID: 16408861]
[60]
Sreeramulu, J.; Reddy, M.S.; Jayaraju, A.; Rafiyuddin, M. Formu-lation and evaluation of sildenafil citrate nanosuspension. Int. J. Pharm., 2016, 6(3), 137-142.
[61]
Reddy, A.K.; Dalith, M.D.; Maheswari, U.; Venkatesha, T. Nano-suspensions: Ideal approach for the drug delivery of poorly water-soluble drugs. Der. Pharmacia. Lettre., 2011, 3(2), 203-213.
[62]
Mahajan, A.; Kaur, S. Design, characterization and pharmacokinet-ic studies of solid lipid nanoparticles of antihypertensive drug Telmisartan. Int. J. Pharm. Sci. Res., 2017, 8(8), 3402-3412.
[63]
Dhanalakshmi, M.; Nagajyothi, N.; Thenmozhi, S.; Natarajan, R.; Rajendran, N.N. Formulation and evaluation of pitavastatin nano-suspension. Int. J. Pharm. Life Sci., 2014, 5(2), 3318-3324.
[64]
Ethiraj, T.; Sujitha, R.; Ganesan, V. Formulation and in-vitro eval-uation of nanosuspension of Glimepiride. Int. J. Pharm., 2013, 3(4), 875-882.
[65]
Gadad, A. P.; Chandra, S. Moxifloxacin loaded polymeric nanopar-ticles for sustained ocular drug delivery.PCI- Approved-IJPSN,, 2012, 5(2), 1727-1734.
[66]
Zhong, J.; Shen, Z.; Yang, Y.; Chen, J. Preparation and characteri-zation of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravi-ty environment. Int. J. Pharm., 2005, 301(1-2), 286-293.
[http://dx.doi.org/10.1016/j.ijpharm.2005.06.005] [PMID: 16054788]
[67]
Salatin, S.; Barar, J.; Barzegar-Jalali, M.; Adibkia, K.; Alami-Milani, M.; Jelvehgari, M. Formulation and evaluation of eudragit RL-100 nanoparticles loaded in-situ forming gel for intranasal de-livery of rivastigmine. Adv. Pharm. Bull., 2020, 10(1), 20-29.
[http://dx.doi.org/10.15171/apb.2020.003] [PMID: 32002358]
[68]
Liu, Q.; Mai, Y.; Gu, X.; Zhao, Y.; Di, X.; Ma, X.; Yang, J. A wet-milling method for the preparation of cilnidipine nanosuspension with enhanced dissolution and oral bioavailability. J. Drug Deliv. Sci. Technol., 2020, 55(101371) ,101371.
[http://dx.doi.org/10.1016/j.jddst.2019.101371]
[69]
Abdelghany, S.; Tekko, I.A.; Vora, L.; Larrañeta, E.; Permana, A.D.; Donnelly, R.F. Nanosuspension-based dissolving micronee-dle arrays for intradermal delivery of curcumin. Pharmaceutics, 2019, 11(7), 308-320.
[http://dx.doi.org/10.3390/pharmaceutics11070308] [PMID: 31269648]
[70]
Gite, S.; Chogale, M.; Patravale, V. Development and validation of a discriminating dissolution method for atorvastatin delayed-release nanoparticles using a flow-through cell: A comparative study using USP apparatus 4 and 1. Dissolut. Technol., 2016, 23(2), 14-20.
[http://dx.doi.org/10.14227/DT230216P14]
[71]
Sahu, B.P.; Das, M.K. Nanoprecipitation with sonication for en-hancement of oral bioavailability of furosemide. Acta Pol. Pharm., 2014, 71(1), 129-137.
[PMID: 24779201]
[72]
Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolu-tion profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
[73]
Ramteke, K.H.; Dighe, P.A.; Kharat, A.R.; Patil, S.V. Mathemati-cal Models of Drug Dissolution: A Review. Sch. Acad. J. Pharm., 2014, 3(5), 388-396.
[74]
Gibaldi, M.; Feldman, S. Establishment of sink conditions in disso-lution rate determinations. Theoretical considerations and applica-tion to nondisintegrating dosage forms. J. Pharm. Sci., 1967, 56(10), 1238-1242.
[http://dx.doi.org/10.1002/jps.2600561005] [PMID: 6059440]
[75]
Wagner, J.G. Biopharmaceutics: absorption aspects. J. Pharma-ceut. Sci., 1961, 50(5), 359-387.
[http://dx.doi.org/10.1002/jps.2600500502] [PMID: 13782507]
[76]
Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release coupling of diffusion and relaxation. Int. J. Pharm., 1989, 57(2), 169-172.
[http://dx.doi.org/10.1016/0378-5173(89)90306-2]
[77]
Legrand, P.; Lesieur, S.; Bochot, A.; Gref, R.; Raatjes, W.; Barratt, G.; Vauthier, C. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int. J. Pharm., 2007, 344(1-2), 33-43.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.054] [PMID: 17616282]
[78]
Siepmann, J.; Siepmann, F. Mathematical modeling of drug deliv-ery. Int. J. Pharm., 2008, 364(2), 328-343.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.004] [PMID: 18822362]
[79]
Koltai, T. Nelfinavir and other protease inhibitors in cancer: mech-anisms involved in anticancer activity. F1000 Res., 2015, 4, 9.
[http://dx.doi.org/10.12688/f1000research.5827.2] [PMID: 26097685]
[80]
Farías, E.F.; Aguirre Ghiso, J.A.; Ladeda, V.; Bal de Kier Joffé, E. Verapamil inhibits tumor protease production, local invasion and metastasis development in murine carcinoma cells. Int. J. Cancer, 1998, 78(6), 727-734.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19981209)78:6<727:AID-IJC10>3.0.CO;2-A] [PMID: 9833766]
[81]
Roger, S.; Le Guennec, J-Y.; Besson, P. Particular sensitivity to calcium channel blockers of the fast inward voltage-dependent so-dium current involved in the invasive properties of a metastastic breast cancer cell line. Br. J. Pharmacol., 2004, 141(4), 610-615.
[http://dx.doi.org/10.1038/sj.bjp.0705649] [PMID: 14744811]
[82]
Luongo, T.S.; Lambert, J.P.; Gross, P.; Nwokedi, M.; Lombardi, A.A.; Shanmughapriya, S.; Carpenter, A.C.; Kolmetzky, D.; Gao, E.; van Berlo, J.H.; Tsai, E.J.; Molkentin, J.D.; Chen, X.; Madesh, M.; Houser, S.R.; Elrod, J.W. The mitochondrial Na+/Ca2+ ex-changer is essential for Ca2+ homeostasis and viability. Nature, 2017, 545(7652), 93-97.
[http://dx.doi.org/10.1038/nature22082] [PMID: 28445457]
[83]
Zhang, S.; Miao, Y.; Zheng, X.; Gong, Y.; Zhang, J.; Zou, F.; Cai, C. STIM1 and STIM2 differently regulate endogenous Ca2+ entry and promote TGF-β-induced EMT in breast cancer cells. Biochem. Biophys. Res. Commun., 2017, 488(1), 74-80.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.009] [PMID: 28479254]
[84]
McAndrew, D.; Grice, D.M.; Peters, A.A.; Davis, F.M.; Stewart, T.; Rice, M.; Smart, C.E.; Brown, M.A.; Kenny, P.A.; Roberts-Thomson, S.J.; Monteith, G.R. ORAI1-mediated calcium influx in lactation and in breast cancer. Mol. Cancer Ther., 2011, 10(3), 448-460.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0923] [PMID: 21224390]
[85]
Hirashima, Y.; Kobayashi, H.; Suzuki, M.; Tanaka, Y.; Kanayama, N.; Fujie, M.; Nishida, T.; Takigawa, M.; Terao, T. Characteriza-tion of binding properties of urinary trypsin inhibitor to cell-associated binding sites on human chondrosarcoma cell line HCS-2/8. J. Biol. Chem., 2001, 276(17), 13650-13656.
[http://dx.doi.org/10.1074/jbc.M009906200] [PMID: 11278581]
[86]
Kobayashi, H.; Suzuki, M.; Tanaka, Y.; Kanayama, N.; Terao, T. A kunitz-type protease inhibitor, bikunin, inhibits ovarian cancer cell invasion by blocking the calcium-dependent transforming growth factor-β1 signaling cascade. J. Biol. Chem., 2003, 7(278), 7790-7799.
[87]
Vetvicka, V.; Vetvickova, J.; Fusek, M. Anti-human procathepsin D activation peptide antibodies inhibit breast cancer development. Breast Cancer Res. Treat., 1999, 57(3), 261-269.
[http://dx.doi.org/10.1023/A:1006238003772] [PMID: 10617302]
[88]
Liaudet-Coopman, E.; Beaujouin, M.; Derocq, D.; Garcia, M.; Glondu-Lassis, M.; Laurent-Matha, V.; Prébois, C.; Rochefort, H.; Vignon, F.; Cathepsin, D. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett., 2006, 237(2), 167-179.
[http://dx.doi.org/10.1016/j.canlet.2005.06.007] [PMID: 16046058]
[89]
Lambert, P.A.; Somers, K.D.; Kohn, E.C.; Perry, R.R. Antiprolifer-ative and antiinvasive effects of carboxyamido-triazole on breast cancer cell lines. Surgery, 1997, 122(2), 372-378.
[http://dx.doi.org/10.1016/S0039-6060(97)90029-5] [PMID: 9288143]
[90]
Chatzizacharias, N.A.; Kouraklis, G.P.; Theocharis, S.E. Focal adhesion kinase: a promising target for anticancer therapy. Expert Opin. Ther. Targets, 2007, 11(10), 1315-1328.
[http://dx.doi.org/10.1517/14728222.11.10.1315] [PMID: 17907961]
[91]
Tiede, S.; Meyer-Schaller, N.; Kalathur, R.K.R.; Ivanek, R.; Fagi-ani, E.; Schmassmann, P.; Stillhard, P.; Häfliger, S.; Kraut, N.; Schweifer, N.; Waizenegger, I.C.; Bill, R.; Christofori, G. The FAK inhibitor BI 853520 exerts anti-tumor effects in breast cancer. Oncogenesis, 2018, 7(9), 73.
[http://dx.doi.org/10.1038/s41389-018-0083-1] [PMID: 30237500]
[92]
Zhou, J.; Yi, Q.; Tang, L. The roles of nuclear focal adhesion ki-nase (FAK) on Cancer: a focused review. J. Exp. Clin. Cancer Res., 2019, 38(1), 250.
[http://dx.doi.org/10.1186/s13046-019-1265-1] [PMID: 31186061]
[93]
Chiu, J.W.; Binte Hanafi, Z.; Chew, L.C.Y.; Mei, Y.; Liu, H. IL-1α processing, signaling and its role in cancer progression. Cells, 2021, 10(1), 92.
[http://dx.doi.org/10.3390/cells10010092] [PMID: 33430381]
[94]
Gualdani, R.; de Clippele, M.; Ratbi, I.; Gailly, P.; Tajeddine, N. Correction: gualdani, R.; et al.store-operated calcium entry con-tributes to cisplatin-induced cell death in non-small cell lung carci-noma. Cancers 2019, 11, 430. Cancers (Basel), 2020, 12(8), 2023.
[http://dx.doi.org/10.3390/cancers12082023] [PMID: 32718094]
[95]
Helt, J.E. Effects of supersaturation and temperature on nucleation and crystal growth in a MSMPR crystallizer; Iowa State University, Ames, IA 50011: United States,. , 1976.
[96]
Bose, S.; Sharma, P.; Mishra, V.; Patial, S.; Saraogi, G.K.; Tam-buwala, M.M.; Dua, K. Comparative in Vitro evaluation of glimepiride containing nanosuspension drug delivery system de-veloped by different techniques. J. Mol. Struct., 2021, 1231(129927) ,129927.
[http://dx.doi.org/10.1016/j.molstruc.2021.129927]
[97]
Parekh, K.K.; Paun, J.S.; Soniwala, M.M. Formulation and evalua-tion of nanosuspension to improve solubility and dissolution of Di-acerein. Int. J. Pharm. Sci. Res., 2017, 8(4), 1643-1653.
[98]
Mishra, P.C.; Mukherjee, S.; Nayak, S.K.; Panda, A. A Brief Re-view on Viscosity of Nanofluids. Int. Nano Lett., 2014, 4(4), 109-120.
[http://dx.doi.org/10.1007/s40089-014-0126-3]
[99]
Soroushnia, A.; Ganji, F.; Vasheghani-Farahani, E.; Mobedi, H. Preparation, optimization, and evaluation of midazolam nanosus-pension: enhanced bioavailability for buccal administration. Prog. Biomater., 2021, 10(1), 19-28.
[http://dx.doi.org/10.1007/s40204-020-00148-x] [PMID: 33587239]
[100]
Tingle, S.J.; Severs, G.R.; Moir, J.A.G.; White, S.A. Calcium channel blockers in pancreatic cancer: increased overall survival in a retrospective cohort study. Anticancer Drugs, 2020, 31(7), 737-741.
[http://dx.doi.org/10.1097/CAD.0000000000000947] [PMID: 32639282]
[101]
Hegde, N.; Juvale, K.; Prabhakar, B. Formulation and optimization of gefitinib-loaded nanosuspension prepared using a newly devel-oped dendritic lipopeptide oligomer material. Chem. Pap., 2021, 75(5), 2007-2022.
[http://dx.doi.org/10.1007/s11696-020-01453-2]
[102]
Yadollahi, R.; Vasilev, K.; Simovic, S. Nanosuspension technolo-gies for delivery of poorly soluble drugs. J. Nanomater., 2015, 2015, 1-13.
[http://dx.doi.org/10.1155/2015/216375]
[103]
Singhvi, G. Singh, M. Review: In-vitro drug release characterization models. Int J. Pharm. Studies. Res.,. 2011, 2(1), 77-84.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy