Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Review Article

Recent PARP Inhibitor Advancements in Cancer Therapy: A Review

Author(s): Pulla Prudvi Raj, Kaviarasan Lakshmanan, Gowramma Byran*, Kalirajan Rajagopal, Praveen Thaggikuppe Krishnamurthy and Divya Jyothi Palati

Volume 18, Issue 2, 2022

Published on: 21 July, 2022

Page: [92 - 104] Pages: 13

DOI: 10.2174/1573408018666220321115033

Price: $65

Abstract

Poly [ADP-ribose] polymerase-1 [PARP-1] is a chromatin-bound nuclear enzyme that gets activated by DNA damage. It facilitates DNA repair by binding to DNA breaks and attracting DNA repair proteins to the site of damage. Increased PARP-1 expression is observed in melanomas, breast cancer, lung cancer, and other neoplastic diseases. PARP-1 interacts directly and indirectly with various oncogenic proteins and regulates several transcription factors, thereby modulating carcinogenesis. There is a lot of pre-clinical and clinical data supporting the use of PARP-1 inhibitors [PARP-1i] in cancers that express homologous recombination deficiencies like mutations within the BRCA-1/2 genes. Therapeutic inhibition of PARP-1 is therefore perceived as a promising anticancer strategy, and numerous PARP-1i are currently under development and clinical evaluation. Currently, there are 4 FDA-approved PARP-1i products on the market, and a few more are in the last stage of clinical development. All the molecules are non-selective PARP-1i. While giving promising results, PARP-1i have their own disadvantages, like safety problems, resistance, etc. Looking at the success rate of PARP-1i in various solid tumours, there is a need for novel and selective PARP-1i. In this review, we discuss various aspects related to PARP-1i, like recent developments, overcoming resistance, and selectivity criteria of new molecules for potential PARP-1i.

Keywords: Cancer, PARP-1 [Poly [ADP-ribose] polymerase-1], inhibition, olaprib, apoptosis, repair pathway.

Graphical Abstract
[1]
Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Practice 2017; 4(4): 127-9.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[2]
Sangani CB, Makawana JA, Zhang X, Teraiya SB, Lin L, Zhu H-L. Design, synthesis and molecular modeling of pyrazole-quinoline-pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur J Med Chem 2014; 76(76): 549-57.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018] [PMID: 24607998]
[3]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Lakshmanan K, Byran G, Mohammed M. A brief review on dual target of parp1 and stat3 for cancer therapy: A novel perception. Curr Enzym Inhib 2020; 16(162): 115-34.
[http://dx.doi.org/10.2174/1573408016666200316114209]
[5]
Sharova NP. How does a cell repair damaged DNA? Biochemistry (Mosc) 2005; 70(3): 275-91.
[http://dx.doi.org/10.1007/s10541-005-0113-4] [PMID: 15823082]
[6]
Kummar S, Chen A, Parchment RE, et al. Advances in using PARP inhibitors to treat cancer. BMC Med 2012; 10(1): 25.
[http://dx.doi.org/10.1186/1741-7015-10-25] [PMID: 22401667]
[7]
Ogino H, Nakayama R, Sakamoto H, Yoshida T, Sugimura T, Masutani M. Analysis of poly [ADP-ribose] polymerase-1 [PARP1] gene alteration in human germ cell tumor cell lines. Cancer Genet Cytogenet 2010; 1971: 8-15.
[8]
Kraus WL. Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 2008; 20(3): 294-302.
[http://dx.doi.org/10.1016/j.ceb.2008.03.006] [PMID: 18450439]
[9]
Sousa FG, Matuo R, Soares DG, et al. PARPs and the DNA damage response. Carcinogenesis 2012; 33(8): 1433-40.
[http://dx.doi.org/10.1093/carcin/bgs132] [PMID: 22431722]
[10]
Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 2012; 13(7): 411-24.
[http://dx.doi.org/10.1038/nrm3376] [PMID: 22713970]
[11]
Otto H, Reche PA, Bazan F, Dittmar K, Haag F, Koch-Nolte F. In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics 2005; 6(61): 139.
[http://dx.doi.org/10.1186/1471-2164-6-139] [PMID: 16202152]
[12]
Kleine H, Poreba E, Lesniewicz K, et al. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol Cell 2008; 32(1): 57-69.
[http://dx.doi.org/10.1016/j.molcel.2008.08.009] [PMID: 18851833]
[13]
Aguiar RC, Takeyama K, He C, Kreinbrink K, Shipp MA. B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity. J Biol Chem 2005; 280(40): 33756-65.
[http://dx.doi.org/10.1074/jbc.M505408200] [PMID: 16061477]
[14]
Žaja R, Mikoč A, Barkauskaite E, Ahel I. Molecular insights into poly [ADP-ribose] recognition and processing. Biomolecules 2012; 3(1): 1-17.
[http://dx.doi.org/10.3390/biom3010001] [PMID: 24970154]
[15]
Dantzer F, Nasheuer HP, Vonesch JL, de Murcia G, Ménissier-de Murcia J. Functional association of poly(ADP-ribose) polymerase with DNA polymerase α-primase complex: a link between DNA strand break detection and DNA replication. Nucleic Acids Res 1998; 26(8): 1891-8.
[http://dx.doi.org/10.1093/nar/26.8.1891] [PMID: 9518481]
[16]
Oei SL, Herzog H, Hirsch-Kauffmann M, Schneider R, Auer B, Schweiger M. Transcriptional regulation and autoregulation of the human gene for ADP-ribosyltransferase. Mol Cell Biochem 1994; 138(1-2): 99-104.
[http://dx.doi.org/10.1007/BF00928449] [PMID: 7898482]
[17]
Wacker DA. DD, Balagamwala EH, et al. The DNA binding and catalytic domains of poly [ADP-ribose] polymerase 1 cooperate in the regulation of chromatin structure and transcription. Mol Cell Biol 2007; (2721): 7475-85.
[18]
Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 2008; 13(1313): 3046-82.
[http://dx.doi.org/10.2741/2909] [PMID: 17981777]
[19]
Hartman AR, Kaldate RR, Sailer LM, et al. Prevalence of BRCA mutations in an unselected population of triple-negative breast cancer. Cancer 2012; 118(11): 2787-95.
[http://dx.doi.org/10.1002/cncr.26576] [PMID: 22614657]
[20]
Luo J, Jin J, Yang F, et al. The correlation between PARP1 and BRCA-1 in AR positive triple-negative breast cancer. Int J Biol Sci 2016; 12(12): 1500-10.
[http://dx.doi.org/10.7150/ijbs.16176] [PMID: 27994514]
[21]
Telli ML, Ford JM. PARP inhibitors in breast cancer. Clin Adv Hematol Oncol 2010; 8(9): 629-35.
[PMID: 21157412]
[22]
Malyuchenko N, Kotova EY, Kulaeva O, Kirpichnikov M, Studitskiy V. PARP1 Inhibitors: antitumor drug design. Acta Naturae 2015; 37.
[PMID: 26483957]
[23]
Sakamoto-Hojo ET, Balajee AS. Targeting poly [ADP] ribose polymerase I [PARP-1] and PARP-1 interacting proteins for cancer treatment. Anti-Cancer Agents in Med Chem 2008; 84: 16-402.
[24]
Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411(6835): 74-366.
[PMID: 11357144]
[25]
van Gent DC, Hoeijmakers JH, Kanaar R. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2001; 2(3): 196-206.
[http://dx.doi.org/10.1038/35056049] [PMID: 11256071]
[26]
Gonzalez VM, Fuertes MA, Alonso C, Perez JM. Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 2001; 59(4): 657-63.
[http://dx.doi.org/10.1124/mol.59.4.657] [PMID: 11259608]
[27]
Li M, Yu X. The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy. Oncogene 2015; 34(26): 3349-56.
[http://dx.doi.org/10.1038/onc.2014.295] [PMID: 25220415]
[28]
Morales J, Li L, Fattah FJ, et al. Review of poly [ADP-ribose] polymerase [PARP] mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 2014; 241(1): 15-28.
[PMID: 24579667]
[29]
Plummer R. Poly(ADP-ribose) polymerase inhibition: a new direction for BRCA and triple-negative breast cancer? Breast Cancer Res 2011; 13(4): 218.
[http://dx.doi.org/10.1186/bcr2877]
[30]
Sodhi RK, Singh N, Jaggi AS. Poly [ADP-ribose] polymerase-1 [PARP-1] and its therapeutic implications. Vascul Pharmacol 2010; 53(3-4): 77-87.
[PMID: 20633699]
[31]
Agarwal A, Mahfouz RZ, Sharma RK, Sarkar O, Mangrola D, Mathur PP. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod Biol Endocrinol 2009; 7(71): 143.
[http://dx.doi.org/10.1186/1477-7827-7-143] [PMID: 19961617]
[32]
Ko HL, Ren EC. Functional aspects of PARP1 in DNA repair and transcription. Biomolecules 2012; 2(4): 524-48.
[http://dx.doi.org/10.3390/biom2040524] [PMID: 24970148]
[33]
Bürkle A. Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J 2005; 272(18): 4576-89.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04864.x] [PMID: 16156780]
[34]
Ferraris DV. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem 2010; 53(12): 4561-84.
[http://dx.doi.org/10.1021/jm100012m] [PMID: 20364863]
[35]
Boulares AH, Yakovlev AG, Ivanova V, et al. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 1999; 274(33): 22932-40.
[http://dx.doi.org/10.1074/jbc.274.33.22932] [PMID: 10438458]
[36]
Zhen Y, Yu Y. Proteomic analysis of the downstream signaling network of PARP1. Biochemistry 2018; 57(4): 429-40.
[http://dx.doi.org/10.1021/acs.biochem.7b01022] [PMID: 29327913]
[37]
Curtin NJ. PARP inhibitors for cancer therapy. Expert Rev Mol Med 2005; 7(4): 1-20.
[http://dx.doi.org/10.1017/S146239940500904X] [PMID: 15836799]
[38]
Ratnam K, Low JA. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 2007; 13(5): 1383-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2260] [PMID: 17332279]
[39]
Schiewer MJ, Goodwin JF, Han S, et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov 2012; 2(12): 1134-49.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0120] [PMID: 22993403]
[40]
Nosho K, Yamamoto H, Mikami M, et al. Overexpression of poly(ADP-ribose) polymerase-1 (PARP-1) in the early stage of colorectal carcinogenesis. Eur J Cancer 2006; 42(14): 2374-81.
[http://dx.doi.org/10.1016/j.ejca.2006.01.061] [PMID: 16809031]
[41]
Barton VN, Donson AM, Kleinschmidt-DeMasters BK, Gore L, Liu AK, Foreman NK. PARP1 expression in pediatric central nervous system tumors. Pediatr Blood Cancer 2009; 53(7): 1227-30.
[http://dx.doi.org/10.1002/pbc.22141] [PMID: 19533660]
[42]
Mego M, Cierna Z, Svetlovska D, et al. PARP expression in germ cell tumours. J Clin Pathol 2013; 66(7): 607-12.
[http://dx.doi.org/10.1136/jclinpath-2012-201088] [PMID: 23486608]
[43]
Wang L, Liang C, Li F, et al. PARP1 in carcinomas and PARP1 inhibitors as antineoplastic drugs. Int J Mol Sci 2017; 18(10): 2111.
[http://dx.doi.org/10.3390/ijms18102111] [PMID: 28991194]
[44]
Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434(7035): 913-7.
[http://dx.doi.org/10.1038/nature03443] [PMID: 15829966]
[45]
Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917-21.
[http://dx.doi.org/10.1038/nature03445] [PMID: 15829967]
[46]
Ye N, Chen C-H, Chen T, et al. Design, synthesis, and biological evaluation of a series of benzo [de][1, 7] naphthyridin-7 [8 H]-ones bearing a functionalized longer chain appendage as novel PARP1 inhibitors. J Med Chem 2013; 567: 903-2885.
[47]
Khodyreva S, Prasad R, Ilina E, et al. Apurinic/apyrimidinic [AP] site recognition by the 5′-dRP/AP lyase in poly [ADP-ribose] polymerase-1 [PARP-1]. Proc Natl Acad Sci USA 107(51): 22090-5.
[http://dx.doi.org/10.1073/pnas.1009182107] [PMID: 21127267]
[48]
Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 2008; 18(1): 27-47.
[http://dx.doi.org/10.1038/cr.2008.8] [PMID: 18166975]
[49]
Pleschke JM, Kleczkowska HE, Strohm M, Althaus FR. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 2000; 275(52): 40974-80.
[http://dx.doi.org/10.1074/jbc.M006520200] [PMID: 11016934]
[50]
Gagné J-P, Isabelle M, Lo KS, et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res 2008; 36(22): 6959-76.
[http://dx.doi.org/10.1093/nar/gkn771] [PMID: 18981049]
[51]
Fu D, Calvo JA, Samson LD. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 2012; 12(2): 104-20.
[http://dx.doi.org/10.1038/nrc3185] [PMID: 22237395]
[52]
Dantzer F, de La Rubia G, Ménissier-De Murcia J, Hostomsky Z, de Murcia G, Schreiber V. Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry 2000; 39(25): 7559-69.
[http://dx.doi.org/10.1021/bi0003442] [PMID: 10858306]
[53]
Bryant HE, Petermann E, Schultz N, et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 2009; 28(17): 2601-15.
[http://dx.doi.org/10.1038/emboj.2009.206] [PMID: 19629035]
[54]
Haince J-F, Kozlov S, Dawson VL, et al. Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J Biol Chem 2007; 282(22): 16441-53.
[http://dx.doi.org/10.1074/jbc.M608406200] [PMID: 17428792]
[55]
Fouquerel E, Sobol RW. ARTD1 (PARP1) activation and NAD(+) in DNA repair and cell death. DNA Repair (Amst) 2014; 23(23): 27-32.
[http://dx.doi.org/10.1016/j.dnarep.2014.09.004] [PMID: 25283336]
[56]
Durkacz BW, Omidiji O, Gray DA, Shall S. (ADP-ribose)n participates in DNA excision repair. Nature 1980; 283(5747): 593-6.
[http://dx.doi.org/10.1038/283593a0] [PMID: 6243744]
[57]
Kawamitsu H, Miwa M, Tanaka Y, et al. Inhibitors of poly(adenosine diphosphate ribose) polymerase potentiate the antitumor activity of bleomycin against ehrlich ascites carcinoma. J Pharmacobiodyn 1982; 5(11): 900-4.
[http://dx.doi.org/10.1248/bpb1978.5.900] [PMID: 6187912]
[58]
Calabrese CR, Almassy R, Barton S, et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 2004; 96(1): 56-67.
[http://dx.doi.org/10.1093/jnci/djh005] [PMID: 14709739]
[59]
Gallmeier E, Kern SE. Absence of specific cell killing of the BRCA2-deficient human cancer cell line CAPAN1 by poly(ADP-ribose) polymerase inhibition. Cancer Biol Ther 2005; 4(7): 703-6.
[http://dx.doi.org/10.4161/cbt.4.7.1909] [PMID: 16082177]
[60]
Miwa M, Masutani M. PolyADP-ribosylation and cancer. Cancer Sci 2007; 98(10): 1528-35.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00567.x] [PMID: 17645773]
[61]
Leung M, Rosen D, Fields S, Cesano A, Budman DR. Poly(ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality. Mol Med 2011; 17(7-8): 854-62.
[http://dx.doi.org/10.2119/molmed.2010.00240] [PMID: 21424107]
[62]
Gangloff AR, Brown J, de Jong R, et al. Discovery of novel benzo[b][1,4]oxazin-3(4H)-ones as poly(ADP-ribose)polymerase inhibitors. Bioorg Med Chem Lett 2013; 23(16): 4501-5.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.055] [PMID: 23850199]
[63]
Iglehart JD, Silver DP. Synthetic lethality-a new direction in cancer-drug development. N Engl J Med 2009; 361(2): 189-91.
[http://dx.doi.org/10.1056/NEJMe0903044] [PMID: 19553640]
[64]
Eskander RN, Tewari KS. PARP inhibition and synthetic lethality in ovarian cancer. Expert Rev Clin Pharmacol 2014; 7(5): 613-22.
[http://dx.doi.org/10.1586/17512433.2014.930662] [PMID: 24984781]
[65]
Ceccaldi R, Liu JC, Amunugama R, et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 2015; 518(7538): 258-62.
[http://dx.doi.org/10.1038/nature14184] [PMID: 25642963]
[66]
Montoni A, Robu M, Pouliot E, Shah GM. Resistance to PARP-inhibitors in cancer therapy. Front Pharmacol 2013; 4(4): 18.
[http://dx.doi.org/10.3389/fphar.2013.00018] [PMID: 23450678]
[67]
Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 2015; 518(7538): 254-7.
[http://dx.doi.org/10.1038/nature14157] [PMID: 25642960]
[68]
Scott CL, Swisher EM, Kaufmann SH. Poly (ADP-ribose) polymerase inhibitors: recent advances and future development. J Clin Oncol 2015; 33(12): 1397-406.
[http://dx.doi.org/10.1200/JCO.2014.58.8848] [PMID: 25779564]
[69]
Wang Y-Q, Wang P-Y, Wang Y-T, Yang G-F, Zhang A, Miao Z-H. An update on poly [ADP-ribose] polymerase-1 [PARP-1] inhibitors: opportunities and challenges in cancer therapy. J Med Chem 2016; 59(21): 9575-98.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00055] [PMID: 27416328]
[70]
Mansour WY, Rhein T, Dahm-Daphi J. The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 2010; 38(18): 6065-77.
[http://dx.doi.org/10.1093/nar/gkq387] [PMID: 20483915]
[71]
iaQden Dulk-RasAShenHHooykaasPJde PaterS.Poly [ADP-ribose] polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana. Plant molecular biology 2013; 824-5: 51-339.
[72]
Bao Z, Cao C, Geng X, et al. Effectiveness and safety of poly (ADP-ribose) polymerase inhibitors in cancer therapy: A systematic review and meta-analysis. Oncotarget 2016; 7(7): 7629-39.
[http://dx.doi.org/10.18632/oncotarget.5367] [PMID: 26399274]
[73]
Maeda J, Roybal EJ, Brents CA, Uesaka M, Aizawa Y, Kato TA. Natural and glucosyl flavonoids inhibit poly(ADP-ribose) polymerase activity and induce synthetic lethality in BRCA mutant cells. Oncol Rep 2014; 31(2): 551-6.
[http://dx.doi.org/10.3892/or.2013.2902] [PMID: 24317580]
[74]
Plummer R. Poly(ADP-ribose)polymerase (PARP) inhibitors: from bench to bedside. Clin Oncol (R Coll Radiol) 2014; 26(5): 250-6.
[http://dx.doi.org/10.1016/j.clon.2014.02.007] [PMID: 24602564]
[75]
Wang L, Liu F, Jiang N, Zhou W, Zhou X, Zheng Z. Design, synthesis, and biological evaluation of novel PARP-1 inhibitors based on a 1H-thieno (3, 4-d) imidazole-4-carboxamide scaffold. Molecules 2016; 21(6): 772.
[http://dx.doi.org/10.3390/molecules21060772] [PMID: 27304949]
[76]
Kruse V, Rottey S, De Backer O, Van Belle S, Cocquyt V, Denys H. PARP inhibitors in oncology: a new synthetic lethal approach to cancer therapy. Acta Clin Belg 2011; 661: 2-9.
[http://dx.doi.org/10.1179/ACB.66.1.2062507] [PMID: 21485757]
[77]
Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361(2): 123-34.
[http://dx.doi.org/10.1056/NEJMoa0900212] [PMID: 19553641]
[78]
Audeh MW, Carmichael J, Penson RT, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010; 376(9737): 245-51.
[http://dx.doi.org/10.1016/S0140-6736(10)60893-8] [PMID: 20609468]
[79]
Tutt A, Robson M, Garber JE, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010; 376(9737): 235-44.
[http://dx.doi.org/10.1016/S0140-6736(10)60892-6] [PMID: 20609467]
[80]
Fong PC, Yap TA, Boss DS, et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 2010; 28(15): 2512-9.
[http://dx.doi.org/10.1200/JCO.2009.26.9589] [PMID: 20406929]
[81]
Litton JK, Scoggins M, Ramirez DL, et al. A feasibility study of neoadjuvant talazoparib for operable breast cancer patients with a germline BRCA mutation demonstrates marked activity. NPJ Breast Cancer 2017; 3(31): 49.
[http://dx.doi.org/10.1038/s41523-017-0052-4] [PMID: 29238749]
[82]
Eldhose E, Lakshmanan K, Krishnamurthy PT, Rajagopal K, Mohammed M, Prudviraj P, et al. 1, 3, 4-Thiadiazolo (3, 2-A) pyrimidine-6-carbonitrile scaffold as PARP1 inhibitors. Anticancer Agents Med Chem 2021; 21(15): 2050-65.
[PMID: 33327923]
[83]
Sandhu SK, Schelman WR, Wilding G, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 2013; 14(9): 882-92.
[http://dx.doi.org/10.1016/S1470-2045(13)70240-7] [PMID: 23810788]
[84]
Pulliam N, Fang F, Ozes AR, et al. An effective epigenetic-PARP inhibitor combination therapy for breast and ovarian cancers independent of BRCA mutations. Clin Cancer Res 2018; 24(13): 3163-75.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0204] [PMID: 29615458]
[85]
Brenner JC, Feng FY, Han S, et al. PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res 2012; 72(7): 1608-13.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3648] [PMID: 22287547]
[86]
Zhong S, Wu B, Yang W, et al. Effective natural inhibitors targeting poly ADP-ribose polymerase by computational study. Aging (Albany NY) 2021; 13(2): 1898-912.
[http://dx.doi.org/10.18632/aging.103986] [PMID: 33486472]
[87]
Kim H, Moon JY, Burapan S, Han J, Cho SK. Induction of ER stress-mediated apoptosis by the major component 5, 7, 4′-trimethoxyflavone isolated from Kaempferia parviflora tea infusion. Nutr Cancer 2018; 70(6): 984-96.
[http://dx.doi.org/10.1080/01635581.2018.1491607] [PMID: 30273054]
[88]
Yan T, Hu G, Wang A, Sun X, Yu X, Jia J. Paris saponin VII induces cell cycle arrest and apoptosis by regulating Akt/MAPK pathway and inhibition of P-glycoprotein in K562/ADR cells. Phytother Res 2018; 32(5): 898-907.
[http://dx.doi.org/10.1002/ptr.6029] [PMID: 29377384]
[89]
Xu Z, Chen X, Fu S, et al. Dehydrocorydaline inhibits breast cancer cells proliferation by inducing apoptosis in MCF-7 cells. Am J Chin Med 2012; 40(1): 177-85.
[http://dx.doi.org/10.1142/S0192415X12500140] [PMID: 22298457]
[90]
Leonetti C, Biroccio A, Graziani G, Tentori L. Targeted therapy for brain tumours: role of PARP inhibitors. Curr Cancer Drug Targets 2012; 12(3): 218-36.
[http://dx.doi.org/10.2174/156800912799277403] [PMID: 22268386]
[91]
Pyriochou A, Olah G, Deitch EA, Szabó C, Papapetropoulos A. Inhibition of angiogenesis by the poly(ADP-ribose) polymerase inhibitor PJ-34. Int J Mol Med 2008; 22(1): 113-8.
[http://dx.doi.org/10.3892/ijmm.22.1.113] [PMID: 18575783]
[92]
Giannini G, Battistuzzi G, Vesci L, et al. Novel PARP-1 inhibitors based on a 2-propanoyl-3H-quinazolin-4-one scaffold. Bioorg Med Chem Lett 2014; 24(2): 462-6.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.048] [PMID: 24388690]
[93]
Veuger SJ, Curtin NJ, Richardson CJ, Smith GC, Durkacz BW. Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res 2003; 63(18): 6008-15.
[PMID: 14522929]
[94]
Mégnin-Chanet F, Bollet MA, Hall J. Targeting poly(ADP-ribose) polymerase activity for cancer therapy. Cell Mol Life Sci 2010; 67(21): 3649-62.
[http://dx.doi.org/10.1007/s00018-010-0490-8] [PMID: 20725763]
[95]
Benafif S, Hall M. An update on PARP inhibitors for the treatment of cancer. OncoTargets Ther 2015; 8(8): 519-28.
[PMID: 25750544]
[96]
Davar D, Beumer JH, Tawbi H. Role of PARP inhibitors in cancer biology and therapy. Curr Med Chem 2012; 19(23): 3907-21.
[PMID: 22788767]
[97]
Curtin NJ, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 2013; 34(6): 1217-56.
[http://dx.doi.org/10.1016/j.mam.2013.01.006] [PMID: 23370117]
[98]
Kummar S, Chen A, Ji J, et al. Phase I study of PARP inhibitor ABT-888 in combination with topotecan in adults with refractory solid tumors and lymphomas. Cancer Res 2011; 71(17): 5626-34.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1227] [PMID: 21795476]
[99]
Kummar S, Ji J, Morgan R, et al. A phase I study of veliparib in combination with metronomic cyclophosphamide in adults with refractory solid tumors and lymphomas. Clin Cancer Res 2012; 18(6): 1726-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2821] [PMID: 22307137]
[100]
Long HJ III, Bundy BN, Grendys EC Jr, et al. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: a Gynecologic Oncology Group Study. J Clin Oncol 2005; 23(21): 4626-33.
[http://dx.doi.org/10.1200/JCO.2005.10.021] [PMID: 15911865]
[101]
Dent RA, Lindeman GJ, Clemons M, et al. Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res 2013; 15(5): R88.
[http://dx.doi.org/10.1186/bcr3484] [PMID: 24063698]
[102]
Plummer R, Lorigan P, Steven N, et al. A phase II study of the potent PARP inhibitor, Rucaparib (PF-01367338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemopotentiation. Cancer Chemother Pharmacol 2013; 71(5): 1191-9.
[http://dx.doi.org/10.1007/s00280-013-2113-1] [PMID: 23423489]
[103]
Tentori L, Lacal PM, Muzi A, et al. Poly(ADP-ribose) polymerase (PARP) inhibition or PARP-1 gene deletion reduces angiogenesis. Eur J Cancer 2007; 43(14): 2124-33.
[http://dx.doi.org/10.1016/j.ejca.2007.07.010] [PMID: 17714938]
[104]
Liu JF, Tolaney SM, Birrer M, et al. A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. Eur J Cancer 2013; 49(14): 2972-8.
[http://dx.doi.org/10.1016/j.ejca.2013.05.020] [PMID: 23810467]
[105]
Sandhu SK, Yap TA, de Bono JS. Poly(ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur J Cancer 2010; 46(1): 9-20.
[http://dx.doi.org/10.1016/j.ejca.2009.10.021] [PMID: 19926276]
[106]
Underhill C, Toulmonde M, Bonnefoi H. A review of PARP inhibitors: from bench to bedside. Ann Oncol 2011; 22(2): 268-79.
[http://dx.doi.org/10.1093/annonc/mdq322] [PMID: 20643861]
[107]
Papeo G, Casale E, Montagnoli A, Cirla A. PARP inhibitors in cancer therapy: an update. Expert Opin Ther Pat 2013; 23(4): 503-14.
[http://dx.doi.org/10.1517/13543776.2013.768615] [PMID: 23379721]
[108]
Papeo G, Forte B, Orsini P, et al. Poly ADP-ribose polymerase inhibition in cancer therapy: are we close to maturity? Expert Opin Ther Pat 2009; 19(10): 1377-400.
[PMID: 19743897]
[109]
Cosi C. New inhibitors of poly [ADP-ribose] polymerase and their potential therapeutic targets. Expert Opin Ther Pat 2002; 12(127): 1047-71.
[http://dx.doi.org/10.1517/13543776.12.7.1047]
[110]
Delaney CA, Green MH, Lowe JE, Green IC. Endogenous nitric oxide induced by interleukin-1 β in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the ‘comet’ assay. FEBS Lett 1993; 333(3): 291-5.
[http://dx.doi.org/10.1016/0014-5793(93)80673-I] [PMID: 8224196]
[111]
Eltze T, Boer R, Wagner T, et al. Imidazoquinolinone, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly(ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors. Mol Pharmacol 2008; 74(6): 1587-98.
[http://dx.doi.org/10.1124/mol.108.048751] [PMID: 18809672]
[112]
Ganguly B, Dolfi SC, Rodriguez-Rodriguez L, Ganesan S, Hirshfield KM. Role of biomarkers in the development of PARP inhibitors. Biomarkers in cancer 2016; 8(Suppl. 1): 15-25.
[http://dx.doi.org/10.4137/BIC.S36679] [PMID: 26997874]
[113]
Henneman L, van Miltenburg MH, Michalak EM, et al. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA-1-deficient metaplastic breast cancer. Proc Natl Acad Sci 112(27): 8409-14.
[PMID: 26100884]
[114]
Lord CJ, Ashworth A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med 2013; 1911: 8-1381.
[http://dx.doi.org/10.1038/nm.3369] [PMID: 24202391]
[115]
Ashworth A, Lord CJ. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat Rev Clin Oncol 2018; 15(9): 564-76.
[http://dx.doi.org/10.1038/s41571-018-0055-6] [PMID: 29955114]
[116]
Fuertes MA, Alonso C, Pérez JM. Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 2003; 103(3): 645-62.
[http://dx.doi.org/10.1021/cr020010d] [PMID: 12630848]
[117]
Schimmer AD, Pedersen IM, Kitada S, et al. Functional blocks in caspase activation pathways are common in leukemia and predict patient response to induction chemotherapy. Cancer Res 2003; 63(6): 1242-8.
[PMID: 12649183]
[118]
Cepeda V, Fuertes MA, Castilla J, et al. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy. Recent Pat Anticancer Drug Discov 2006; 1(1): 39-53.
[http://dx.doi.org/10.2174/157489206775246430] [PMID: 18221025]
[119]
Ashworth A. Drug resistance caused by reversion mutation. Cancer Res 2008; 68(24): 10021-3.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2287] [PMID: 19074863]
[120]
Sakai W, Swisher EM, Karlan BY, et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 2008; 451(7182): 1116-20.
[http://dx.doi.org/10.1038/nature06633] [PMID: 18264087]
[121]
Edwards SL, Brough R, Lord CJ, et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 2008; 451(7182): 1111-5.
[http://dx.doi.org/10.1038/nature06548] [PMID: 18264088]
[122]
Awada A, Campone M, Varga A, et al. An open-label, dose-escalation study to evaluate the safety and pharmacokinetics of CEP-9722 (a PARP-1 and PARP-2 inhibitor) in combination with gemcitabine and cisplatin in patients with advanced solid tumors. Anticancer Drugs 2016; 27(4): 342-8.
[http://dx.doi.org/10.1097/CAD.0000000000000336] [PMID: 26796987]
[123]
Lim JSJ, Tan DSP. Understanding resistance mechanisms and expanding the therapeutic utility of PARP inhibitors. Cancers (Basel) 2017; 9(8): 109.
[http://dx.doi.org/10.3390/cancers9080109] [PMID: 28829366]
[124]
Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res 2008; 68(8): 2581-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0088] [PMID: 18413725]
[125]
Rottenberg S, Jaspers JE, Kersbergen A, et al. High sensitivity of BRCA-1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci 105(44): 17079-84.
[PMID: 18971340]
[126]
Murai J, Feng Y, Yu GK, et al. Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget 2016; 7(47): 76534-50.
[PMID: 27708213]
[127]
Knelson EH, Patel SA, Sands JM. PARP inhibitors in small-cell lung cancer: Rational combinations to improve responses. Cancers (Basel) 2021; 13(4): 727.
[http://dx.doi.org/10.3390/cancers13040727] [PMID: 33578789]
[128]
Kim DS, Camacho CV, Kraus WL. Alternate therapeutic pathways for PARP inhibitors and potential mechanisms of resistance. Exp Mol Med 2021; 53(1): 42-51.
[http://dx.doi.org/10.1038/s12276-021-00557-3] [PMID: 33487630]
[129]
Jiang X, Li W, Li X, Bai H, Zhang Z. Current status and future prospects of PARP inhibitor clinical trials in ovarian cancer. Cancer Manag Res 2019; 11: 4371-90.
[http://dx.doi.org/10.2147/CMAR.S200524] [PMID: 31191001]
[130]
Domchek SM, Aghajanian C, Shapira-Frommer R, et al. Efficacy and safety of olaparib monotherapy in germline BRCA1/2 mutation carriers with advanced ovarian cancer and three or more lines of prior therapy. Gynecol Oncol 2016; 140(2): 199-203.
[http://dx.doi.org/10.1016/j.ygyno.2015.12.020] [PMID: 26723501]
[131]
Graziani G, Szabó C. Clinical perspectives of PARP inhibitors. Pharmacol Res 2005; 52(1): 109-18.
[http://dx.doi.org/10.1016/j.phrs.2005.02.013] [PMID: 15911339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy