Generic placeholder image

Current Hypertension Reviews

Editor-in-Chief

ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

Mini-Review Article

Differences Among Sexes in Blood Pressure: A Combinatorial Consequence of the Differences between RAAS Components, Sex Hormones, and Time Course

Author(s): Xiaomei Yang, Shien Liu and Zhongming Zhang*

Volume 18, Issue 1, 2022

Published on: 10 May, 2021

Page: [11 - 16] Pages: 6

DOI: 10.2174/1573402117666210511011444

Price: $65

Abstract

For all lives regardless of sex, the longitudinal increase in blood pressure (BP) with age is attributed to lifestyle, internal environments like systemic brain-derived neurotrophic factor (BDNF) signaling, and external environments, allowing the individuals to better adapt to the developmental and environmental changes. Basic levels of renin-angiotensin-aldosterone system (RAAS) components in males and females define the fundamental sex difference in BP, which may be set by prenatal programming and the profound influence of BP after birth. The innate sex difference in BP is magnified during puberty growth and later on, affected and modified by menopause in women. At the age of 70 and older, blood pressure has been found to be similar for men and women. Understanding the prenatal setup and development of sexual dimorphism in BP may provide preventative therapeutic strategies, including timing and choice of drugs, for individuals with abnormal BP.

Keywords: RAAS, sex difference, prenatal programming, sex hormones, time course.

Graphical Abstract
[1]
Fountain JH, Lappin SL. Physiology, Renin Angiotensin System In: StatPearls Treasure Island (FL). 2020.
[2]
Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev 2006; 86(3): 747-803.
[http://dx.doi.org/10.1152/physrev.00036.2005] [PMID: 16816138]
[3]
Shankar RR, Eckert GJ, Saha C, Tu W, Pratt JH. The change in blood pressure during pubertal growth. J Clin Endocrinol Metab 2005; 90(1): 163-7.
[http://dx.doi.org/10.1210/jc.2004-0926] [PMID: 15509638]
[4]
Woynarowska B, Mukherjee D, Roche AF, Siervogel RM. Blood pressure changes during adolescence and subsequent adult blood pressure level. Hypertension 1985; 7(5): 695-701.
[http://dx.doi.org/10.1161/01.HYP.7.5.695] [PMID: 4030041]
[5]
Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension 2001; 37(5): 1199-208.
[http://dx.doi.org/10.1161/01.HYP.37.5.1199] [PMID: 11358929]
[6]
Pearson JD, Morrell CH, Brant LJ, Landis PK, Fleg JL. Age-associated changes in blood pressure in a longitudinal study of healthy men and women. J Gerontol A Biol Sci Med Sci 1997; 52(3): M177-83.
[http://dx.doi.org/10.1093/gerona/52A.3.M177] [PMID: 9158560]
[7]
Joyner MJ, Wallin BG, Charkoudian N. Sex differences and blood pressure regulation in humans. Exp Physiol 2016; 101(3): 349-55.
[http://dx.doi.org/10.1113/EP085146] [PMID: 26152788]
[8]
Delgado J, Bowman K, Ble A, et al. Blood Pressure Trajectories in the 20 Years Before Death. JAMA Intern Med 2018; 178(1): 93-9.
[http://dx.doi.org/10.1001/jamainternmed.2017.7023] [PMID: 29204655]
[9]
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 2017; 389(10064): 37-55.
[http://dx.doi.org/10.1016/S0140-6736(16)31919-5] [PMID: 27863813]
[10]
Song JJ, Ma Z, Wang J, Chen LX, Zhong JC. Gender differences in hypertension. J Cardiovasc Transl Res 2020; 13(1): 47-54.
[http://dx.doi.org/10.1007/s12265-019-09888-z] [PMID: 31044374]
[11]
Johnson AK, Zhang Z, Clayton SC, et al. The roles of sensitization and neuroplasticity in the long-term regulation of blood pressure and hypertension. Am J Physiol Regul Integr Comp Physiol 2015; 309(11): R1309-25.
[http://dx.doi.org/10.1152/ajpregu.00037.2015] [PMID: 26290101]
[12]
Erdos B, Backes I, McCowan ML, Hayward LF, Scheuer DA. Brain-derived neurotrophic factor modulates angiotensin signaling in the hypothalamus to increase blood pressure in rats. Am J Physiol Heart Circ Physiol 2015; 308(6): H612-22.
[http://dx.doi.org/10.1152/ajpheart.00776.2014] [PMID: 25576628]
[13]
Sandrini L, Castiglioni L, Amadio P, et al. Impact of BDNF Val66Met polymorphism on myocardial infarction: Exploring the macrophage phenotype. Cells 2020; 9(5): E1084.
[http://dx.doi.org/10.3390/cells9051084] [PMID: 32349267]
[14]
Nakahashi T, Fujimura H, Altar CA, et al. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett 2000; 470(2): 113-7.
[http://dx.doi.org/10.1016/S0014-5793(00)01302-8] [PMID: 10734218]
[15]
Kermani P, Hempstead B. BDNF actions in the cardiovascular system: Roles in development, adulthood and response to injury. Front Physiol 2019; 10: 455.
[http://dx.doi.org/10.3389/fphys.2019.00455] [PMID: 31105581]
[16]
Zhang Z, Zhang Y, Wang Y, et al. Genetic knockdown of brain-derived neurotrophic factor in the nervous system attenuates angiotensin II-induced hypertension in mice. J Renin Angiotensin Aldosterone Syst 2019; 20(1): 1470320319834406.
[http://dx.doi.org/10.1177/1470320319834406] [PMID: 30894041]
[17]
Sandrini L, Ieraci A, Amadio P, et al. Physical exercise affects adipose tissue profile and prevents arterial thrombosis in BDNF Val66Met mice. Cells 2019; 8(8): E875.
[http://dx.doi.org/10.3390/cells8080875] [PMID: 31405230]
[18]
Chacón-Fernández P, Säuberli K, Colzani M, Moreau T, Ghevaert C, Barde YA. Brain-derived neurotrophic factor in megakaryocytes. J Biol Chem 2016; 291(19): 9872-81.
[http://dx.doi.org/10.1074/jbc.M116.720029] [PMID: 27006395]
[19]
Brigadski T, Leßmann V. The physiology of regulated BDNF release. Cell Tissue Res 2020; 382(1): 15-45.
[http://dx.doi.org/10.1007/s00441-020-03253-2] [PMID: 32944867]
[20]
Joshi S, Ettinger L, Liebman SE. Plant-based diets and hypertension. Am J Lifestyle Med 2019; 14(4): 397-405.
[http://dx.doi.org/10.1177/1559827619875411] [PMID: 33281520]
[21]
Choe KY, Han SY, Gaub P, et al. High salt intake increases blood pressure via BDNF-mediated downregulation of KCC2 and impaired baroreflex inhibition of vasopressin neurons. Neuron 2015; 85(3): 549-60.
[http://dx.doi.org/10.1016/j.neuron.2014.12.048] [PMID: 25619659]
[22]
Glud M, Christiansen T, Larsen LH, Richelsen B, Bruun JM. Changes in circulating BDNF in relation to sex, diet, and exercise: A 12-week randomized controlled study in overweight and obese participants. J Obes 2019; 2019: 4537274.
[http://dx.doi.org/10.1155/2019/4537274] [PMID: 31781387]
[23]
Hurley SW, Zhang Z, Beltz TG, Xue B, Johnson AK. Sensitization of sodium appetite: evidence for sustained molecular changes in the lamina terminalis. Am J Physiol Regul Integr Comp Physiol 2014; 307(12): R1405-12.
[http://dx.doi.org/10.1152/ajpregu.00210.2014] [PMID: 25354727]
[24]
Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 2017; 22(8): 1085-95.
[http://dx.doi.org/10.1038/mp.2017.61] [PMID: 28397840]
[25]
Björkholm C, Monteggia LM. BDNF - a key transducer of antidepressant effects. Neuropharmacology 2016; 102: 72-9.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.034] [PMID: 26519901]
[26]
Trombetta IC, DeMoura JR, Alves CR, Carbonari-Brito R, Cepeda FX, Lemos JR Jr. Serum levels of bdnf in cardiovascular protection and in response to exercise. Arq Bras Cardiol 2020; 115(2): 263-9.
[http://dx.doi.org/10.36660/abc.20190368] [PMID: 32876194]
[27]
Goodwin JE, Geller DS. Glucocorticoid-induced hypertension. Pediatr Nephrol 2012; 27(7): 1059-66.
[http://dx.doi.org/10.1007/s00467-011-1928-4] [PMID: 21744056]
[28]
Liu B, Zhang TN, Knight JK, Goodwin JE. The glucocorticoid receptor in cardiovascular health and disease. Cells 2019; 8(10): E1227.
[http://dx.doi.org/10.3390/cells8101227] [PMID: 31601045]
[29]
Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol 2016; 4(7): 611-29.
[http://dx.doi.org/10.1016/S2213-8587(16)00086-3] [PMID: 27177728]
[30]
Cicala MV, Mantero F. Hypertension in Cushing’s syndrome: from pathogenesis to treatment. Neuroendocrinology 2010; 92(Suppl. 1): 44-9.
[http://dx.doi.org/10.1159/000314315] [PMID: 20829617]
[31]
Schutte CE, Malan L, Scheepers JD, Oosthuizen W, Cockeran M, Malan NT. Cortisol: Brain-derived neurotrophic factor ratio associated with silent ischaemia in a black male cohort: the SA BPA study. Cardiovasc J Afr 2016; 27(6): 387-91.
[http://dx.doi.org/10.5830/CVJA-2016-065] [PMID: 27966001]
[32]
Landazuri P, Granobles C, Loango N. Gender differences in serum angiotensin-converting enzyme activity and blood pressure in children: an observational study. Arq Bras Cardiol 2008; 91(6): 352-7.
[PMID: 19142361]
[33]
Choi HM, Kim HC, Kang DR. Sex differences in hypertension prevalence and control: Analysis of the 2010-2014 korea national health and nutrition examination survey. PLoS One 2017; 12(5): e0178334.
[http://dx.doi.org/10.1371/journal.pone.0178334] [PMID: 28542557]
[34]
Georgakis MK, Gill D, Malik R, Protogerou AD, Webb AJS, Dichgans M. Genetically predicted blood pressure across the lifespan: Differential effects of mean and pulse pressure on stroke risk. Hypertension 2020; 76(3): 953-61.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15136] [PMID: 32623925]
[35]
Georgakis MK, Gill D, Webb AJS, et al. Genetically determined blood pressure, antihypertensive drug classes, and risk of stroke subtypes. Neurology 2020; 95(4): e353-61.
[http://dx.doi.org/10.1212/WNL.0000000000009814] [PMID: 32611631]
[36]
Syme C, Abrahamowicz M, Leonard GT, et al. Sex differences in blood pressure and its relationship to body composition and metabolism in adolescence. Arch Pediatr Adolesc Med 2009; 163(9): 818-25.
[http://dx.doi.org/10.1001/archpediatrics.2009.92] [PMID: 19736335]
[37]
Charkoudian N, Hart ECJ, Barnes JN, Joyner MJ. Autonomic control of body temperature and blood pressure: influences of female sex hormones. Clin Auton Res 2017; 27(3): 149-55.
[http://dx.doi.org/10.1007/s10286-017-0420-z] [PMID: 28488202]
[38]
Liu J, Ji H, Zheng W, et al. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ 2010; 1(1): 6.
[http://dx.doi.org/10.1186/2042-6410-1-6] [PMID: 21208466]
[39]
Retnakaran R, Wen SW, Tan H, et al. Maternal blood pressure before pregnancy and sex of the baby: A prospective preconception cohort study. Am J Hypertens 2017; 30(4): 382-8.
[http://dx.doi.org/10.1093/ajh/hpw165] [PMID: 28057630]
[40]
Pijacka W, Hunter MG, Broughton Pipkin F, Luck MR. Expression of renin-angiotensin system components in the early bovine embryo. Endocr Connect 2012; 1(1): 22-30.
[http://dx.doi.org/10.1530/EC-12-0013] [PMID: 23781300]
[41]
Irani RA, Xia Y. The functional role of the renin-angiotensin system in pregnancy and preeclampsia. Placenta 2008; 29(9): 763-71.
[http://dx.doi.org/10.1016/j.placenta.2008.06.011] [PMID: 18687466]
[42]
Lu KT, Keen HL, Weatherford ET, Sequeira-Lopez ML, Gomez RA, Sigmund CD. Estrogen receptor α is required for maintaining baseline renin expression. Hypertension 2016; 67(5): 992-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.07082] [PMID: 26928806]
[43]
Miranda JO, Cerqueira RJ, Barros H, Areias JC. Maternal diabetes mellitus as a risk factor for high blood pressure in late childhood. Hypertension 2019; 73(1): e1-7.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11761] [PMID: 30571550]
[44]
Chella KK, Mehrabian M, Lusis AJ. Sex differences in metabolism and cardiometabolic disorders. Curr Opin Lipidol 2018; 29(5): 404-10.
[http://dx.doi.org/10.1097/MOL.0000000000000536] [PMID: 30156571]
[45]
Wang L, Wang X, Qu HY, et al. Role of kidneys in sex differences in angiotensin II-induced hypertension. Hypertension 2017; 70(6): 1219-27.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10052] [PMID: 29061720]
[46]
Sama IE, Ravera A, Santema BT, et al. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors. Eur Heart J 2020; 41(19): 1810-7.
[http://dx.doi.org/10.1093/eurheartj/ehaa373] [PMID: 32388565]
[47]
Todros T, Masturzo B, De Francia S. COVID-19 infection: ACE2, pregnancy and preeclampsia. Eur J Obstet Gynecol Reprod Biol 2020; 253: 330.
[http://dx.doi.org/10.1016/j.ejogrb.2020.08.007] [PMID: 32863039]
[48]
Bhatia K, Zimmerman MA, Sullivan JC. Sex differences in angiotensin-converting enzyme modulation of Ang (1-7) levels in normotensive WKY rats. Am J Hypertens 2013; 26(5): 591-8.
[http://dx.doi.org/10.1093/ajh/hps088] [PMID: 23547034]
[49]
Peckham H, de Gruijter NM, Raine C, et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun 2020; 11(1): 6317.
[http://dx.doi.org/10.1038/s41467-020-19741-6] [PMID: 33298944]
[50]
Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8(4): e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[51]
Mikami Y, Takai Y, Era S, et al. Differences in home blood pressure and pulse rates between singleton and twin pregnancies. J Int Med Res 2018; 46(4): 1496-504.
[http://dx.doi.org/10.1177/0300060517727683] [PMID: 29350079]
[52]
Levy A, Yagil Y, Bursztyn M, Barkalifa R, Scharf S, Yagil C. ACE2 expression and activity are enhanced during pregnancy. Am J Physiol Regul Integr Comp Physiol 2008; 295(6): R1953-61.
[http://dx.doi.org/10.1152/ajpregu.90592.2008] [PMID: 18945956]
[53]
Gilbert JS, LaMarca BB, Granger JP. ACE2 and ANG-(1-7) in the gravid uterus: the new players on the block. Am J Physiol Regul Integr Comp Physiol 2008; 294(3): R915-6.
[http://dx.doi.org/10.1152/ajpregu.00018.2008] [PMID: 18199593]
[54]
Knight M, Bunch K, Vousden N, et al. UK Obstetric Surveillance System SARS-CoV-2 Infection in Pregnancy Collaborative Group. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: National population based cohort study. BMJ 2020; 369: m2107.
[http://dx.doi.org/10.1136/bmj.m2107] [PMID: 32513659]
[55]
Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nat Med 2019; 25(11): 1657-66.
[http://dx.doi.org/10.1038/s41591-019-0643-8] [PMID: 31700185]
[56]
Sharma SK, Ghimire A, Radhakrishnan J, et al. Prevalence of hypertension, obesity, diabetes, and metabolic syndrome in Nepal. Int J Hypertens 2011; 2011: 821971.
[http://dx.doi.org/10.4061/2011/821971] [PMID: 21629873]
[57]
Halpern A, Mancini MC, Magalhães ME, et al. Metabolic syndrome, dyslipidemia, hypertension and type 2 diabetes in youth: from diagnosis to treatment. Diabetol Metab Syndr 2010; 2(1): 55.
[http://dx.doi.org/10.1186/1758-5996-2-55] [PMID: 20718958]
[58]
Kim DH, Kim C, Ding EL, Townsend MK, Lipsitz LA. Adiponectin levels and the risk of hypertension: a systematic review and meta-analysis. Hypertension 2013; 62(1): 27-32.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01453] [PMID: 23716587]
[59]
Santilli F, D’Ardes D, Guagnano MT, Davi G. Metabolic syndrome: Sex-related cardiovascular risk and therapeutic approach. curr med chem 2017; 24(24): 2602-27.
[http://dx.doi.org/10.2174/0929867324666170710121145] [PMID: 28699503]
[60]
Nishichi R, Nufuji Y, Washio M, Kumagai S. Serum brain-derived neurotrophic factor levels are associated with dyssomnia in females, but not males, among Japanese workers. J Clin Sleep Med 2013; 9(7): 649-54.
[http://dx.doi.org/10.5664/jcsm.2828] [PMID: 23853557]
[61]
Komulainen P, Pedersen M, Hänninen T, et al. BDNF is a novel marker of cognitive function in ageing women: the DR’s EXTRA Study. Neurobiol Learn Mem 2008; 90(4): 596-603.
[http://dx.doi.org/10.1016/j.nlm.2008.07.014] [PMID: 18707012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy