Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Contribution of STIM-Activated TRPC-ORAI Channels in Pulmonary Hypertension Induced by Chronic Sustained and Intermittent Hypoxia

Author(s): Sebastián Castillo-Galán*, Germán A. Arenas and Rodrigo Iturriaga

Volume 20, Issue 3, 2022

Published on: 20 May, 2022

Page: [272 - 283] Pages: 12

DOI: 10.2174/1570161120666220321141805

Price: $65

Abstract

Sustained and intermittent hypoxia produce vasoconstriction, arterial remodeling, and hypertension in the lung. Stromal interaction molecule (STIM)-activated transient receptor potential channels (TRPC) and calcium release-activated calcium channel protein (ORAI) channels (STOC) play key roles in the progression of pulmonary hypertension in pre-clinical models of animals subjected to sustained and intermittent hypoxia. The available evidence supports the theory that oxidative stress and hypoxic inducible factors upregulate and activate STIM-activated TRPC-ORAI Ca2+ channels, contributing to the pulmonary remodeling and hypertension induced by sustained hypoxia. However, less is known about the effects of oxidative stress and hypoxic inducible factors on the modulation of STIM-activated TRPC-ORAI channels following chronic intermittent hypoxia. In this review, we examined the emerging evidence supporting the theory that oxidative stress and hypoxic inducible factors induced by intermittent hypoxia upregulate and activate STIM-activated TRPC-ORAI Ca2+ channels. In addition, we used bioinformatics tools to search public databases for the genes involved in the upregulation of STIMactivated TRPC-ORAI Ca2+ channels and compare the differential gene expression and biological processes induced by intermittent and sustained hypoxia in lung cells.

Keywords: Sustained and intermittent hypoxia, hypoxia-inducible factor, oxidative stress, obstructive sleep apnea, pulmonary hypertension, store-operated channels.

Graphical Abstract
[1]
Euler UV, Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 1946; 12(4): 301-20.
[http://dx.doi.org/10.1111/j.1748-1716.1946.tb00389.x]
[2]
Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev 2012; 92(1): 367-520.
[http://dx.doi.org/10.1152/physrev.00041.2010] [PMID: 22298659]
[3]
Kuhr FK, Smith KA, Song MY, Levitan I, Yuan JX. New mechanisms of pulmonary arterial hypertension: Role of Ca²⁺ signaling. Am J Physiol Heart Circ Physiol 2012; 302(8): H1546-62.
[http://dx.doi.org/10.1152/ajpheart.00944.2011] [PMID: 22245772]
[4]
Dunham-Snary KJ, Wu D, Sykes EA, et al. Hypoxic pulmonary vasoconstriction: From molecular mechanisms to medicine. Chest 2017; 151(1): 181-92.
[http://dx.doi.org/10.1016/j.chest.2016.09.001] [PMID: 27645688]
[5]
Hussain A, Suleiman MS, George SJ, Loubani M, Morice A. Hypoxic pulmonary vasoconstriction in humans: Tale or myth. Open Cardiovasc Med J 2017; 11(1): 1-13.
[http://dx.doi.org/10.2174/1874192401711010001] [PMID: 28217180]
[6]
Suresh K, Shimoda LA. Lung circulation. Compr Physiol 2016; 6(2): 897-943.
[http://dx.doi.org/10.1002/cphy.c140049] [PMID: 27065170]
[7]
Durmowicz AG, Parks WC, Hyde DM, Mecham RP, Stenmark KR. Persistence, re-expression, and induction of pulmonary arterial fibron-ectin, tropoelastin, and type I procollagen mRNA expression in neonatal hypoxic pulmonary hypertension. Am J Pathol 1994; 145(6): 1411-20.
[PMID: 7992844]
[8]
Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 2006; 21(2): 134-45.
[http://dx.doi.org/10.1152/physiol.00053.2005] [PMID: 16565479]
[9]
Strange G, Playford D, Stewart S, et al. Pulmonary hypertension: Prevalence and mortality in the Armadale echocardiography cohort. Heart 2012; 98(24): 1805-11.
[http://dx.doi.org/10.1136/heartjnl-2012-301992] [PMID: 22760869]
[10]
Humbert M, Sitbon O, Chaouat A, et al. Pulmonary arterial hypertension in France: Results from a national registry. Am J Respir Crit Care Med 2006; 173(9): 1023-30.
[http://dx.doi.org/10.1164/rccm.200510-1668OC] [PMID: 16456139]
[11]
Lam CS, Borlaug BA, Kane GC, Enders FT, Rodeheffer RJ, Redfield MM. Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation 2009; 119(20): 2663-70.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.838698] [PMID: 19433755]
[12]
Guibert C, Marthan R, Savineau JP. Modulation of ion channels in pulmonary arterial hypertension. Curr Pharm Des 2007; 13(24): 2443-55.
[http://dx.doi.org/10.2174/138161207781368585] [PMID: 17692012]
[13]
Galiè N, Palazzini M, Leci E, Manes A. Current therapeutic approaches to pulmonary arterial hypertension. Rev Esp Cardiol 2010; 63(6): 708-24.
[PMID: 20515628]
[14]
Cao X, He Y, Li X, Xu Y, Liu X. The IRE1α-XBP1 pathway function in hypoxia-induced pulmonary vascular remodeling, is upregulated by quercetin, inhibits apoptosis and partially reverses the effect of quercetin in PASMCs. Am J Transl Res 2019; 11(2): 641-54.
[PMID: 30899368]
[15]
Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev 2010; 90(4): 1291-335.
[http://dx.doi.org/10.1152/physrev.00032.2009] [PMID: 20959617]
[16]
Guibert C, Ducret T, Savineau JP. Expression and physiological roles of TRP channels in smooth muscle cells. Adv Exp Med Biol 2011; 704: 687-706.
[http://dx.doi.org/10.1007/978-94-007-0265-3_36] [PMID: 21290322]
[17]
Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53(1): 1801913.
[http://dx.doi.org/10.1183/13993003.01913-2018] [PMID: 30545968]
[18]
Hautbergue T, Antigny F, Boët A, et al. Right ventricle remodeling metabolic signature in experimental pulmonary hypertension models of chronic hypoxia and monocrotaline exposure. Cells 2021; 10(6): 1559.
[http://dx.doi.org/10.3390/cells10061559] [PMID: 34205639]
[19]
Liu C, Chen X, Guo G, et al. Effects of intermittent normoxia on chronic hypoxic pulmonary hypertension and right ventricular hypertro-phy in rats. High Alt Med Biol 2021; 22(2): 184-92.
[http://dx.doi.org/10.1089/ham.2020.0110] [PMID: 33989063]
[20]
Reinero M, Beghetti M, Tozzi P, Segesser LKV, Samaja M, Milano G. Nitric Oxide-cGMP pathway modulation in an experimental model of hypoxic pulmonary hypertension. J Cardiovasc Pharmacol Ther 2021; 26(6): 665-76.
[http://dx.doi.org/10.1177/10742484211014162] [PMID: 33969747]
[21]
Zhao L. Chronic hypoxia-induced pulmonary hypertension in rat: The best animal model for studying pulmonary vasoconstriction and vascular medial hypertrophy. Drug Discov Today Dis Models 2010; 7(3-4): 83-8.
[http://dx.doi.org/10.1016/j.ddmod.2011.02.005]
[22]
Brusselmans K, Compernolle V, Tjwa M, et al. Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmo-nary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest 2003; 111(10): 1519-27.
[http://dx.doi.org/10.1172/JCI15496] [PMID: 12750401]
[23]
Ball MK, Waypa GB, Mungai PT, et al. Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1α. Am J Respir Crit Care Med 2014; 189(3): 314-24.
[http://dx.doi.org/10.1164/rccm.201302-0302OC] [PMID: 24251580]
[24]
Cowburn AS, Crosby A, Macias D, et al. HIF2α-arginase axis is essential for the development of pulmonary hypertension. Proc Natl Acad Sci USA 2016; 113(31): 8801-6.
[http://dx.doi.org/10.1073/pnas.1602978113] [PMID: 27432976]
[25]
Richalet JP. Adaptation à l’hypoxie chronique des populations de haute altitude. Rev Mal Respir 2021; 38(4): 395-403.
[http://dx.doi.org/10.1016/j.rmr.2020.11.007] [PMID: 33541755]
[26]
Keyes LE, Armaza JF, Niermeyer S, Vargas E, Young DA, Moore LG. Intrauterine growth restriction, preeclampsia, and intrauterine mor-tality at high altitude in Bolivia. Pediatr Res 2003; 54(1): 20-5.
[http://dx.doi.org/10.1203/01.PDR.0000069846.64389.DC] [PMID: 12700368]
[27]
Herrera EA, Pulgar VM, Riquelme RA, et al. High-altitude chronic hypoxia during gestation and after birth modifies cardiovascular re-sponses in newborn sheep. Am J Physiol Regul Integr Comp Physiol 2007; 292(6): R2234-40.
[http://dx.doi.org/10.1152/ajpregu.00909.2006] [PMID: 17322112]
[28]
Herrera EA, Riquelme RA, Ebensperger G, et al. Long-term exposure to high-altitude chronic hypoxia during gestation induces neonatal pulmonary hypertension at sea level. Am J Physiol Regul Integr Comp Physiol 2010; 299(6): R1676-84.
[http://dx.doi.org/10.1152/ajpregu.00123.2010] [PMID: 20881096]
[29]
Castillo-Galán S, Quezada S, Moraga FA, et al. 2-Aminoethyldiphenylborinate modifies the pulmonary circulation in pulmonary hyperten-sive newborn lambs partially gestated at high altitude. Am J Physiol Lung Cell Mol Physiol 2016; 311(4): L788-99.
[http://dx.doi.org/10.1152/ajplung.00230.2016] [PMID: 27542806]
[30]
Herrera EA, Ebensperger G, Krause BJ, et al. Sildenafil reverses hypoxic pulmonary hypertension in highland and lowland newborn sheep. Pediatr Res 2008; 63(2): 169-75.
[http://dx.doi.org/10.1203/PDR.0b013e31815ef71c] [PMID: 18091352]
[31]
Herrera EA, Reyes RV, Giussani DA, et al. Carbon monoxide: A novel pulmonary artery vasodilator in neonatal llamas of the Andean altiplano. Cardiovasc Res 2008; 77(1): 197-201.
[http://dx.doi.org/10.1093/cvr/cvm013] [PMID: 18006479]
[32]
Parrau D, Ebensperger G, Herrera EA, et al. Store-operated channels in the pulmonary circulation of high- and low-altitude neonatal lambs. Am J Physiol Lung Cell Mol Physiol 2013; 304(8): L540-8.
[http://dx.doi.org/10.1152/ajplung.00024.2012] [PMID: 23418093]
[33]
Gozal D, Kheirandish-Gozal L. Cardiovascular morbidity in obstructive sleep apnea: Oxidative stress, inflammation, and much more. Am J Respir Crit Care Med 2008; 177(4): 369-75.
[http://dx.doi.org/10.1164/rccm.200608-1190PP] [PMID: 17975198]
[34]
Somers VK, White DP, Amin R, et al. Sleep apnea and cardiovascular disease: An American Heart Association. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research NIH. J Am Coll Cardiol 2008; 52(8): 686-717.
[http://dx.doi.org/10.1016/j.jacc.2008.05.002] [PMID: 18702977]
[35]
Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea. Physiol Rev 2010; 90(1): 47-112.
[http://dx.doi.org/10.1152/physrev.00043.2008] [PMID: 20086074]
[36]
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: Physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101(3): 1177-235.
[http://dx.doi.org/10.1152/physrev.00039.2019] [PMID: 33570461]
[37]
Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 1993; 328(17): 1230-5.
[http://dx.doi.org/10.1056/NEJM199304293281704] [PMID: 8464434]
[38]
Bosc LV, Resta T, Walker B, Kanagy NL. Mechanisms of intermittent hypoxia induced hypertension. J Cell Mol Med 2010; 14(1-2): 3-17.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00929.x] [PMID: 19818095]
[39]
Floras JS. Sleep apnea and cardiovascular disease: An enigmatic risk factor. Circ Res 2018; 122(12): 1741-64.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.310783] [PMID: 29880501]
[40]
Abou Shehata ME, El-Desoky ME, Maaty AER, Abd-ElMaksoud AM, Suliman LA. Pulmonary hypertension in obstructive sleep apnea hypopnea syndrome. Egypt J Chest Dis Tuberc 2013; 62(3): 459-65.
[http://dx.doi.org/10.1016/j.ejcdt.2013.03.004]
[41]
Schäfer H, Hasper E, Ewig S, et al. Pulmonary haemodynamics in obstructive sleep apnoea: Time course and associated factors. Eur Respir J 1998; 12(3): 679-84.
[http://dx.doi.org/10.1183/09031936.98.12030679] [PMID: 9762799]
[42]
Imran TF, Ghazipura M, Liu S, et al. Effect of continuous positive airway pressure treatment on pulmonary artery pressure in patients with isolated obstructive sleep apnea: A meta-analysis. Heart Fail Rev 2016; 21(5): 591-8.
[http://dx.doi.org/10.1007/s10741-016-9548-5] [PMID: 27000753]
[43]
Castillo-Galán S, Arenas GA, Reyes RV, Krause BJ, Iturriaga R. STIM-activated TRPC-ORAI channels in pulmonary hypertension induced by chronic intermittent hypoxia. Pulm Circ 2020; 10(1)(Suppl.): 13-22.
[44]
Iturriaga R, Castillo-Galán S. Potential contribution of carotid body-induced sympathetic and renin-angiotensin system overflow to pulmo-nary hypertension in intermittent hypoxia. Curr Hypertens Rep 2019; 21(11): 89.
[http://dx.doi.org/10.1007/s11906-019-0995-y] [PMID: 31599367]
[45]
Nara A, Nagai H, Shintani-Ishida K, et al. Pulmonary arterial hypertension in rats due to age-related arginase activation in intermittent hy-poxia. Am J Respir Cell Mol Biol 2015; 53(2): 184-92.
[http://dx.doi.org/10.1165/rcmb.2014-0163OC] [PMID: 25490411]
[46]
Jin H, Wang Y, Zhou L, et al. Melatonin attenuates hypoxic pulmonary hypertension by inhibiting the inflammation and the proliferation of pulmonary arterial smooth muscle cells. J Pineal Res 2014; 57(4): 442-50.
[http://dx.doi.org/10.1111/jpi.12184] [PMID: 25251287]
[47]
Jin H, Liu M, Zhang X, et al. Grape seed procyanidin extract attenuates hypoxic pulmonary hypertension by inhibiting oxidative stress and pulmonary arterial smooth muscle cells proliferation. J Nutr Biochem 2016; 36: 81-8.
[http://dx.doi.org/10.1016/j.jnutbio.2016.07.006] [PMID: 27596528]
[48]
Snow JB, Norton CE, Sands MA, et al. Intermittent hypoxia augments pulmonary vasoconstrictor reactivity through PKCβ/] Mitochondrial oxidant signaling. Am J Respir Cell Mol Biol 2020; 62(6): 732-46.
[http://dx.doi.org/10.1165/rcmb.2019-0351OC] [PMID: 32048876]
[49]
Xu XM, Yao D, Cai XD, et al. Effect of chronic continual- and intermittent hypoxia-induced systemic inflammation on the cardiovascular system in rats. Sleep Breath 2015; 19(2): 677-84.
[http://dx.doi.org/10.1007/s11325-014-1075-9] [PMID: 25395264]
[50]
Nisbet RE, Graves AS, Kleinhenz DJ, et al. The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. Am J Respir Cell Mol Biol 2009; 40(5): 601-9.
[http://dx.doi.org/10.1165/2008-0145OC] [PMID: 18952568]
[51]
Cho HJ, Heo W, Han JW, et al. Chronological change of right ventricle by chronic intermittent hypoxia in mice. Sleep 2017; 40(8)
[http://dx.doi.org/10.1093/sleep/zsx103] [PMID: 28637196]
[52]
Reyes RV, Castillo-Galán S, Hernandez I, Herrera EA, Ebensperger G, Llanos AJ. Revisiting the role of TRP, Orai, and ASIC channels in the pulmonary arterial response to hypoxia. Front Physiol 2018; 9: 486.
[http://dx.doi.org/10.3389/fphys.2018.00486] [PMID: 29867539]
[53]
Putney JW Jr, Poggioli J, Weiss SJ. Receptor regulation of calcium release and calcium permeability in parotid gland cells. Philos Trans R Soc Lond B Biol Sci 1981; 296(1080): 37-45.
[http://dx.doi.org/10.1098/rstb.1981.0169] [PMID: 6121344]
[54]
Firth AL, Won JY, Park WS. Regulation of ca(2+) signaling in pulmonary hypertension. Korean J Physiol Pharmacol 2013; 17(1): 1-8.
[http://dx.doi.org/10.4196/kjpp.2013.17.1.1] [PMID: 23439762]
[55]
Ambudkar IS, de Souza LB, Ong HL. TRPC1, Orai1, and STIM1 in SOCE: Friends in tight spaces. Cell Calcium 2017; 63: 33-9.
[http://dx.doi.org/10.1016/j.ceca.2016.12.009] [PMID: 28089266]
[56]
Fuchs B, Dietrich A, Gudermann T, Kalwa H, Grimminger F, Weissmann N. The role of classical transient receptor potential channels in the regulation of hypoxic pulmonary vasoconstriction. Adv Exp Med Biol 2010; 661: 187-200.
[http://dx.doi.org/10.1007/978-1-60761-500-2_12] [PMID: 20204731]
[57]
Johnstone LS, Graham SJ, Dziadek MA. STIM proteins: Integrators of signalling pathways in development, differentiation and disease. J Cell Mol Med 2010; 14(7): 1890-903.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01097.x] [PMID: 20561111]
[58]
Wray S, Burdyga T. Sarcoplasmic reticulum function in smooth muscle. Physiol Rev 2010; 90(1): 113-78.
[http://dx.doi.org/10.1152/physrev.00018.2008] [PMID: 20086075]
[59]
Yang XR, Lin MJ, Sham JS. Physiological functions of transient receptor potential channels in pulmonary arterial smooth muscle cells. Adv Exp Med Biol 2010; 661: 109-22.
[http://dx.doi.org/10.1007/978-1-60761-500-2_7] [PMID: 20204726]
[60]
Huang Y, Zhou Y, Wong HC, et al. A single EF-hand isolated from STIM1 forms dimer in the absence and presence of Ca2+. FEBS J 2009; 276(19): 5589-97.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07240.x] [PMID: 19694801]
[61]
Alicia S, Angélica Z, Carlos S, Alfonso S, Vaca L. STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: Moving TRPC1 in and out of lipid rafts. Cell Calcium 2008; 44(5): 479-91.
[http://dx.doi.org/10.1016/j.ceca.2008.03.001] [PMID: 18420269]
[62]
Putney JW. Forms and functions of store-operated calcium entry mediators, STIM and Orai. Adv Biol Regul 2018; 68: 88-96.
[http://dx.doi.org/10.1016/j.jbior.2017.11.006] [PMID: 29217255]
[63]
Lu W, Wang J, Shimoda LA, Sylvester JT. Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in Ca2+ responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 2008; 295(1): L104-13.
[http://dx.doi.org/10.1152/ajplung.00058.2008] [PMID: 18424621]
[64]
Lu W, Wang J, Peng G, Shimoda LA, Sylvester JT. Knockdown of stromal interaction molecule 1 attenuates store-operated Ca2+ entry and Ca2+ responses to acute hypoxia in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 2009; 297(1): L17-25.
[http://dx.doi.org/10.1152/ajplung.00063.2009] [PMID: 19395668]
[65]
Ng LC, Wilson SM, Hume JR. Mobilization of sarcoplasmic reticulum stores by hypoxia leads to consequent activation of capacitative Ca2+ entry in isolated canine pulmonary arterial smooth muscle cells. J Physiol 2005; 563(Pt 2): 409-19.
[http://dx.doi.org/10.1113/jphysiol.2004.078311] [PMID: 15613369]
[66]
Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expres-sion and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 2006; 98(12): 1528-37.
[http://dx.doi.org/10.1161/01.RES.0000227551.68124.98] [PMID: 16709899]
[67]
Weigand L, Foxson J, Wang J, Shimoda LA, Sylvester JT. Inhibition of hypoxic pulmonary vasoconstriction by antagonists of store-operated Ca2+ and nonselective cation channels. Am J Physiol Lung Cell Mol Physiol 2005; 289(1): L5-L13.
[http://dx.doi.org/10.1152/ajplung.00044.2005] [PMID: 15722380]
[68]
Golovina VA, Platoshyn O, Bailey CL, et al. Upregulated TRP and enhanced capacitative Ca(2+) entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 2001; 280(2): H746-55.
[http://dx.doi.org/10.1152/ajpheart.2001.280.2.H746] [PMID: 11158974]
[69]
Hou X, Chen J, Luo Y, Liu F, Xu G, Gao Y. Silencing of STIM1 attenuates hypoxia-induced PASMCs proliferation via inhibition of the SOC/Ca2+/NFAT pathway. Respir Res 2013; 14(1): 2.
[http://dx.doi.org/10.1186/1465-9921-14-2] [PMID: 23289723]
[70]
Lin MJ, Leung GP, Zhang WM, et al. Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pul-monary arterial smooth muscle cells: A novel mechanism of hypoxic pulmonary hypertension. Circ Res 2004; 95(5): 496-505.
[http://dx.doi.org/10.1161/01.RES.0000138952.16382.ad] [PMID: 15256480]
[71]
Wang C, Li JF, Zhao L, et al. Inhibition of SOC/Ca2+/NFAT pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells. Respir Res 2009; 10(1): 123.
[http://dx.doi.org/10.1186/1465-9921-10-123] [PMID: 20003325]
[72]
Yu Y, Sweeney M, Zhang S, et al. PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expres-sion. Am J Physiol Cell Physiol 2003; 284(2): C316-30.
[http://dx.doi.org/10.1152/ajpcell.00125.2002] [PMID: 12529250]
[73]
Smith KA, Voiriot G, Tang H, et al. Notch activation of Ca(2+) signaling in the development of hypoxic pulmonary vasoconstriction and pulmonary hypertension. Am J Respir Cell Mol Biol 2015; 53(3): 355-67.
[http://dx.doi.org/10.1165/rcmb.2014-0235OC] [PMID: 25569851]
[74]
Abud EM, Maylor J, Undem C, et al. Digoxin inhibits development of hypoxic pulmonary hypertension in mice. Proc Natl Acad Sci USA 2012; 109(4): 1239-44.
[http://dx.doi.org/10.1073/pnas.1120385109] [PMID: 22232678]
[75]
Yu AY, Shimoda LA, Iyer NV, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest 1999; 103(5): 691-6.
[http://dx.doi.org/10.1172/JCI5912] [PMID: 10074486]
[76]
Zhang X, Rui L, Wang M, Lian H, Cai L. Sinomenine attenuates chronic intermittent hypoxia-induced lung injury by inhibiting inflamma-tion and oxidative stress. Med Sci Monit 2018; 24: 1574-80.
[http://dx.doi.org/10.12659/MSM.906577] [PMID: 29549235]
[77]
Yang CH, Zhuang WL, Shen YJ, Lai CJ, Kou YR. NADPH oxidase-derived ROS induced by chronic intermittent hypoxia mediates hyper-sensitivity of lung vagal c fibers in rats. Front Physiol 2016; 7: 166.
[http://dx.doi.org/10.3389/fphys.2016.00166] [PMID: 27242540]
[78]
Huetsch JC, Suresh K, Shimoda LA. Regulation of smooth muscle cell proliferation by NADPH oxidases in pulmonary hypertension. Antioxidants 2019; 8(3): 56.
[http://dx.doi.org/10.3390/antiox8030056] [PMID: 30841544]
[79]
Astorga CR, González-Candia A, Candia AA, et al. Melatonin decreases pulmonary vascular remodeling and oxygen sensitivity in pulmo-nary hypertensive newborn lambs. Front Physiol 2018; 9: 185.
[http://dx.doi.org/10.3389/fphys.2018.00185] [PMID: 29559926]
[80]
Guo X, Fan Y, Cui J, et al. NOX4 expression and distal arteriolar remodeling correlate with pulmonary hypertension in COPD. BMC Pulm Med 2018; 18(1): 111.
[http://dx.doi.org/10.1186/s12890-018-0680-y] [PMID: 29986678]
[81]
Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hy-poxia. Exp Physiol 2006; 91(5): 807-19.
[http://dx.doi.org/10.1113/expphysiol.2006.033506] [PMID: 16857720]
[82]
Zhang J, Lu W, Chen Y, et al. Bortezomib alleviates experimental pulmonary hypertension by regulating intracellular calcium homeostasis in PASMCs. Am J Physiol Cell Physiol 2016; 311(3): C482-97.
[http://dx.doi.org/10.1152/ajpcell.00324.2015] [PMID: 27413173]
[83]
Fike CD, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL. Reactive oxygen species from NADPH oxidase contribute to altered pulmo-nary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2008; 295(5): L881-8.
[http://dx.doi.org/10.1152/ajplung.00047.2008] [PMID: 18757525]
[84]
Norton CE, Broughton BR, Jernigan NL, Walker BR, Resta TC. Enhanced depolarization-induced pulmonary vasoconstriction following chronic hypoxia requires EGFR-dependent activation of NAD(P)H oxidase 2. Antioxid Redox Signal 2013; 18(14): 1777-88.
[http://dx.doi.org/10.1089/ars.2012.4836] [PMID: 22966991]
[85]
Fike CD, Aschner JL, Slaughter JC, Kaplowitz MR, Zhang Y, Pfister SL. Pulmonary arterial responses to reactive oxygen species are altered in newborn piglets with chronic hypoxia-induced pulmonary hypertension. Pediatr Res 2011; 70(2): 136-41.
[http://dx.doi.org/10.1203/PDR.0b013e3182207ce7] [PMID: 21516056]
[86]
Rathore R, Zheng YM, Niu CF, et al. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 2008; 45(9): 1223-31.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.06.012] [PMID: 18638544]
[87]
Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. N Engl J Med 2004; 351(14): 1425-36.
[http://dx.doi.org/10.1056/NEJMra040291] [PMID: 15459304]
[88]
Shao J, Wang P, Liu A, Du X, Bai J, Chen M. Punicalagin prevents hypoxic pulmonary hypertension via anti-oxidant effects in rats. Am J Chin Med 2016; 44(4): 785-801.
[http://dx.doi.org/10.1142/S0192415X16500439] [PMID: 27222062]
[89]
Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increas-es during hypoxia in pulmonary arterial myocytes. Circ Res 2002; 91(8): 719-26.
[http://dx.doi.org/10.1161/01.RES.0000036751.04896.F1] [PMID: 12386149]
[90]
Zhang J, Wang X, Vikash V, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev 2016; 2016: 4350965.
[http://dx.doi.org/10.1155/2016/4350965] [PMID: 26998193]
[91]
Neto-Neves EM, Sousa-Santos O, Ferraz KC, Portella RL, Sertório JT, Tanus-Santos JE. Nitrite and tempol combination promotes synergic effects and alleviates right ventricular wall stress during acute pulmonary thromboembolism. Nitric Oxide 2021; 115: 23-9.
[http://dx.doi.org/10.1016/j.niox.2021.06.004] [PMID: 34133975]
[92]
Figueroa EG, Gonzaléz-Candia A, Villanueva CA, et al. Beneficial effects of melatonin on prostanoids pathways in pulmonary hyperten-sive neonates. Vascul Pharmacol 2021; 138: 106853.
[http://dx.doi.org/10.1016/j.vph.2021.106853] [PMID: 33766627]
[93]
Mirhadi E, Roufogalis BD, Banach M, Barati M, Sahebkar A. Resveratrol: Mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacol Res 2021; 163: 105287.
[http://dx.doi.org/10.1016/j.phrs.2020.105287] [PMID: 33157235]
[94]
Wang J, Li H, Xia T, Feng J, Zhou R. Pulmonary arterial hypertension and flavonoids: A role in treatment. Chin J Physiol 2021; 64(3): 115-24.
[http://dx.doi.org/10.4103/cjp.cjp_25_21] [PMID: 34169916]
[95]
Lu W, Kang J, Hu K, et al. Angiotensin-(1-7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermit-tent hypoxia in rats. Braz J Med Biol Res 2016; 49(10): e5431.
[http://dx.doi.org/10.1590/1414-431x20165431] [PMID: 27599201]
[96]
Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999; 15(1): 551-78.
[http://dx.doi.org/10.1146/annurev.cellbio.15.1.551] [PMID: 10611972]
[97]
Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 2001; 292(5516): 464-8.
[http://dx.doi.org/10.1126/science.1059817] [PMID: 11292862]
[98]
Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hy-droxylation. Science 2001; 292(5516): 468-72.
[http://dx.doi.org/10.1126/science.1059796] [PMID: 11292861]
[99]
Eguchi H, Ikuta T, Tachibana T, Yoneda Y, Kawajiri K. A nuclear localization signal of human aryl hydrocarbon receptor nuclear trans-locator/hypoxia-inducible factor 1β is a novel bipartite type recognized by the two components of nuclear pore-targeting complex. J Biol Chem 1997; 272(28): 17640-7.
[http://dx.doi.org/10.1074/jbc.272.28.17640] [PMID: 9211913]
[100]
Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 2005; 105(2): 659-69.
[http://dx.doi.org/10.1182/blood-2004-07-2958] [PMID: 15374877]
[101]
Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 2012; 92(3): 967-1003.
[http://dx.doi.org/10.1152/physrev.00030.2011] [PMID: 22811423]
[102]
Semenza GL. HIF-1 and tumor progression: Pathophysiology and therapeutics. Trends Mol Med 2002; 8(4)(Suppl.): S62-7.
[http://dx.doi.org/10.1016/S1471-4914(02)02317-1] [PMID: 11927290]
[103]
Shimoda LA, Semenza GL. HIF and the lung: Role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med 2011; 183(2): 152-6.
[http://dx.doi.org/10.1164/rccm.201009-1393PP] [PMID: 21242594]
[104]
Compernolle V, Brusselmans K, Acker T, et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treat-ment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 2002; 8(7): 702-10.
[http://dx.doi.org/10.1038/nm721] [PMID: 12053176]
[105]
Tan Q, Kerestes H, Percy MJ, et al. Erythrocytosis and pulmonary hypertension in a mouse model of human HIF2A gain of function mu-tation. J Biol Chem 2013; 288(24): 17134-44.
[http://dx.doi.org/10.1074/jbc.M112.444059] [PMID: 23640890]
[106]
Wang J, Xu C, Zheng Q, et al. Orai1, 2, 3 and STIM1 promote store-operated calcium entry in pulmonary arterial smooth muscle cells. Cell Death Discov 2017; 3(1): 17074.
[http://dx.doi.org/10.1038/cddiscovery.2017.74] [PMID: 29188077]
[107]
Wang J, Fu X, Yang K, et al. Hypoxia inducible factor-1-dependent up-regulation of BMP4 mediates hypoxia-induced increase of TRPC expression in PASMCs. Cardiovasc Res 2015; 107(1): 108-18.
[http://dx.doi.org/10.1093/cvr/cvv122] [PMID: 25824146]
[108]
Jiang Q, Fu X, Tian L, et al. NOX4 mediates BMP4-induced upregulation of TRPC1 and 6 protein expressions in distal pulmonary arterial smooth muscle cells. PLoS One 2014; 9(9): e107135.
[http://dx.doi.org/10.1371/journal.pone.0107135] [PMID: 25203114]
[109]
Sommer N, Strielkov I, Pak O, Weissmann N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J 2016; 47(1): 288-303.
[http://dx.doi.org/10.1183/13993003.00945-2015] [PMID: 26493804]
[110]
Chen TX, Xu XY, Zhao Z, et al. Hydrogen peroxide is a critical regulator of the hypoxia-induced alterations of store-operated Ca2+ entry into rat pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2017; 312(4): L477-87.
[http://dx.doi.org/10.1152/ajplung.00138.2016] [PMID: 28130257]
[111]
Hawkins BJ, Irrinki KM, Mallilankaraman K, et al. S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 2010; 190(3): 391-405.
[http://dx.doi.org/10.1083/jcb.201004152] [PMID: 20679432]
[112]
Wu W, Dave NB, Yu G, et al. Network analysis of temporal effects of intermittent and sustained hypoxia on rat lungs. Physiol Genomics 2008; 36(1): 24-34.
[http://dx.doi.org/10.1152/physiolgenomics.00258.2007] [PMID: 18826996]
[113]
Jiao X, Sherman BT, Huang W, et al. DAVID-WS: A stateful web service to facilitate gene/protein list analysis. Bioinformatics 2012; 28(13): 1805-6.
[http://dx.doi.org/10.1093/bioinformatics/bts251] [PMID: 22543366]
[114]
Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol 2016; 1418: 93-110.
[http://dx.doi.org/10.1007/978-1-4939-3578-9_5] [PMID: 27008011]
[115]
Keegan A. Oxidative stress and hypoxia-induced pulmonary hypertension. Respir Res 2001; 2(1): 68590.
[http://dx.doi.org/10.1186/rr-2001-68590]
[116]
Fröhlich S, Boylan J, McLoughlin P. Hypoxia-induced inflammation in the lung: A potential therapeutic target in acute lung injury? Am J Respir Cell Mol Biol 2013; 48(3): 271-9.
[http://dx.doi.org/10.1165/rcmb.2012-0137TR] [PMID: 23087053]
[117]
Lai N, Lu W, Wang J. Ca(2+) and ion channels in hypoxia-mediated pulmonary hypertension. Int J Clin Exp Pathol 2015; 8(2): 1081-92.
[PMID: 25972995]
[118]
Barton CH, Ni Z, Vaziri ND. Blood pressure response to hypoxia: Role of nitric oxide synthase. Am J Hypertens 2003; 16(12): 1043-8.
[http://dx.doi.org/10.1016/j.amjhyper.2003.07.021] [PMID: 14643579]
[119]
Anderson L, Lowery JW, Frank DB, et al. Bmp2 and Bmp4 exert opposing effects in hypoxic pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol 2010; 298(3): R833-42.
[http://dx.doi.org/10.1152/ajpregu.00534.2009] [PMID: 20042692]
[120]
Zhang Y, Lu W, Yang K, et al. Bone morphogenetic protein 2 decreases TRPC expression, store-operated Ca(2+) entry, and basal [Ca(2+)]i in rat distal pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 2013; 304(9): C833-43.
[http://dx.doi.org/10.1152/ajpcell.00036.2012] [PMID: 23447035]
[121]
Takahashi H, Goto N, Kojima Y, et al. Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary hyperten-sion. Am J Physiol Lung Cell Mol Physiol 2006; 290(3): L450-8.
[http://dx.doi.org/10.1152/ajplung.00206.2005] [PMID: 16361357]
[122]
Frank DB, Abtahi A, Yamaguchi DJ, et al. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res 2005; 97(5): 496-504.
[http://dx.doi.org/10.1161/01.RES.0000181152.65534.07] [PMID: 16100039]
[123]
Du Y, Fu J, Yao L, et al. Altered expression of PPAR γ and TRPC in neonatal rats with persistent pulmonary hypertension. Mol Med Rep 2017; 16(2): 117-24.
[124]
Williams A, Scharf SM. Obstructive sleep apnea, cardiovascular disease, and inflammation--is NF-kappaB the key? Sleep Breath 2007; 11(2): 69-76.
[http://dx.doi.org/10.1007/s11325-007-0106-1] [PMID: 17380355]
[125]
Patel H, Zaghloul N, Lin K, Liu SF, Miller EJ, Ahmed M. Hypoxia-induced activation of specific members of the NF-kB family and its relevance to pulmonary vascular remodeling. Int J Biochem Cell Biol 2017; 92: 141-7.
[http://dx.doi.org/10.1016/j.biocel.2017.09.022] [PMID: 28987523]
[126]
Belaiba RS, Bonello S, Zähringer C, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidyl-inositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell 2007; 18(12): 4691-7.
[http://dx.doi.org/10.1091/mbc.e07-04-0391] [PMID: 17898080]
[127]
Wei HL, Zhang CY, Jin HF, Tang CS, Du JB. Hydrogen sulfide regulates lung tissue-oxidized glutathione and total antioxidant capacity in hypoxic pulmonary hypertensive rats. Acta Pharmacol Sin 2008; 29(6): 670-9.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00796.x] [PMID: 18501113]
[128]
Fu C, Hao S, Liu Z, et al. SOD2 ameliorates pulmonary hypertension in a murine model of sleep apnea via suppressing expression of NLRP3 in CD11b+ cells. Respir Res 2020; 21(1): 9.
[http://dx.doi.org/10.1186/s12931-019-1270-0] [PMID: 31915037]
[129]
Song JQ, Jiang LY, Fu CP, et al. Heterozygous SOD2 deletion deteriorated chronic intermittent hypoxia-induced lung inflammation and vascular remodeling through mtROS-NLRP3 signaling pathway. Acta Pharmacol Sin 2020; 41(9): 1197-207.
[http://dx.doi.org/10.1038/s41401-019-0349-y] [PMID: 32066884]
[130]
Domínguez-Rodríguez A, Ruiz-Hurtado G, Sabourin J, Gómez AM, Alvarez JL, Benitah JP. Proarrhythmic effect of sustained EPAC activa-tion on TRPC3/4 in rat ventricular cardiomyocytes. J Mol Cell Cardiol 2015; 87: 74-8.
[http://dx.doi.org/10.1016/j.yjmcc.2015.07.002] [PMID: 26219954]
[131]
Sonneveld R, van der Vlag J, Baltissen MP, et al. Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. Am J Pathol 2014; 184(6): 1715-26.
[http://dx.doi.org/10.1016/j.ajpath.2014.02.008] [PMID: 24731445]
[132]
Park S, Lee S, Park EJ, et al. TGFβ1 induces stress fiber formation through upregulation of TRPC6 in vascular smooth muscle cells. Biochem Biophys Res Commun 2017; 483(1): 129-34.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.179] [PMID: 28039055]
[133]
Ogawa A, Firth AL, Smith KA, Maliakal MV, Yuan JX. PDGF enhances store-operated Ca2+ entry by upregulating STIM1/Orai1 via activa-tion of Akt/mTOR in human pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 2012; 302(2): C405-11.
[http://dx.doi.org/10.1152/ajpcell.00337.2011] [PMID: 22031597]
[134]
Zhang Y, Wang Y, Yang K, et al. BMP4 increases the expression of TRPC and basal [Ca2+]i via the p38MAPK and ERK1/2 pathways inde-pendent of BMPRII in PASMCs. PLoS One 2014; 9(12): e112695.
[http://dx.doi.org/10.1371/journal.pone.0112695] [PMID: 25461595]
[135]
Li Y, Guo B, Xie Q, et al. STIM1 mediates hypoxia-driven hepatocarcinogenesis via interaction with HIF-1. Cell Rep 2015; 12(3): 388-95.
[http://dx.doi.org/10.1016/j.celrep.2015.06.033] [PMID: 26166565]
[136]
DebRoy A, Vogel SM, Soni D, Sundivakkam PC, Malik AB, Tiruppathi C. Cooperative signaling via transcription factors NF-κB and AP1/c-Fos mediates endothelial cell STIM1 expression and hyperpermeability in response to endotoxin. J Biol Chem 2014; 289(35): 24188-201.
[http://dx.doi.org/10.1074/jbc.M114.570051] [PMID: 25016017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy