Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Herbal Therapeutics for Alzheimer's Disease: Ancient Indian Medicine System from the Modern Viewpoint

Author(s): Shikha Kushwah, Neha Shree Maurya, Sandeep Kushwaha, Luciana Scotti, Aakash Chawade* and Ashutosh Mani*

Volume 21, Issue 4, 2023

Published on: 20 February, 2023

Page: [764 - 776] Pages: 13

DOI: 10.2174/1570159X21666230216094353

Price: $65

Abstract

Alzheimer's is a chronic neurodegenerative disease where amyloid-beta (Aβ) plaques and neurofibrillary tangles are formed inside the brain. It is also characterized by progressive memory loss, depression, neuroinflammation, and derangement of other neurotransmitters. Due to its complex etiopathology, current drugs have failed to completely cure the disease. Natural compounds have been investigated as an alternative therapy for their ability to treat Alzheimer's disease (AD). Traditional herbs and formulations which are used in the Indian ayurvedic system are rich sources of antioxidant, anti-amyloidogenic, neuroprotective, and anti-inflammatory compounds. They promote quality of life by improving cognitive memory and rejuvenating brain functioning through neurogenesis. A rich knowledge base of traditional herbal plants (Turmeric, Gingko, Ashwagandha, Shankhpushpi, Giloy, Gotu kola, Garlic, Tulsi, Ginger, and Cinnamon) combined with modern science could suggest new functional leads for Alzheimer's drug discovery. In this article Ayurveda, the ancient Indian herbal medicine system based on multiple clinical and experimental, evidence have been reviewed for treating AD and improving brain functioning. This article presents a modern perspective on the herbs available in the ancient Indian medicine system as well as their possible mechanisms of action for AD treatment. The main objective of this research is to provide a systematic review of herbal drugs that are easily accessible and effective for the treatment of AD.

Keywords: Alzheimer's, neurodegenerative, Aβ plaques, cognitive memory, medicinal herbs, neurofibrillary tangles.

Graphical Abstract
[1]
Wenk, G.L. Neuropathologic changes in Alzheimer’s disease. J. Clin. Psychiatry, 2003, 64(Suppl. 9), 7-10.
[PMID: 12934968]
[2]
Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry, 1999, 66(2), 137-147.
[http://dx.doi.org/10.1136/jnnp.66.2.137] [PMID: 10071091]
[3]
Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; Jorm, A.; Mathers, C.; Menezes, P.R.; Rimmer, E.; Scazufca, M. Global prevalence of dementia: a Delphi consensus study. Lancet, 2005, 366(9503), 2112-2117.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0] [PMID: 16360788]
[4]
Wimo, A.; Winblad, B.; Aguero-Torres, H.; von Strauss, E. The magnitude of dementia occurrence in the world. Alzheimer Dis. Assoc. Disord., 2003, 17(2), 63-67.
[http://dx.doi.org/10.1097/00002093-200304000-00002] [PMID: 12794381]
[5]
Brookmeyer, R.; Johnson, E.; Ziegler-Grahamm, K.; Arrighi, H.M. O1-02-01: Forecasting the global prevalence and burden of Alzheimer’s disease. Alzheimer’s Dement, 2007, 3(3S_Part_3), S168-S168.
[6]
Qiu, C.; Kivipelto, M.; von Strauss, E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci., 2009, 11(2), 111-128.
[http://dx.doi.org/10.31887/DCNS.2009.11.2/cqiu] [PMID: 19585947]
[7]
2019 Alzheimer’s disease facts and figures. Alzheimers Dement., 2019, 15(3), 321-387.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[8]
Wiley, J. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement., 2021, 17(3), 327-406.
[http://dx.doi.org/10.1002/alz.12328] [PMID: 33756057]
[9]
Kumar, G.P.; Anilakumar, K.R.; Naveen, S. Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Pharmacogn. J., 2015, 7(1), 01-17.
[http://dx.doi.org/10.5530/pj.2015.1.1]
[10]
Jivad, N.; Rabiei, Z. A review study on medicinal plants used in the treatment of learning and memory impairments. Asian Pac. J. Trop. Biomed., 2014, 4(10), 780-789.
[http://dx.doi.org/10.12980/APJTB.4.2014APJTB-2014-0412]
[11]
Lleó, A. Current therapeutic options for Alzheimer’s disease. Curr. Genomics, 2007, 8(8), 550-558.
[http://dx.doi.org/10.2174/138920207783769549] [PMID: 19415128]
[12]
Glymour, M.M.; Weuve, J.; Dufouil, C.; Mayeda, E.R. Aduhelm, the newly approved medication for Alzheimer’s disease: what epidemiologists can learn and what epidemiology can offer. Am. J. Epidemiol., 2022, 191(8), 1347-1351.
[http://dx.doi.org/10.1093/aje/kwac063] [PMID: 35388413]
[13]
Hatta, M. Neurogenesis and brain-derived neurotrophic factor levels in herbal therapy. Int. J. Res. Med. Sci., 2016, 4(11), 4654.
[14]
Rao, R.V.; Descamps, O.; John, V.; Bredesen, D.E. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimers Res. Ther., 2012, 4(3), 22.
[http://dx.doi.org/10.1186/alzrt125] [PMID: 22747839]
[15]
Kim, H. Neuroprotective herbs for stroke therapy in traditional eastern medicine. Neurol. Res., 2005, 27(3), 287-301.
[http://dx.doi.org/10.1179/016164105X25234] [PMID: 15845212]
[16]
Iqbal, K.; Grundke-Iqbal, I. Alzheimer’s Disease, a Multifactorial Disorder Seeking Multitherapies; Elsevier: Amsterdam, 2010, Vol. 6, pp. 420-424.
[17]
Guo, T.; Zhang, D.; Zeng, Y.; Huang, T.Y.; Xu, H.; Zhao, Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener., 2020, 15(1), 40.
[http://dx.doi.org/10.1186/s13024-020-00391-7] [PMID: 32677986]
[18]
Bird, T.D. Genetic aspects of Alzheimer disease. Genet. Med., 2008, 10(4), 231-239.
[http://dx.doi.org/10.1097/GIM.0b013e31816b64dc] [PMID: 18414205]
[19]
Nelson, P.T.; Alafuzoff, I.; Bigio, E.H.; Bouras, C.; Braak, H.; Cairns, N.J.; Castellani, R.J.; Crain, B.J.; Davies, P.; Tredici, K.D.; Duyckaerts, C.; Frosch, M.P.; Haroutunian, V.; Hof, P.R.; Hulette, C.M.; Hyman, B.T.; Iwatsubo, T.; Jellinger, K.A.; Jicha, G.A.; Kövari, E.; Kukull, W.A.; Leverenz, J.B.; Love, S.; Mackenzie, I.R.; Mann, D.M.; Masliah, E.; McKee, A.C.; Montine, T.J.; Morris, J.C.; Schneider, J.A.; Sonnen, J.A.; Thal, D.R.; Trojanowski, J.Q.; Troncoso, J.C.; Wisniewski, T.; Woltjer, R.L.; Beach, T.G. Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J. Neuropathol. Exp. Neurol., 2012, 71(5), 362-381.
[http://dx.doi.org/10.1097/NEN.0b013e31825018f7] [PMID: 22487856]
[20]
Edwards, G.A., III; Gamez, N.; Escobedo, G., Jr; Calderon, O.; Moreno-Gonzalez, I. Modifiable risk factors for Alzheimer’s disease. Front. Aging Neurosci., 2019, 11, 146.
[http://dx.doi.org/10.3389/fnagi.2019.00146] [PMID: 31293412]
[21]
Xia, X.; Jiang, Q.; McDermott, J.; Han, J.D.J. Aging and Alzheimer’s disease: Comparison and associations from molecular to system level. Aging Cell, 2018, 17(5), e12802.
[http://dx.doi.org/10.1111/acel.12802] [PMID: 29963744]
[22]
Zhang, H. Zheng, Y. β amyloid hypothesis in Alzheimer’s disease: pathogenesis, prevention, and management. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2019, 41(5), 702-708.
[PMID: 31699204]
[23]
Barage, S.H.; Sonawane, K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides, 2015, 52, 1-18.
[http://dx.doi.org/10.1016/j.npep.2015.06.008] [PMID: 26149638]
[24]
Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[25]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34(1), 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[26]
Haass, C.; Selkoe, D.J. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell, 1993, 75(6), 1039-1042.
[http://dx.doi.org/10.1016/0092-8674(93)90312-E] [PMID: 8261505]
[27]
Coulson, E.J.; Paliga, K.; Beyreuther, K.; Masters, C.L. What the evolution of the amyloid protein precursor supergene family tells us about its function. Neurochem. Int., 2000, 36(3), 175-184.
[http://dx.doi.org/10.1016/S0197-0186(99)00125-4] [PMID: 10676850]
[28]
Murphy, M.P.; LeVine, H. III Alzheimer’s disease and the amyloid-β peptide. J. Alzheimers Dis., 2010, 19(1), 311-323.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[29]
Ak, T. Gülçin, İ. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact., 2008, 174(1), 27-37.
[http://dx.doi.org/10.1016/j.cbi.2008.05.003] [PMID: 18547552]
[30]
Schaffer, M.; Schaffer, P.M.; Zidan, J.; Sela, G.B. Curcuma as a functional food in the control of cancer and inflammation. Curr. Opin. Clin. Nutr. Metab. Care, 2011, 14(6), 588-597.
[http://dx.doi.org/10.1097/MCO.0b013e32834bfe94] [PMID: 21986478]
[31]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[32]
Liu, H.T.; Ho, Y.S. Anticancer effect of curcumin on breast cancer and stem cells. Food Sci. Hum. Wellness, 2018, 7(2), 134-137.
[http://dx.doi.org/10.1016/j.fshw.2018.06.001]
[33]
Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci., 2014, 116(1), 1-7.
[http://dx.doi.org/10.1016/j.lfs.2014.08.016] [PMID: 25200875]
[34]
Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives-a review. J. Tradit. Complement. Med., 2017, 7(2), 205-233.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[35]
Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S. Neffe-Skocińska, K.; Zielińska, D. Turmeric and its major compound Curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol., 2020, 11, 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021]
[36]
Priyadarsini, K. The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[37]
Singh, P.; Bhooshan Pandey, K.; Ibrahim Rizvi, S. Curcumin: the yellow molecule with pleiotropic biological effects. Lett. Drug Des. Discov., 2015, 13(2), 170-177.
[http://dx.doi.org/10.2174/1570180812666150630184101]
[38]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[39]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Tonk, S.; Kuruva, C.S.; Bhatti, J.S.; Kandimalla, R.; Vijayan, M.; Kumar, S.; Wang, R.; Pradeepkiran, J.A.; Ogunmokun, G.; Thamarai, K.; Quesada, K.; Boles, A.; Reddy, A.P. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease. J. Alzheimers Dis., 2018, 61(3), 843-866.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[40]
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[41]
Cheng, K.K.; Yeung, C.F.; Ho, S.W.; Chow, S.F.; Chow, A.H.L.; Baum, L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J., 2013, 15(2), 324-336.
[http://dx.doi.org/10.1208/s12248-012-9444-4] [PMID: 23229335]
[42]
Mishra, S.; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Ann. Indian Acad. Neurol., 2008, 11(1), 13-19.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[43]
Hassanzadeh, K.; Buccarello, L.; Dragotto, J.; Mohammadi, A.; Corbo, M.; Feligioni, M. Obstacles against the marketing of curcumin as a drug. Int. J. Mol. Sci., 2020, 21(18), 6619.
[http://dx.doi.org/10.3390/ijms21186619] [PMID: 32927725]
[44]
Dei Cas, M.; Ghidoni, R. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients, 2019, 11(9), 2147.
[http://dx.doi.org/10.3390/nu11092147] [PMID: 31500361]
[45]
Yallapu, M.M.; Nagesh, P.K.B.; Jaggi, M.; Chauhan, S.C. Therapeutic applications of curcumin nanoformulations. AAPS J., 2015, 17(6), 1341-1356.
[http://dx.doi.org/10.1208/s12248-015-9811-z] [PMID: 26335307]
[46]
Sun, M.; Gao, Y.; Guo, C.; Cao, F.; Song, Z.; Xi, Y.; Yu, A.; Li, A.; Zhai, G. Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle. J. Nanopart. Res., 2010, 12(8), 3111-3122.
[http://dx.doi.org/10.1007/s11051-010-9907-4]
[47]
Kressmann, S.; Biber, A.; Wonnemann, M.; Schug, B.; Blume, H.H.; Müller, W.E. Influence of pharmaceutical quality on the bioavailability of active components from Ginkgo biloba preparations. J. Pharm. Pharmacol., 2010, 54(11), 1507-1514.
[http://dx.doi.org/10.1211/002235702199] [PMID: 12495553]
[48]
Shi, C.; Liu, J.; Wu, F.; Yew, D. Ginkgo biloba extract in Alzheimer’s disease: From action mechanisms to medical practice. Int. J. Mol. Sci., 2010, 11(1), 107-123.
[http://dx.doi.org/10.3390/ijms11010107] [PMID: 20162004]
[49]
Shif, O.; Gillette, K.; Damkaoutis, C.M.; Carrano, C.; Robbins, S.J.; Hoffman, J.R. Effects of Ginkgo biloba administered after spatial learning on water maze and radial arm maze performance in young adult rats. Pharmacol. Biochem. Behav., 2006, 84(1), 17-25.
[http://dx.doi.org/10.1016/j.pbb.2006.04.003] [PMID: 16740301]
[50]
Yasuno, F.; Tanimukai, S.; Sasaki, M.; Ikejima, C.; Yamashita, F.; Kodama, C.; Mizukami, K.; Asada, T. Combination of antioxidant supplements improved cognitive function in the elderly. J. Alzheimers Dis., 2012, 32(4), 895-903.
[http://dx.doi.org/10.3233/JAD-2012-121225] [PMID: 22886021]
[51]
Matsuda, H.; Murakami, T.; Kishi, A.; Yoshikawa, M. Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera Dunal. and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg. Med. Chem., 2001, 9(6), 1499-1507.
[http://dx.doi.org/10.1016/S0968-0896(01)00024-4] [PMID: 11408168]
[52]
Sehgal, N.; Gupta, A.; Valli, R.K.; Joshi, S.D.; Mills, J.T.; Hamel, E.; Khanna, P.; Jain, S.C.; Thakur, S.S.; Ravindranath, V. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc. Natl. Acad. Sci. USA, 2012, 109(9), 3510-3515.
[http://dx.doi.org/10.1073/pnas.1112209109] [PMID: 22308347]
[53]
Kuboyama, T.; Tohda, C.; Zhao, J.; Nakamura, N.; Hattori, M.; Komatsu, K. Axon- or dendrite-predominant outgrowth induced by constituents from Ashwagandha. Neuroreport, 2002, 13(14), 1715-1720.
[http://dx.doi.org/10.1097/00001756-200210070-00005] [PMID: 12395110]
[54]
Kuboyama, T.; Tohda, C.; Komatsu, K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br. J. Pharmacol., 2005, 144(7), 961-971.
[http://dx.doi.org/10.1038/sj.bjp.0706122] [PMID: 15711595]
[55]
Jayaprakasam, B.; Padmanabhan, K.; Nair, M.G. Withanamides in Withania somnifera fruit protect PC-12 cells from β-amyloid responsible for Alzheimer’s disease. Phytother. Res., 2010, 24(6), 859-863.
[http://dx.doi.org/10.1002/ptr.3033] [PMID: 19957250]
[56]
Sethiya, N.K.; Nahata, A.; Mishra, S.H.; Dixit, V.K. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine. J. Chin. Integr. Med., 2009, 7(11), 1001-1022.
[http://dx.doi.org/10.3736/jcim20091101] [PMID: 19912732]
[57]
Parihar, M.S.; Hemnani, T. Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity. J. Biosci., 2003, 28(1), 121-128.
[http://dx.doi.org/10.1007/BF02970142] [PMID: 12682435]
[58]
Sethiya, N.K.; Nahata, A.; Singh, P.K.; Mishra, S.H. Neuropharmacological evaluation on four traditional herbs used as nervine tonic and commonly available as Shankhpushpi in India. J. Ayurveda Integr. Med., 2019, 10(1), 25-31.
[http://dx.doi.org/10.1016/j.jaim.2017.08.012] [PMID: 29530454]
[59]
Kizhakke, P. A.; Olakkaran, S.; Antony, A.; Tilagul K, S.; Hunasanahally P, G. Convolvulus pluricaulis (Shankhapushpi) ameliorates human microtubule-associated protein tau (hMAPτ) induced neurotoxicity in Alzheimer’s disease Drosophila model. J. Chem. Neuroanat., 2019, 95, 115-122.
[http://dx.doi.org/10.1016/j.jchemneu.2017.10.002] [PMID: 29051039]
[60]
Damodaran, T.; Cheah, P.S.; Murugaiyah, V.; Hassan, Z. The nootropic and anticholinesterase activities of Clitoria ternatea Linn. root extract: Potential treatment for cognitive decline. Neurochem. Int., 2020, 139, 104785.
[http://dx.doi.org/10.1016/j.neuint.2020.104785] [PMID: 32650028]
[61]
Rai, K.S.; Murthy, K.D.; Rao, M.S.; Karanth, K.S. Altered dendritic arborization of amygdala neurons in young adult rats orally intubated with Clitorea ternatea aqueous root extract. Phytother. Res., 2005, 19(7), 592-598.
[http://dx.doi.org/10.1002/ptr.1657] [PMID: 16161034]
[62]
Mutalik, M.; Mutalik, M. Tinospora cordifolia: Role in depression, cognition and memory. Aust. J. Med. Herb., 2011, 23(4), 168-173.
[63]
Ghatpande, N.S.; Misar, A.V.; Waghole, R.J.; Jadhav, S.H.; Kulkarni, P.P. Tinospora cordifolia protects against inflammation associated anemia by modulating inflammatory cytokines and hepcidin expression in male Wistar rats. Sci. Rep., 2019, 9(1), 10969.
[http://dx.doi.org/10.1038/s41598-019-47458-0] [PMID: 31358831]
[64]
Reddi, K.K.; Tetali, S.D. Dry leaf extracts of Tinospora cordifolia (Willd.) Miers attenuate oxidative stress and inflammatory condition in human monocytic (THP-1) cells. Phytomedicine, 2019, 61, 152831.
[http://dx.doi.org/10.1016/j.phymed.2019.152831] [PMID: 31035042]
[65]
Agarwal, A.; Malini, S.; Bairy, K.; Rao, M.S. Effect of Tinospora cordifolia on learning and memory in normal and memory deficit rats. Indian J. Pharmacol., 2002, 34(5), 339-349.
[66]
Upadhyay, A.; Kumar, K.; Kumar, A.; Mishra, H. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies. Int. J. Ayurveda Res., 2010, 1(2), 112-121.
[http://dx.doi.org/10.4103/0974-7788.64405] [PMID: 20814526]
[67]
Prakash, R.; Ramya, N.; Dhivya, R.; Priyadarshini, M. Neuroprotective activity of ethanolic extract of Tinospora cordifolia on LPS induced neuroinflammation. Transl. Biomed., 2017, 8(4)
[68]
Mishra, R.; Manchanda, S.; Gupta, M.; Kaur, T.; Saini, V.; Sharma, A.; Kaur, G. Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats. Sci. Rep., 2016, 6(1), 25564.
[http://dx.doi.org/10.1038/srep25564] [PMID: 27146164]
[69]
Birla, H.; Keswani, C.; Singh, S.S.; Zahra, W.; Dilnashin, H.; Rathore, A.S.; Singh, R.; Rajput, M.; Keshri, P.; Singh, S.P. Unraveling the neuroprotective effect of tinospora cordifolia in a parkinsonian mouse model through the proteomics approach. ACS Chem. Neurosci., 2021, 12(22), 4319-4335.
[http://dx.doi.org/10.1021/acschemneuro.1c00481] [PMID: 34747594]
[70]
James, J.; Dubery, I. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.). Urban. Molecules, 2009, 14(10), 3922-3941.
[http://dx.doi.org/10.3390/molecules14103922] [PMID: 19924039]
[71]
Kulkarni, O.; Mukherjee, S.; Bhandare, R.; Jagtap, S.; Dugad, S.; Pawar, N.; Pawar, P.K. Evaluation of comparative free-radical quenching potential of Brahmi (Bacopa monnieri) and Mandookparni (Centella asiatica). Ayu, 2011, 32(2), 258-264.
[http://dx.doi.org/10.4103/0974-8520.92549] [PMID: 22408313]
[72]
Subathra, M.; Shila, S.; Devi, M.A.; Panneerselvam, C. Emerging role of Centella asiatica in improving age-related neurological antioxidant status. Exp. Gerontol., 2005, 40(8-9), 707-715.
[http://dx.doi.org/10.1016/j.exger.2005.06.001] [PMID: 16026958]
[73]
Shinomol, G.K. Muralidhara; Bharath, M.M. Exploring the role of “Brahmi” (Bacopa monnieri and Centella asiatica) in brain function and therapy. Recent Pat. Endocr. Metab. Immune Drug Discov., 2011, 5(1), 33-49.
[http://dx.doi.org/10.2174/187221411794351833] [PMID: 22074576]
[74]
Dhanasekaran, M.; Holcomb, L.A.; Hitt, A.R.; Tharakan, B.; Porter, J.W.; Young, K.A.; Manyam, B.V. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytother. Res., 2009, 23(1), 14-19.
[http://dx.doi.org/10.1002/ptr.2405] [PMID: 19048607]
[75]
Chiroma, S.M.; Baharuldin, M.T.H.; Mat Taib, C.N.; Amom, Z.; Jagadeesan, S.; Ilham Adenan, M.; Mahdi, O.; Moklas, M.A.M. Centella asiatica protects d-galactose/AlCl3 mediated Alzheimer’s disease-like rats via PP2A/GSK-3β signaling pathway in their Hippocampus. Int. J. Mol. Sci., 2019, 20(8), 1871.
[http://dx.doi.org/10.3390/ijms20081871] [PMID: 31014012]
[76]
Sripanidkulchai, B. Benefits of aged garlic extract on Alzheimer’s disease: Possible mechanisms of action. Exp. Ther. Med., 2020, 19(2), 1560-1564.
[PMID: 32010339]
[77]
Thorajak, P.; Pannangrong, W.; Welbat, J.U.; Chaijaroonkhanarak, W.; Sripanidkulchai, K.; Sripanidkulchai, B. Effects of aged garlic extract on cholinergic, glutamatergic and GABAergic systems with regard to cognitive impairment in Aβ-induced rats. Nutrients, 2017, 9(7), 686.
[http://dx.doi.org/10.3390/nu9070686] [PMID: 28671572]
[78]
Amagase, H.; Petesch, B.L.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of garlic and its bioactive components. J. Nutr., 2001, 131(3), 955S-962S.
[http://dx.doi.org/10.1093/jn/131.3.955S] [PMID: 11238796]
[79]
Chauhan, N.B. Multiplicity of garlic health effects and Alzheimer’s disease. J. Nutr. Health Aging, 2005, 9(6), 421-432.
[PMID: 16395514]
[80]
Kosuge, Y. Neuroprotective mechanisms of S-allyl-L-cysteine in neurological disease. Exp. Ther. Med., 2020, 19(2), 1565-1569.
[PMID: 32010340]
[81]
Mathew, B.; Biju, R. Neuroprotective effects of garlic a review. Libyan J. Med., 2008, 3(1), 23-33.
[PMID: 21499478]
[82]
Gupta, V.B.; Indi, S.S.; Rao, K.S.J. Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: Relevance to Alzheimer’s disease. Phytother. Res., 2009, 23(1), 111-115.
[http://dx.doi.org/10.1002/ptr.2574] [PMID: 18844255]
[83]
Jaggi, R.K.; Madaan, R.; Singh, B. Anticonvulsant potential of holy basil, Ocimum sanctum Linn., and its cultures. Indian J. Exp. Biol., 2003, 41(11), 1329-1333.
[84]
Geetha, R.K.; Kedlaya, R.; Vasudevan, D.M. Inhibition of lipid peroxidation by botanical extracts of Ocimum sanctum: In vivo and in vitro studies. Life Sci., 2004, 76(1), 21-28.
[http://dx.doi.org/10.1016/j.lfs.2004.05.036] [PMID: 15532130]
[85]
Kelm, M.A.; Nair, M.G.; Strasburg, G.M.; DeWitt, D.L. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine, 2000, 7(1), 7-13.
[http://dx.doi.org/10.1016/S0944-7113(00)80015-X] [PMID: 10782484]
[86]
Singh, S. Comparative evaluation of antiinflammatory potential of fixed oil of different species of Ocimum and its possible mechanism of action. Indian J. Exp. Biol., 1998, 36(10), 1028-1031.
[PMID: 10356964]
[87]
Joshi, H.; Parle, M. Evaluation of nootropic potential of Ocimum sanctum Linn. in mice. Indian J. Exp. Biol., 2006, 44(2), 133-136.
[88]
Hening, P.; Mataram, M.B.A.; Wijayanti, N.; Kusindarta, D.L.; Wihadmadyatami, H. The neuroprotective effect of Ocimum sanctum Linn. ethanolic extract on human embryonic kidney-293 cells as in vitro model of neurodegenerative disease. Vet. World, 2018, 11(9), 1237-1243.
[http://dx.doi.org/10.14202/vetworld.2018.1237-1243] [PMID: 30410227]
[89]
Cohen, M. Tulsi - Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med., 2014, 5(4), 251-259.
[http://dx.doi.org/10.4103/0975-9476.146554] [PMID: 25624701]
[90]
Kusindarta, D.L.; Wihadmadyatami, H.; Haryanto, A. Ocimum sanctum Linn. stimulate the expression of choline acetyltransferase on the human cerebral microvascular endothelial cells. Vet. World, 2016, 9(12), 1348-1354.
[http://dx.doi.org/10.14202/vetworld.2016.1348-1354] [PMID: 28096604]
[91]
Afzal, Μ.; Al-Hadidi, D.; Menon, M.; Pesek, J.; Dhami, M.S.I. Ginger: an ethnomedical, chemical and pharmacological review. Drug Metabol. Drug Interact., 2001, 18(3-4), 159-190.
[http://dx.doi.org/10.1515/DMDI.2001.18.3-4.159] [PMID: 11791883]
[92]
Altman, R.D.; Marcussen, K.C. Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum., 2001, 44(11), 2531-2538.
[http://dx.doi.org/10.1002/1529-0131(200111)44:11<2531:AID-ART433>3.0.CO;2-J] [PMID: 11710709]
[93]
Kiuchi, F.; Shibuya, M.; Sankawa, U. Inhibitors of prostaglandin biosynthesis from ginger. Chem. Pharm. Bull., 1982, 30(2), 754-757.
[http://dx.doi.org/10.1248/cpb.30.754] [PMID: 7094159]
[94]
Tjendraputra, E.; Tran, V.H.; Liu-Brennan, D.; Roufogalis, B.D.; Duke, C.C. Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells. Bioorg. Chem., 2001, 29(3), 156-163.
[http://dx.doi.org/10.1006/bioo.2001.1208] [PMID: 11437391]
[95]
Grzanna, R.; Phan, P.; Polotsky, A.; Lindmark, L.; Frondoza, C.G. Ginger extract inhibits β-amyloid peptide-induced cytokine and chemokine expression in cultured THP-1 monocytes. J. Altern. Complement. Med., 2004, 10(6), 1009-1013.
[http://dx.doi.org/10.1089/acm.2004.10.1009] [PMID: 15673995]
[96]
Cuya, T.; Baptista, L.; Celmar Costa França, T. A molecular dynamics study of components of the ginger (Zingiber officinale) extract inside human acetylcholinesterase: implications for Alzheimer disease. J. Biomol. Struct. Dyn., 2018, 36(14), 3843-3855.
[http://dx.doi.org/10.1080/07391102.2017.1401004] [PMID: 29096599]
[97]
Bode, A.M.; Dong, Z. The Amazing and Mighty Ginger.Herbal Medicine: Biomolecular and Clinical Aspects; CRC Press: Florida, US, 2nd ed.;.
[98]
Kang, Y.J.; Seo, D.G.; Park, S.Y. Phenylpropanoids from cinnamon bark reduced β-amyloid production by the inhibition of β-secretase in Chinese hamster ovarian cells stably expressing amyloid precursor protein. Nutr. Res., 2016, 36(11), 1277-1284.
[http://dx.doi.org/10.1016/j.nutres.2016.10.002] [PMID: 27865616]
[99]
Frydman-Marom, A.; Levin, A.; Farfara, D.; Benromano, T.; Scherzer-Attali, R.; Peled, S.; Vassar, R.; Segal, D.; Gazit, E.; Frenkel, D.; Ovadia, M. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. PLoS One, 2011, 6(1), e16564.
[http://dx.doi.org/10.1371/journal.pone.0016564] [PMID: 21305046]
[100]
Momtaz, S.; Hassani, S.; Khan, F.; Ziaee, M.; Abdollahi, M. Cinnamon, a promising prospect towards Alzheimer’s disease. Pharmacol. Res., 2018, 130, 241-258.
[http://dx.doi.org/10.1016/j.phrs.2017.12.011] [PMID: 29258915]
[101]
George, R.C.; Lew, J.; Graves, D.J. Interaction of cinnamaldehyde and epicatechin with tau: implications of beneficial effects in modulating Alzheimer’s disease pathogenesis. J. Alzheimers Dis., 2013, 36(1), 21-40.
[http://dx.doi.org/10.3233/JAD-122113] [PMID: 23531502]
[102]
Gruenwald, J.; Freder, J.; Armbruester, N. Cinnamon and Health. Crit. Rev. Food Sci. Nutr., 2010, 50(9), 822-834.
[http://dx.doi.org/10.1080/10408390902773052] [PMID: 20924865]
[103]
Braga, T.M.; Rocha, L.; Chung, T.Y.; Oliveira, R.F.; Pinho, C.; Oliveira, A.I.; Morgado, J.; Cruz, A. Biological activities of gedunin—A limonoid from the Meliaceae family. Molecules, 2020, 25(3), 493.
[http://dx.doi.org/10.3390/molecules25030493] [PMID: 31979346]
[104]
Fernandes, S.R.; Barreiros, L.; Oliveira, R.F.; Cruz, A.; Prudêncio, C.; Oliveira, A.I.; Pinho, C.; Santos, N.; Morgado, J. Chemistry, bioactivities, extraction and analysis of azadirachtin: State-of-the-art. Fitoterapia, 2019, 134, 141-150.
[http://dx.doi.org/10.1016/j.fitote.2019.02.006] [PMID: 30738093]
[105]
Patel, S.M.; Venkata, K.C.N.; Bhattacharyya, P.; Sethi, G.; Bishayee, A. Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Semin. Cancer Biol., 2016, 40-41, 100-115.
[106]
Gupta, S.C.; Prasad, S.; Tyagi, A.K.; Kunnumakkara, A.B.; Aggarwal, B.B. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine, 2017, 34, 14-20.
[http://dx.doi.org/10.1016/j.phymed.2017.07.001] [PMID: 28899496]
[107]
Saleem, S.; Muhammad, G.; Hussain, M.A.; Bukhari, S.N.A. A comprehensive review of phytochemical profile, bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica. Phytother. Res., 2018, 32(7), 1241-1272.
[http://dx.doi.org/10.1002/ptr.6076] [PMID: 29671907]
[108]
Sandhir, R.; Khurana, M.; Singhal, N.K. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem. Int., 2021, 146, 105023.
[http://dx.doi.org/10.1016/j.neuint.2021.105023] [PMID: 33753160]
[109]
Alzohairy, M.A. Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evidence-Based Complement. Alternat. Med., 2016, 2016
[110]
Maiti, R.; Raghavendra, M.; Kumar, S.; Acharya, S.B. Role of aqueous extract of Azadirachta indica leaves in an experimental model of Alzheimer's disease in rats. Int. J. Appl. Basic Med. Res., 2013, 3(1), 37-47.
[http://dx.doi.org/10.4103/2229-516X.112239] [PMID: 23776838]
[111]
Gorantla, N.V.; Das, R.; Mulani, F.A.; Thulasiram, H.V.; Chinnathambi, S. Neem derivatives inhibits tau aggregation1. J. Alzheimers Dis. Rep., 2019, 3(1), 169-178.
[http://dx.doi.org/10.3233/ADR-190118] [PMID: 31259310]
[112]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[113]
Musiek, E.S.; Holtzman, D.M. Three dimensions of the amyloid hypothesis: Time, space and ‘wingmen’. Nat. Neurosci., 2015, 18(6), 800-806.
[http://dx.doi.org/10.1038/nn.4018] [PMID: 26007213]
[114]
Wang, J.; Gu, B.J.; Masters, C.L.; Wang, Y.J. A systemic view of Alzheimer disease-insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol., 2017, 13(10), 612-623.
[http://dx.doi.org/10.1038/nrneurol.2017.111] [PMID: 28960209]
[115]
Brier, M.R.; Gordon, B.; Friedrichsen, K.; McCarthy, J.; Stern, A.; Christensen, J.; Owen, C.; Aldea, P.; Su, Y.; Hassenstab, J. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Sci. Translat. Med., 2016, 8(338), 338ra366-338ra366.
[116]
Jevtic, S.; Sengar, A.S.; Salter, M.W.; McLaurin, J. The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Res. Rev., 2017, 40, 84-94.
[http://dx.doi.org/10.1016/j.arr.2017.08.005] [PMID: 28941639]
[117]
McGeer, P.L.; McGeer, E.G. Targeting microglia for the treatment of Alzheimer’s disease. Expert Opin. Ther. Targets, 2015, 19(4), 497-506.
[http://dx.doi.org/10.1517/14728222.2014.988707] [PMID: 25435348]
[118]
Brinkman, S.D.; Gershon, S. Measurement of cholinergic drug effects on memory in Alzheimer’s disease. Neurobiol. Aging, 1983, 4(2), 139-145.
[http://dx.doi.org/10.1016/0197-4580(83)90038-6] [PMID: 6355883]
[119]
Summers, W.K.; Majovski, L.V.; Marsh, G.M.; Tachiki, K.; Kling, A. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N. Engl. J. Med., 1986, 315(20), 1241-1245.
[http://dx.doi.org/10.1056/NEJM198611133152001] [PMID: 2430180]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy