Skip to main content

CD26 Inhibition Enhances Perfusion Recovery in ApoE-/-Mice

Buy Article:

$68.00 + tax (Refund Policy)

Objective: The adaptive growth of blood vessels is important to prevent tissue loss following arterial occlusion. Extravasation of monocytes is essential for this process. The peptidase CD26 targets SDF-1 alpha, a chemokine regulating monocyte trafficking. We hypothesized that blocking SDF-1 alpha inactivation, using a commercially available CD26 inhibitor, accelerates perfusion recovery without detrimental side effects on plaque stability. Methods and Results: Atherosclerosis prone ApoE-/- mice underwent femoral artery ligation and received a CD26 inhibitor or placebo. CD26 inhibition increased short term (7 days) perfusion recovery after both single and daily doses compared to placebo, 36%±2 (p=0.017) and 39%±2 (p=0.008) vs. 29%±3 respectively. Long term (56 days) perfusion recovery increased after daily treatment compared to placebo 83%±3 vs. 60%±2, (p<0.001). CD26 inhibition did not result in increased atherosclerotic plaque instability or inflammatory cell infiltration. CD26 inhibition increased macrophage number around growing collaterals, SDF-1 alpha plasma levels and monocyte expression of the activation marker CD11b and the SDF-1 alpha receptor CXCR-4. Conclusions: CD26 inhibition enhanced perfusion recovery following arterial occlusion via attenuated SDF-1 alpha inactivation and increased monocyte activation. There was no observable aggravation of atherosclerosis and CD26 inhibition could therefore offer a novel approach for therapeutic arteriogenesis in patients.

Keywords: CD26; SDF-1 alpha; collateral circulation; leukocytes; monocyte activation; perfusion recovery

Document Type: Research Article

Publication date: 01 January 2013

More about this publication?
  • Vascular disease is the commonest cause of death in Westernized countries and its incidence is on the increase in developing countries. It follows that considerable research is directed at establishing effective treatment for acute vascular events. Long-term treatment has also received considerable attention (e.g. for symptomatic relief). Furthermore, effective prevention, whether primary or secondary, is backed by the findings of several landmark trials.

    Vascular disease is a complex field with primary care physicians and nurse practitioners as well as several specialties involved. The latter include cardiology, vascular and cardio thoracic surgery, general medicine, radiology, clinical pharmacology and neurology (stroke units). Current Vascular Pharmacology will publish reviews to update all those concerned with the treatment of vascular disease. For example, reviews commenting on recently published trials or new drugs will be included. In addition to clinically relevant topics we will consider 'research-based' reviews dealing with future developments and potential drug targets. Therefore, another function of Current Vascular Pharmacology is to bridge the gap between clinical practice and ongoing research.

    Debates will also be encouraged in the correspondence section of this journal.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content