Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Viability of Nanostructured Lipid Carrier System in Overcoming the Barriers Associated with Chemotherapeutic Delivery

Author(s): Amit Kumar Singh, Prabhat Kumar Upadhyay* and Manish Kumar

Volume 18, Issue 5, 2022

Published on: 12 January, 2022

Page: [587 - 603] Pages: 17

DOI: 10.2174/1573413717666210921153442

Price: $65

Abstract

Delivery of anti-cancer agents is challenging due to some inherent problems associated with them like instability, low solubility, non-specificity, variable pharmacokinetics, narrow therapeutic window, multi-drug resistance development, and other physiological barrier related to tumor cells. In recent years, Nanostructured lipid carrier (NLC) has gained considerable importance in improving anti-cancer agents' therapeutic efficacy.

The present review furnishes a comprehensive account of various barriers encountered in delivering the anti-cancer agent, the suitability of NLC to deliver anti-cancer agent, the techniques employed for the fabrication of NLC, its structure, along with its characterization. The main emphasis has given a break worth to overcome barriers in delivering chemotherapeutic through NLC so far; a number of qualitative literature have been included in this review. Further, the study describes the stability issue associated with the long-term storage of NLC.

The NLCs systems offer a great potential to target various anti-cancer agents suffering from low solubility, non-specificity, and severe adverse effects. The NLC system's development can overcome barriers encountered in delivering anti-cancer agents and improve its efficacy in various melanoma types.

Keywords: Anti-cancer agent, nanostructured lipid carrier, cancer, lipid carrier, NLC, multi drug-resistant.

Graphical Abstract
[1]
Banerjee, P.; Geng, T.; Mahanty, A.; Li, T.; Zong, L.; Wang, B. Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors. Int. J. Pharm., 2019, 557, 374-389.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.051] [PMID: 30610896]
[2]
Estanqueiro, M.; Amaral, M.H.; Conceição, J.; Sousa, Lobo J.M. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf. B Biointerfaces, 2015, 126, 631-648.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.041] [PMID: 25591851]
[3]
Ferreira, F.R.; Nascimento, L.F.C.; Rotta, O. Risk factors for nonmelanoma skin cancer in Taubaté, São Paulo, Brazil: a case-control study. Rev. Assoc. Med. Bras., 2011, 57(4), 424-430.
[http://dx.doi.org/10.1016/S0104-4230(11)70089-6] [PMID: 21876926]
[4]
Taveira, S.F.; Lopez, R.F.V. Topical administration of anticancer drugs for skin cancer treatment.Skin Cancers Risk Factors, Prevention and Therapy; Porta, CL, Ed.; InTech open limited: London (UK), 2011, p. 247-272.
[5]
Bhosle, J.; Hall, G. Principles of cancer treatment by chemotherapy. Surgery, 2009, 27(4), 173-177.
[http://dx.doi.org/10.1016/j.mpsur.2009.01.006]
[6]
Ahmad, S.S.; Reinius, M.A.; Hatcher, H.M.; Ajithkumar, T.V. Anticancer chemotherapy in teenagers and young adults: managing long term side effects. BMJ, 2016, 354, i4567.
[http://dx.doi.org/10.1136/bmj.i4567] [PMID: 27604249]
[7]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2018, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[8]
Feng, S.S.; Chien, S. Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci., 2003, 58(18), 4087-4114.
[http://dx.doi.org/10.1016/S0009-2509(03)00234-3]
[9]
Trédan, O.; Galmarini, C.M.; Patel, K.; Tannock, I.F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst., 2007, 99(19), 1441-1454.
[http://dx.doi.org/10.1093/jnci/djm135] [PMID: 17895480]
[10]
Riordan, J.R.; Deuchars, K.; Kartner, N.; Alon, N.; Trent, J.; Ling, V. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature, 1985, 316(6031), 817-819.
[http://dx.doi.org/10.1038/316817a0] [PMID: 2863759]
[11]
Ueda, K.; Cardarelli, C.; Gottesman, M.M.; Pastan, I. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc. Natl. Acad. Sci. USA, 1987, 84(9), 3004-3008.
[http://dx.doi.org/10.1073/pnas.84.9.3004] [PMID: 3472246]
[12]
Gouazé, V.; Yu, J.Y.; Bleicher, R.J.; Han, T.Y.; Liu, Y.Y.; Wang, H.; Gottesman, M.M.; Bitterman, A.; Giuliano, A.E.; Cabot, M.C. Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol. Cancer Ther., 2004, 3(5), 633-639.
[PMID: 15141021]
[13]
Faneyte, I.F.; Kristel, P.M.; van de Vijver, M.J. Determining MDR1/P-glycoprotein expression in breast cancer. Int. J. Cancer, 2001, 93(1), 114-122.
[http://dx.doi.org/10.1002/1097-0215(20010701)93:1<114:AID-IJC1309>3.0.CO;2-J] [PMID: 11391630]
[14]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[15]
Gong, J.; Jaiswal, R.; Mathys, J.M.; Combes, V.; Grau, G.E.R.; Bebawy, M. Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat. Rev., 2012, 38(3), 226-234.
[http://dx.doi.org/10.1016/j.ctrv.2011.06.005] [PMID: 21757296]
[16]
Gottesman, M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med., 2002, 53, 615-627.
[http://dx.doi.org/10.1146/annurev.med.53.082901.103929] [PMID: 11818492]
[17]
Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836), 494-498.
[http://dx.doi.org/10.1038/35078107] [PMID: 11373684]
[18]
Schimmel, K.J.M.; Richel, D.J.; van den Brink, R.B.A.; Guchelaar, H.J. Cardiotoxicity of cytotoxic drugs. Cancer Treat. Rev., 2004, 30(2), 181-191.
[http://dx.doi.org/10.1016/j.ctrv.2003.07.003] [PMID: 15023436]
[19]
Pazdur, R.; Kudelka, A.P.; Kavanagh, J.J.; Cohen, P.R.; Raber, M.N. The taxoids: paclitaxel (Taxol) and docetaxel (Taxotere). Cancer Treat. Rev., 1993, 19(4), 351-386.
[http://dx.doi.org/10.1016/0305-7372(93)90010-O] [PMID: 8106152]
[20]
Molinari, A.; Calcabrini, A.; Meschini, S.; Stringaro, A.; Crateri, P.; Toccacieli, L.; Marra, M.; Colone, M.; Cianfriglia, M.; Arancia, G. Subcellular detection and localization of the drug transporter P-glycoprotein in cultured tumor cells. Curr. Protein Pept. Sci., 2002, 3(6), 653-670.
[http://dx.doi.org/10.2174/1389203023380413] [PMID: 12470219]
[21]
de Verdière, A.C.; Dubernet, C.; Némati, F.; Soma, E.; Appel, M.; Ferté, J.; Bernard, S.; Puisieux, F.; Couvreur, P. Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br. J. Cancer, 1997, 76(2), 198-205.
[http://dx.doi.org/10.1038/bjc.1997.362] [PMID: 9231919]
[22]
Barone, A.; Mendes, M.; Cabral, C.; Mare, R.; Paolino, D.; Vitorino, C. Hybrid Nanostructured Films for Topical Administration of Simvastatin as Coadjuvant Treatment of Melanoma. J. Pharm. Sci., 2019, 108(10), 3396-3407.
[http://dx.doi.org/10.1016/j.xphs.2019.06.002] [PMID: 31201905]
[23]
Raeisib, S.; Chavoshia, H.; Mohammadic, M.; Ghorbani, M.; Sabzichi, M.; Ramezani, F. Naringenin-loaded nano-structured lipid carrier fortifies oxaliplatin dependent apoptosis in HT-29 cell line. Process Biochem., 2019, 83, 168-175.
[http://dx.doi.org/10.1016/j.procbio.2019.05.013]
[24]
Iqbal, B.; Ali, J.; Baboota, S. Silymarin loaded nanostructured lipid carrier: From design and dermatokinetic study to mechanistic analysis of epidermal drug deposition enhancement. J. Mol. Liq., 2018, 255, 513-529.
[http://dx.doi.org/10.1016/j.molliq.2018.01.141]
[25]
Sun, M.; Gao, Y.; Zhu, Z.; Wang, H.; Han, C.; Yang, X.; Pan, W. A systematic in vitro investigation on poly-arginine modified nanostructured lipid carrier: Pharmaceutical characteristics, cellular uptake, mechanisms and cytotoxicity. Asian J. Pharm. Sci., 2017, 12(1), 51-58.
[http://dx.doi.org/10.1016/j.ajps.2016.07.007] [PMID: 32104313]
[26]
Kong, X.; Zhao, Y.; Quan, P.; Fang, L. Development of topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. Asian J Pharm Sci., 2016, 11(2), 248-254.
[http://dx.doi.org/10.1016/j.ajps.2015.07.005]
[27]
Gelfuso, G.M.; Cunha-Filho, M.S.S.; Gratieri, T. Nanostructured lipid carriers for targeting drug delivery to the epidermal layer. Ther. Deliv., 2016, 7(11), 735-737.
[http://dx.doi.org/10.4155/tde-2016-0059] [PMID: 27790946]
[28]
How, C.W.; Abdullah, R.; Abbasalipourkabir, R. Physicochemical properties of nanostructured lipid carriers as colloidal carrier system stabilized with polysorbate 20 and polysorbate 80. Afr. J. Biotechnol., 2011, 10(9), 1684-1689.
[29]
Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 2001, 41, 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[30]
Mohammadian, J.; Sabzichi, M.; Molavi, O.; Shanehbandi, D.; Samadi, N. Combined treatment with stattic and docetaxel alters the Bax/Bcl-2 gene expression ratio in human prostate cancer cells. Asian Pac. J. Cancer Prev., 2016, 17(11), 5031-5035.
[PMID: 28032735]
[31]
Rajinikanth, P.S.; Chellian, J. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil. Int. J. Nanomedicine, 2016, 11, 5067-5077.
[http://dx.doi.org/10.2147/IJN.S117511] [PMID: 27785014]
[32]
Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol., 2013, 19, 29-43.
[http://dx.doi.org/10.1016/j.ifset.2013.03.002]
[33]
Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[34]
Salvi, V.R.; Pawar, P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J. Drug Deliv. Sci. Technol., 2019, 51, 255-267.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[35]
Patel, D.K.; Trapathi, S.; Nair, S.K.; Kesharvani, R. Nano structured lipid carrier(NLC) a modern approach for topical delivery. WJPPS, 2013, 2, 921-938.
[36]
Ferreira, M.; Chaves, L.L.; Lima, S.A.C.; Reis, S. Optimization of nanostructured lipid carriers loaded with methotrexate: A tool for inflammatory and cancer therapy. Int. J. Pharm., 2015, 492(1-2), 65-72.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.013] [PMID: 26169145]
[37]
How, C.W.; Rasedee, A.; Manickam, S.; Rosli, R. Tamoxifen-loaded nanostructured lipid carrier as a drug delivery system: characterization, stability assessment and cytotoxicity. Colloids Surf. B Biointerfaces, 2013, 112(1), 393-399.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.009] [PMID: 24036474]
[38]
Song, S.H.; Lee, K.M.; Kang, J.B.; Lee, S.G.; Kang, M.J.; Choi, Y.W. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Pharm. Bull., 2014, 62(8), 793-798.
[http://dx.doi.org/10.1248/cpb.c14-00202] [PMID: 25087631]
[39]
Almousallam, M.; Moia, C.; Zhu, J. Development of nanostructured lipid carrier for dacarbazine delivery. Int. Nano Lett., 2015, 5, 241-248.
[http://dx.doi.org/10.1007/s40089-015-0161-8]
[40]
Liu, D.; Liu, Z.; Wang, L.; Zhang, C.; Zhang, N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B Biointerfaces, 2011, 85(2), 262-269.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.038] [PMID: 21435845]
[41]
Zhao, S.; Minh, L.V.; Li, N.; Garamus, V.M.; Handge, U.A.; Liu, J.; Zhang, R.; Willumeit-Römer, R.; Zou, A. Doxorubicin hydrochloride-oleic acid conjugate loaded nanostructured lipid carriers for tumor specific drug release. Colloids Surf. B Biointerfaces, 2016, 145, 95-103.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.027] [PMID: 27137808]
[42]
Khajavinia, A.; Varshosaz, J.; Dehkordi, A.J. Targeting etoposide to acute myelogenous leukaemia cells using nanostructured lipid carriers coated with transferrin. Nanotechnology, 2012, 23(40), 405101.
[http://dx.doi.org/10.1088/0957-4484/23/40/405101] [PMID: 22983592]
[43]
Nagaich, U.; Gulati, N. Nanostructured lipid carriers (NLC) based controlled release topical gel of clobetasol propionate: design and in vivo characterization. Drug Deliv. Transl. Res., 2016, 6(3), 289-298.
[http://dx.doi.org/10.1007/s13346-016-0291-1] [PMID: 27072979]
[44]
Poonia, N.; Kaur Narang, J.; Lather, V.; Beg, S.; Sharma, T.; Singh, B.; Pandita, D. Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: Systematic development, characterization and pharmacokinetic evaluation. Colloids Surf. B Biointerfaces, 2019, 181, 756-766.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.004] [PMID: 31234063]
[45]
Guo, S.; Zhang, Y.; Wu, Z.; Zhang, L.; He, D.; Li, X.; Wang, Z. Synergistic combination therapy of lung cancer: Cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin. Biomed. Pharmacother., 2019, 118, 109225.
[http://dx.doi.org/10.1016/j.biopha.2019.109225] [PMID: 31325705]
[46]
Borges, G.S.M.; Silva, J.O.; Fernandes, R.S.; de Souza, Â.M.; Cassali, G.D.; Yoshida, M.I.; Leite, E.A.; de Barros, A.L.B.; Ferreira, L.A.M. Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer. Life Sci., 2019, 232, 116678.
[http://dx.doi.org/10.1016/j.lfs.2019.116678] [PMID: 31344429]
[47]
Sun, M.; Nie, S.; Pan, X.; Zhang, R.; Fan, Z.; Wang, S. Quercetin-nanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surf. B Biointerfaces, 2014, 113, 15-24.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.032] [PMID: 24060926]
[48]
Pardeike, J.; Weber, S.; Haber, T.; Wagner, J.; Zarfl, H.P.; Plank, H.; Zimmer, A. Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int. J. Pharm., 2011, 419(1-2), 329-338.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.040] [PMID: 21839157]
[49]
Li, H.; Wang, K.; Yang, X.; Zhou, Y.; Ping, Q.; Oupicky, D.; Sun, M. Dual-function nanostructured lipid carriers to deliver IR780 for breast cancer treatment: Anti-metastatic and photothermal anti-tumor therapy. Acta Biomater., 2017, 53(53), 399-413.
[http://dx.doi.org/10.1016/j.actbio.2017.01.070] [PMID: 28159715]
[50]
Gaba, B.; Fazil, M.; Khan, S.; Ali, A.; Baboota, S.; Ali, J. Nanostructured lipid carrier system for topical delivery of terbenfine hydrochloride.Bull. Fac Pharm Cario Univ., 2015, 53(2), 147-159.
[51]
Pathak, A.A.; Chaudhari, P.D. Development and evaluation of Nanostructured Lipid Carrier (NLC) based topical delivery of anti- inflammatory drug. J. Pharm. Res., 2013, 7(8), 677-685.
[http://dx.doi.org/10.1016/j.jopr.2013.08.020]
[52]
Haron, A.S.; Syed Alwi, S.S.; Saiful Yazan, L.; Abd Razak, R.; Ong, Y.S.; Zakarial Ansar, F.H.; Roshini Alexander, H. Cytotoxic effect of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) on liver cancer cell integrated with hepatitis B genome, Hep3B. Evid. Based Complement. Alternat. Med., 2018, 2018(Aug), 1549805.
[http://dx.doi.org/10.1155/2018/1549805] [PMID: 30186351]
[53]
Shah, N.V.; Seth, A.K.; Balaraman, R.; Aundhia, C.J.; Maheshwari, R.A.; Parmar, G.R. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study. J. Adv. Res., 2016, 7(3), 423-434.
[http://dx.doi.org/10.1016/j.jare.2016.03.002] [PMID: 27222747]
[54]
Negi, L.M.; Talegaonkar, S.; Jaggi, M.; Verma, A.K.; Verma, R.; Dobhal, S.; Kumar, V. Surface engineered nanostructured lipid carriers for targeting MDR tumor: Part I. Synthesis, characterization and in vitro investigation. Colloids Surf. B Biointerfaces, 2014, 123, 600-609.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.062] [PMID: 25454761]
[55]
Chen, P.; Zhang, H.; Cheng, S.; Zhai, G.; Shen, C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf. A Physicochem. Eng. Asp., 2016, 506, 356-362.
[http://dx.doi.org/10.1016/j.colsurfa.2016.06.054]
[56]
Zhang, P.; Ling, G.; Pan, X.; Sun, J.; Zhang, T.; Pu, X.; Yin, S.; He, Z. Novel nanostructured lipid-dextran sulfate hybrid carriers overcome tumor multidrug resistance of mitoxantrone hydrochloride. Nanomedicine, 2012, 8(2), 185-193.
[http://dx.doi.org/10.1016/j.nano.2011.06.007] [PMID: 21704599]
[57]
Upreti, T.; Senthil, V. Nanostructured lipid carrier system for treatment of skin disease: A review. JSM Nanotechnol. Nanomed., 2017, 5(3), 1059-1064.
[58]
Uner, M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie, 2006, 61(5), 375-386.
[PMID: 16724531]
[59]
Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[60]
Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol., 2013, 7(1), 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[61]
Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: recent advances in drug delivery. J. Drug Target., 2012, 20(10), 813-830.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[62]
El-Helw, A.R.; Fahmy, U.A. Improvement of fluvastatin bioavailability by loading on nanostructured lipid carriers. Int. J. Nanomedicine, 2015, 10(1), 5797-5804.
[http://dx.doi.org/10.2147/IJN.S91556] [PMID: 26396513]
[63]
Charcosset, C.; El-Harati, A.; Fessi, H. Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. Release, 2005, 108(1), 112-120.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.023] [PMID: 16169111]
[64]
Yang, L.; Fessi, H.; Cathrine, C. Preparation of indomethacin-loaded lipid particles by membrane emulsification. Adv. Sci. Lett., 2011, 4(2), 591-595.
[http://dx.doi.org/10.1166/asl.2011.1245]
[65]
Bhagurkar, A.M.; Repka, M.A.; Murthy, S.N. A novel approach for the development of a Nanostructured Lipid Carrier formulation by hot-melt extrusion technology. J. Pharm. Sci., 2017, 106(4), 1085-1091.
[http://dx.doi.org/10.1016/j.xphs.2016.12.015] [PMID: 28040458]
[66]
Wu, M.; Fan, Y.; Lv, S.; Xiao, B.; Ye, M.; Zhu, X. Vincristine and temozolomide combined chemotherapy for the treatment of glioma: a comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery. Drug Deliv., 2016, 23(8), 2720-2725.
[http://dx.doi.org/10.3109/10717544.2015.1058434] [PMID: 26203691]
[67]
Li, J.; Liu, D.; Tan, G.; Zhao, Z.; Yang, X.; Pan, W. A comparative study on the efficiency of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan surface modified nanostructured lipid carrier for ophthalmic delivery of curcumin. Carbohydr. Polym., 2016, 146, 435-444.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.079] [PMID: 27112894]
[68]
Jores, K.; Mehnert, W.; Drechsler, M.; Bunjes, H.; Johann, C.; Mäder, K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Control. Release, 2004, 95(2), 217-227.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.012] [PMID: 14980770]
[69]
Moghimi, S.M.; Hunter, A.C.; Andresen, T.L. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 481-503.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134623] [PMID: 22035254]
[70]
Uner, M. Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers.Handbook of Nanoparticles; Aliofkhazraei, M., Ed.; Springer International Publishing, 2016, pp. 117-141.
[http://dx.doi.org/10.1007/978-3-319-15338-4_3]
[71]
Lu, Z.; Hu, X.; Lu, Y. Particle morphology analysis of biomass material based on improved image processing method. Int. J. Anal. Chem., 2017, 2017(Feb), 5840690.
[http://dx.doi.org/10.1155/2017/5840690] [PMID: 28298925]
[72]
Singh, R.K.; Knowles, J.C.; Kim, H.W. Advances in nanoparticle development for improved therapeutics delivery: nanoscale topographical aspect. J. Tissue Eng., 2019, 10, 2041731419877528.
[http://dx.doi.org/10.1177/2041731419877528] [PMID: 31555432]
[73]
Teeranachaideekul, V.; Souto, E.B.; Junyaprasert, V.B.; Müller, R.H. Cetyl palmitate-based NLC for topical delivery of Coenzyme Q(10) - development, physicochemical characterization and in vitro release studies. Eur. J. Pharm. Biopharm., 2007, 67(1), 141-148.
[http://dx.doi.org/10.1016/j.ejpb.2007.01.015] [PMID: 17346953]
[74]
Hu, F.Q.; Jiang, S.P.; Du, Y.Z.; Yuan, H.; Ye, Y.Q.; Zeng, S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf. B Biointerfaces, 2005, 45(3-4), 167-173.
[http://dx.doi.org/10.1016/j.colsurfb.2005.08.005] [PMID: 16198092]
[75]
Carbone, C.; Campisi, A.; Musumeci, T.; Raciti, G.; Bonfanti, R.; Puglisi, G. FA-loaded lipid drug delivery systems: preparation, characterization and biological studies. Eur. J. Pharm. Sci., 2014, 52, 12-20.
[http://dx.doi.org/10.1016/j.ejps.2013.10.003] [PMID: 24514450]
[76]
Beloqui, A.; Solinís, M.A.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine, 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[77]
de Oliveira, I.F.; Barbosa, E.J.; Peters, M.C.C.; Henostroza, M.A.B.; Yukuyama, M.N.; Dos Santos Neto, E.; Löbenberg, R.; Bou-Chacra, N. Cutting-edge advances in therapy for the posterior segment of the eye: Solid lipid nanoparticles and nanostructured lipid carriers. Int. J. Pharm., 2020, 589, 119831.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119831] [PMID: 32877729]
[78]
Fang, G.; Tang, B.; Chao, Y.; Xu, H.; Gou, J.; Zhang, Y.; Xu, H.; Tang, X. Cysteine functionalized nanostructured lipid carriers for oral delivery of docetaxel: a permeability and pharmacokinetic study. Mol. Pharm., 2015, 12(7), 2384-2395.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00081] [PMID: 25974386]
[79]
Elmowafy, M.; Shalaby, K.; Badran, M.M.; Ali, H.M.; Abdel-Bakky, M.S.; Ibrahim, H.M. Multifunctional carbamazepine loaded nanostructured lipid carrier (NLC) formulation. Int. J. Pharm., 2018, 550(1-2), 359-371.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.062] [PMID: 30179701]
[80]
Mahmoudi, S.; Ghorbani, M.; Sabzichi, M. Targeted hyaluronic acid-based lipid nanoparticle for apigenin delivery to induce Nrf2-dependent apoptosis in lung cancer cells. J. Drug Deliv. Sci. Technol., 2019, 49, 268-276.
[http://dx.doi.org/10.1016/j.jddst.2018.11.013]
[81]
Taymouria, S.; Alema, M.; Varshosaza, J.; Rostami, M.; Akbari, V.; Firoozpour, L. Biotin decorated sunitinib loaded nanostructured lipid carriers for tumor targeted chemotherapy of lung cancer. J. Drug Deliv. Sci. Technol., 2019, 50, 237-247.
[http://dx.doi.org/10.1016/j.jddst.2019.01.024]
[82]
Hajipoura, H.; Ghorbanib, M.; Kahrobac, H. Arginyl-glycyl-aspartic acid (RGD) containing nanostructured lipid carrier co-loaded with doxorubicin and sildenafil citrate enhanced anti-cancer effects and overcomes drug resistance. Process Biochem., 2019, 84, 172-189.
[http://dx.doi.org/10.1016/j.procbio.2019.06.013]
[83]
Ng, W.K.; Saiful Yazan, L.; Yap, L.H.; Wan Nor Hafiza, W.A.; How, C.W.; Abdullah, R. Thymoquinone-loaded nanostructured lipid carrier exhibited cytotoxicity towards breast cancer cell lines (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). BioMed Res. Int., 2015, 2015(Jan), 263131.
[http://dx.doi.org/10.1155/2015/263131] [PMID: 25632388]
[84]
Sabzichi, M.; Samadi, N.; Mohammadian, J.; Hamishehkar, H.; Akbarzadeh, M.; Molavi, O. Sustained release of melatonin: A novel approach in elevating efficacy of tamoxifen in breast cancer treatment. Colloids Surf. B Biointerfaces, 2016, 145, 64-71.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.042] [PMID: 27137804]
[85]
Üner, M.; Yener, G.; Ergüven, M. Design of colloidal drug carriers of celecoxib for use in treatment of breast cancer and leukemia. Mater. Sci. Eng. C, 2019, 103, 109874.
[http://dx.doi.org/10.1016/j.msec.2019.109874] [PMID: 31349508]
[86]
Mahant, S.; Kumar, S.; Nanda, S.; Rao, R. Microsponges for dermatological applications: Perspectives and challenges. Asian J Pharm Sci., 2020, 15(3), 273-291.
[http://dx.doi.org/10.1016/j.ajps.2019.05.004] [PMID: 32636947]
[87]
Bouwstra, J.A.; Dubbelaar, F.E.; Gooris, G.S.; Ponec, M. The lipid organisation in the skin barrier. Acta Derm. Venereol. Suppl. (Stockh.), 2000, 208, 23-30.
[PMID: 10884936]
[88]
Kong, M.; Chen, X.G.; Kwon, D.K.; Park, H.J. Investigations on skin permeation of hyaluronic acid based nanoemulsions as transdermal carrier. Carbohydr. Polym., 2011, 86(2), 837-843.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.027]
[89]
Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological trends in skin cancer. Dermatol. Pract. Concept., 2017, 7(2), 1-6.
[http://dx.doi.org/10.5826/dpc.0702a01] [PMID: 28515985]
[90]
Vyas, A.; Das, S.K.; Singh, D. Recent nano particle approaches for drug delivery to skin cancer. Trends Appl. Sci. Res., 2012, 7(8), 620-635.
[http://dx.doi.org/10.3923/tasr.2012.620.635]
[91]
Tsuji, T.; Hamada, T. Topically administered fluorouracil in vitiligo. Arch. Dermatol., 1983, 119(9), 722-727.
[http://dx.doi.org/10.1001/archderm.1983.01650330014006] [PMID: 6614958]
[92]
ElMeshad, A.N.; Tadros, M.I. Transdermal delivery of an anti-cancer drug via w/o emulsions based on alkyl polyglycosides and lecithin: design, characterization, and in vivo evaluation of the possible irritation potential in rats. AAPS PharmSciTech, 2011, 12(1), 1-9.
[http://dx.doi.org/10.1208/s12249-010-9557-y] [PMID: 21152999]
[93]
Katiyar, S.K. Silymarin and skin cancer prevention: anti-inflammatory, antioxidant and immunomodulatory effects (Review). Int. J. Oncol., 2005, 26(1), 169-176.
[http://dx.doi.org/10.3892/ijo.26.1.169] [PMID: 15586237]
[94]
Binder, S. Evolution of taxanes in the treatment of metastatic breast cancer. Clin. J. Oncol. Nurs., 2013, 17(Suppl.), 9-14.
[http://dx.doi.org/10.1188/13.CJON.S1.9-14] [PMID: 23360698]
[95]
Chen, L.; Chen, B.; Deng, L.; Gao, B.; Zhang, Y.; Wu, C.; Yu, N.; Zhou, Q.; Yao, J.; Chen, J. An optimized two-vial formulation lipid nanoemulsion of paclitaxel for targeted delivery to tumor. Int. J. Pharm., 2017, 534(1-2), 308-315.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.005] [PMID: 28986321]
[96]
Lee, S.C.; Huh, K.M.; Lee, J.; Cho, Y.W.; Galinsky, R.E.; Park, K. Hydrotropic polymeric micelles for enhanced paclitaxel solubility: In vitro and in vivo characterization. Biomacromolecules, 2007, 8(1), 202-208.
[http://dx.doi.org/10.1021/bm060307b] [PMID: 17206808]
[97]
Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A.; Cremophor, E.L. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer, 2001, 37(13), 1590-1598.
[http://dx.doi.org/10.1016/S0959-8049(01)00171-X] [PMID: 11527683]
[98]
Picard, M.; Castells, M.C. Re-visiting hypersensitivity reactions to taxanes: a comprehensive review. Clin. Rev. Allergy Immunol., 2015, 49(2), 177-191.
[http://dx.doi.org/10.1007/s12016-014-8416-0] [PMID: 24740483]
[99]
Pedro, I.D.R.; Almeida, O.P.; Martins, H.R. Optimization and in vitro/in vivo performance of paclitaxel-loaded nanostructured lipid carriers for breast cancer treatment. J. Drug Deliv. Sci. Technol., 2019, 54, 101370.
[http://dx.doi.org/10.1016/j.jddst.2019.101370]
[100]
Saloustros, E.; Georgoulias, V. Docetaxel in the treatment of advanced non-small-cell lung cancer. Expert Rev. Anticancer Ther., 2008, 8(8), 1207-1222.
[http://dx.doi.org/10.1586/14737140.8.8.1207] [PMID: 18699760]
[101]
Saloustros, E.; Mavroudis, D.; Georgoulias, V. Paclitaxel and docetaxel in the treatment of breast cancer. Expert Opin. Pharmacother., 2008, 9(15), 2603-2616.
[http://dx.doi.org/10.1517/14656566.9.15.2603] [PMID: 18803448]
[102]
Haass, N.K.; Sproesser, K.; Nguyen, T.K.; Contractor, R.; Medina, C.A.; Nathanson, K.L.; Herlyn, M.; Smalley, K.S. The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin. Cancer Res., 2008, 14(1), 230-239.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1440] [PMID: 18172275]
[103]
Varshosaz, J.; Hassanzadeh, F.; Sadeghi, H.; Andalib, S. Synthesis of octadecylamine-retinoic acid conjugate for enhanced cytotoxic effects of 5-FU using LDL targeted nanostructured lipid carriers. Eur. J. Med. Chem., 2012, 54, 429-438.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.024] [PMID: 22687440]
[104]
Hu, C.M.J.; Zhang, L. Therapeutic nanoparticles to combat cancer drug resistance. Curr. Drug Metab., 2009, 10(8), 836-841.
[http://dx.doi.org/10.2174/138920009790274540] [PMID: 20214578]
[105]
Algso, M.A.; Kivrak, A.; Konus, M.; Yilmaz, C. Kurt-Kızıldoğan, A. Synthesis and biological evaluation of novel benzothiophene derivatives. J. Chem. Sci., 2018, 130(9), 1-1.
[http://dx.doi.org/10.1007/s12039-018-1523-3]
[106]
Kurt-Kızıldoğan, A; Akarsu, N; Otur, Ç; Kivrak, A; Aslan-Ertas, N; Arslan, S; Mutlu, D; Konus, M; Yılmaz, C; Cetin, D; Topal, T. A Novel 4H-chromen-4-one derivative from marine streptomyces ovatisporus S4702T as potential antibacterial and anti-cancer agent. Anti-cancer Agents ME, 2021.
[107]
Kivrak, A. Ulaş, B.; Kivrak, H. A comparative analysis for anti-viral drugs: Their efficiency against SARS-CoV-2. Int. Immunopharmacol., 2021, 90, 107232.
[http://dx.doi.org/10.1016/j.intimp.2020.107232] [PMID: 33290969]
[108]
Yang, X.; Yi, C.; Luo, N.; Gong, C. Nanomedicine to overcome cancer multidrug resistance. Curr. Drug Metab., 2014, 15(6), 632-649.
[http://dx.doi.org/10.2174/1389200215666140926154443] [PMID: 25255871]
[109]
Rizwanullah, M.; Ahmad, J.; Amin, S. Nanostructured lipid carrier a novel platform for chemotherapeutics. Curr. Drug Deliv., 2016, 13(1), 4-26.
[http://dx.doi.org/10.2174/1567201812666150817124133] [PMID: 26279117]
[110]
Jenning, V.; Thünemann, A.F.; Gohla, S.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm., 2000, 199(2), 167-177.
[http://dx.doi.org/10.1016/S0378-5173(00)00378-1] [PMID: 10802410]
[111]
Karmakar, G; Nahak, P; Roy, B Use of ion pair amphiphile as an alternative of natural phospholipids in enhancing the stability and anticancer activity of oleanolic acid loaded nanostructured lipid carriers. Colloids Surfaces A Physicochem, 2018, 545, 147-156.
[http://dx.doi.org/10.1016/j.colsurfa.2018.02.039]
[112]
Obeidat, W.M.; Schwabe, K.; Müller, R.H.; Keck, C.M. Preservation of nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm., 2010, 76(1), 56-67.
[http://dx.doi.org/10.1016/j.ejpb.2010.05.001] [PMID: 20452422]
[113]
Varshosaz, J.; Eskandari, S.; Tabbakhian, M. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr. Polym., 2012, 88(4), 1157-1163.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.051]
[114]
Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[115]
Wang, H.; Liu, S.; Jia, L.; Chu, F.; Zhou, Y.; He, Z.; Guo, M.; Chen, C.; Xu, L. Nanostructured lipid carriers for MicroRNA delivery in tumor gene therapy. Cancer Cell Int., 2018, 18, 101.
[http://dx.doi.org/10.1186/s12935-018-0596-x] [PMID: 30008618]
[116]
Han, Y.; Li, Y.; Zhang, P.; Sun, J.; Li, X.; Sun, X.; Kong, F. Nanostructured lipid carriers as novel drug delivery system for lung cancer gene therapy. Pharm. Dev. Technol., 2016, 21(3), 277-281.
[http://dx.doi.org/10.3109/10837450.2014.996900] [PMID: 25560648]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy