Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Stem Cell-based and Advanced Therapeutic Modalities for Parkinson’s Disease: A Risk-effectiveness Patient-centered Analysis

Author(s): Sarvenaz Salahi, Maryam Alsadat Mousavi, Gholamreza Azizi, Nikoo Hossein-Khannazer* and Massoud Vosough*

Volume 20, Issue 12, 2022

Published on: 19 April, 2022

Page: [2320 - 2345] Pages: 26

DOI: 10.2174/1570159X20666220201100238

Price: $65

Abstract

Treatment of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is currently considered a challenging issue since it causes substantial disability, poor quality of life, and mortality. Despite remarkable progress in advanced conventional therapeutic interventions, the global burden of the disease has nearly doubled, prompting us to assess the riskeffectiveness of different treatment modalities. Each protocol could be considered as the best alternative treatment depending on the patient’s situation. Prescription of levodopa, the most effective available medicine for this disorder, has been associated with many complications, i.e., multiple episodes of "off-time" and treatment resistance. Other medications, which are typically used in combination with levodopa, may have several adverse effects as well. As a result, the therapies that are more in line with human physiology and make the least interference with other pathways are worth investigating. On the other hand, remaining and persistent symptoms after therapy and the lack of effective response to the conventional approaches have raised expectations towards innovative alternative approaches, such as stem cell-based therapy. It is critical to not overlook the unexplored side effects of innovative approaches due to the limited number of research. In this review, we aimed to compare the efficacy and risk of advanced therapies with innovative cell-based and stemcell- based modalities in PD patients. This paper recapitulated the underlying factors/conditions, which could lead us to more practical and established therapeutic outcomes with more advantages and few complications. It could be an initial step to reconsider the therapeutic blueprint for patients with Parkinson’s disease.

Keywords: Parkinson's disease, stem cell-based therapy, levodopa, novel treatment modalities, neurodegenerative, mutation.

Graphical Abstract
[1]
Dorsey, E.R.; Elbaz, A.; Nichols, E. Global, regional, and national burden of Parkinson’s disease, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2018, 17(11), 939-953.
[http://dx.doi.org/10.1016/S1474-4422(18)30295-3] [PMID: 30287051]
[2]
Wirdefeldt, K.; Adami, H-O.; Cole, P.; Trichopoulos, D.; Mandel, J. Epidemiology and etiology of Parkinson’s disease: A review of the evidence. Eur. J. Epidemiol., 2011, (26)(Suppl. 1), S1-S58.
[http://dx.doi.org/10.1016/S1474-4422(18)30295-3] [PMID: 30287051]
[3]
Marras, C.; Beck, J.C.; Bower, J.H.; Roberts, E.; Ritz, B.; Ross, G.W.; Abbott, R.D.; Savica, R.; Van Den Eeden, S.K.; Willis, A.W.; Tanner, C.M. Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis., 2018, 4(1), 21.
[http://dx.doi.org/10.1038/s41531-018-0058-0] [PMID: 30003140]
[4]
Macleod, A.D.; Taylor, K.S.M.; Counsell, C.E. Mortality in Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord., 2014, 29(13), 1615-1622.
[http://dx.doi.org/10.1038/s41531-018-0058-0] [PMID: 30003140]
[5]
Dawson, T.M.; Dawson, V.L. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J. Clin. Invest., 2003, 111(2), 145-151.
[http://dx.doi.org/10.1172/JCI17575] [PMID: 12531866]
[6]
Fan, Y. Winanto; Ng, S.Y. Replacing what’s lost: A new era of stem cell therapy for Parkinson’s disease. Transl. Neurodegener., 2020, 9(1), 2.
[http://dx.doi.org/10.1186/s40035-019-0180-x] [PMID: 31911835]
[7]
Barker, R.A.; Parmar, M.; Studer, L.; Takahashi, J. Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: Dawn of a new era. Cell Stem Cell, 2017, 21(5), 569-573.
[http://dx.doi.org/10.1016/j.stem.2017.09.014] [PMID: 29100010]
[8]
Boronat-García, A.; Guerra-Crespo, M.; Drucker-Colín, R. Historical perspective of cell transplantation in Parkinson’s disease. World J. Transplant., 2017, 7(3), 179-192.
[http://dx.doi.org/10.5500/wjt.v7.i3.179] [PMID: 28698835]
[9]
Castelo-Branco, G.; Rawal, N.; Arenas, E. GSK-3β inhibition/β-catenin stabilization in ventral midbrain precursors increases differentiation into dopamine neurons. J. Cell Sci., 2004, 117(Pt 24), 5731-5737.
[http://dx.doi.org/10.1242/jcs.01505] [PMID: 15522889]
[10]
Liu, G.; Locascio, J.J.; Corvol, J.C.; Boot, B.; Liao, Z.; Page, K.; Franco, D.; Burke, K.; Jansen, I.E.; Trisini-Lipsanopoulos, A.; Winder-Rhodes, S.; Tanner, C.M.; Lang, A.E.; Eberly, S.; Elbaz, A.; Brice, A.; Mangone, G.; Ravina, B.; Shoulson, I.; Cormier-Dequaire, F.; Heutink, P.; van Hilten, J.J.; Barker, R.A.; Williams-Gray, C.H.; Marinus, J.; Scherzer, C.R.; Scherzer, C.R.; Hyman, B.T.; Ivinson, A.J.; Trisini-Lipsanopoulos, A.; Franco, D.; Burke, K.; Sudarsky, L.R.; Hayes, M.T.; Umeh, C.C.; Sperling, R.; Growdon, J.H.; Schwarzschild, M.A.; Hung, A.Y.; Flaherty, A.W.; Blacker, D.; Wills, A-M.; Sohur, U.S.; Mejia, N.I.; Viswanathan, A.; Gomperts, S.N.; Khurana, V.; Albers, M.W.; Alora-Palli, M.; McGinnis, S.; Sharma, N.; Dickerson, B.; Frosch, M.; Gomez-Isla, T.; Greenberg, S.; Gusella, J.; Hedden, T.; Hedley-Whyte, E.T.; Koenig, A.; Marquis-Sayagues, M.; Marshall, G.; Okereke, O.; Stemmer-Rachaminov, A.; Kloppenburg, J.; Schlossmacher, M.G.; Growdon, J.H.; Selkoe, D.J.; Sperling, R.; Yi, T.; Locascio, J.J.; Li, H.; Stalberg, G.; Liao, Z.; Barker, R.; Foltynie, T.; Williams-Gray, C.; Robbins, T.; Brayne, C.; Mason, S.; Winder-Rhodes, S.; Barker, R.; Williams-Gray, C.; Breen, D.P.; Cummins, G.; Evans, J.; Winder-Rhodes, S.; van Hilten, J.J.; Marinus, J.; Corvol, J-C.; Brice, A.; Corvol, J-C.; Elbaz, A.; Mallet, A.; Vidailhet, M.; Bonnet, A-M.; Bonnet, C.; Corvol, J-C.; Elbaz, A.; Grabli, D.; Hartmann, A.; Klebe, S.; Lacomblez, L.; Mangone, G.; Vidailhet, M.; Bourdain, F.; Brandel, J-P.; Derkinderen, P.; Durif, F.; Mesnage, V.; Pico, F.; Rascol, O.; Brefel-Courbon, C.; Ory-Magne, F.; Forlani, S.; Lesage, S.; Mangone, G.; Tahiri, K.; Albin, R.; Alcalay, R.; Ascherio, A.; Bowman, D.; Chen-Plotkin, A.; Dawson, T.; Dewey, R.; German, D.; Saunders-Pullman, R.; Scherzer, C.; Vaillancourt, D.; Petyuk, V.; West, A.; Zhang, J. Prediction of cognition in Parkinson’s disease with a clinical-genetic score: A longitudinal analysis of nine cohorts. Lancet Neurol., 2017, 16(8), 620-629.
[http://dx.doi.org/10.1016/S1474-4422(17)30122-9] [PMID: 28629879]
[11]
Li, S.; Dong, J.; Cheng, C.; Le, W. Therapies for Parkinson’s diseases: Alternatives to current pharmacological interventions. J. Neural Transm. (Vienna), 2016, 123(11), 1279-1299.
[http://dx.doi.org/10.1007/s00702-016-1603-9] [PMID: 27515029]
[12]
Sveinbjornsdottir, S. The clinical symptoms of Parkinson’s disease. J. Neurochem., 2016, 139(Suppl. 1), 318-324.
[http://dx.doi.org/10.1111/jnc.13691] [PMID: 27401947]
[13]
Müller, T. Drug therapy in patients with Parkinson’s disease. Transl. Neurodegener., 2012, 1(1), 10.
[http://dx.doi.org/10.1186/2047-9158-1-10] [PMID: 23211041]
[14]
Pahwa, R.; Factor, S.A.; Lyons, K.E.; Ondo, W.G.; Gronseth, G.; Bronte-Stewart, H.; Hallett, M.; Miyasaki, J.; Stevens, J.; Weiner, W.J. Practice Parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 2006, 66(7), 983-995.
[http://dx.doi.org/10.1212/01.wnl.0000215250.82576.87] [PMID: 16606909]
[15]
Schapira, A.H.; Emre, M.; Jenner, P.; Poewe, W. Levodopa in the treatment of Parkinson’s disease. Eur. J. Neurol., 2009, 16(9), 982-989.
[http://dx.doi.org/10.1111/j.1468-1331.2009.02697.x] [PMID: 19538218]
[16]
Ferreira, J.J.; Katzenschlager, R.; Bloem, B.R.; Bonuccelli, U.; Burn, D.; Deuschl, G.; Dietrichs, E.; Fabbrini, G.; Friedman, A.; Kanovsky, P.; Kostic, V.; Nieuwboer, A.; Odin, P.; Poewe, W.; Rascol, O.; Sampaio, C.; Schüpbach, M.; Tolosa, E.; Trenkwalder, C.; Schapira, A.; Berardelli, A.; Oertel, W.H. Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson’s disease. Eur. J. Neurol., 2013, 20(1), 5-15.
[http://dx.doi.org/10.1111/j.1468-1331.2012.03866.x] [PMID: 23279439]
[17]
Reich, S.G.; Savitt, J.M. Parkinson’s Disease. Med. Clin. North Am., 2019, 103(2), 337-350.
[http://dx.doi.org/10.1016/j.mcna.2018.10.014] [PMID: 30704685]
[18]
Tambasco, N.; Romoli, M.; Calabresi, P. Levodopa in Parkinson’s disease: Current status and future developments. Curr. Neuropharmacol., 2018, 16(8), 1239-1252.
[http://dx.doi.org/10.2174/1570159X15666170510143821] [PMID: 28494719]
[19]
LeWitt, P.A. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov. Disord., 2015, 30(1), 64-72.
[http://dx.doi.org/10.1002/mds.26082] [PMID: 25449210]
[20]
Volkmann, J.; Albanese, A.; Antonini, A.; Chaudhuri, K.R.; Clarke, C.E.; de Bie, R.M.; Deuschl, G.; Eggert, K.; Houeto, J.L.; Kulisevsky, J.; Nyholm, D.; Odin, P. Østergaard, K.; Poewe, W.; Pollak, P.; Rabey, J.M.; Rascol, O.; Ruzicka, E.; Samuel, M.; Speelman, H.; Sydow, O.; Valldeoriola, F.; van der Linden, C.; Oertel, W. Selecting deep brain stimulation or infusion therapies in advanced Parkinson’s disease: An evidence-based review. J. Neurol., 2013, 260(11), 2701-2714.
[http://dx.doi.org/10.1007/s00415-012-6798-6] [PMID: 23287972]
[21]
Wang, L.; Li, J.; Chen, J. Levodopa-carbidopa intestinal gel in Parkinson’s disease: A systematic review and meta-analysis. Front. Neurol., 2018, 9, 620.
[http://dx.doi.org/10.3389/fneur.2018.00620] [PMID: 30104997]
[22]
Wheatley, K.; Stowe, R.L.; Clarke, C.E.; Hills, R.K.; Williams, A.C.; Gray, R. Evaluating drug treatments for Parkinson’s disease: How good are the trials? BMJ, 2002, 324(7352), 1508-1511.
[http://dx.doi.org/10.1136/bmj.324.7352.1508] [PMID: 12077043]
[23]
Quinn, N. Drug treatment of Parkinson’s disease. BMJ, 1995, 310(6979), 575-579.
[http://dx.doi.org/10.1136/bmj.310.6979.575] [PMID: 7888935]
[24]
Stowe, R.L.; Ives, N.J.; Clarke, C.; van Hilten, J.; Ferreira, J.; Hawker, R.J.; Shah, L.; Wheatley, K.; Gray, R. Dopamine agonist therapy in early Parkinson’s disease. Cochrane Database Syst. Rev., 2008, (2), CD006564.
[http://dx.doi.org/10.1002/14651858.CD006564.pub2] [PMID: 18425954]
[25]
Ray Chaudhuri, K.; Martinez-Martin, P.; Antonini, A.; Brown, R.G.; Friedman, J.H.; Onofrj, M.; Surmann, E.; Ghys, L.; Trenkwalder, C. Rotigotine and specific non-motor symptoms of Parkinson’s disease: Post hoc analysis of RECOVER. Parkinsonism Relat. Disord., 2013, 19(7), 660-665.
[http://dx.doi.org/10.1016/j.parkreldis.2013.02.018] [PMID: 23557594]
[26]
Carbone, F.; Djamshidian, A.; Seppi, K.; Poewe, W. Apomorphine for Parkinson’s disease: Efficacy and safety of current and new formulations. CNS Drugs, 2019, 33(9), 905-918.
[http://dx.doi.org/10.1007/s40263-019-00661-z] [PMID: 31473980]
[27]
Azharuddin, M.; Adil, M.; Ghosh, P.; Sharma, M. The efficacy and safety of subcutaneous apomorphine in patients with Parkinson’s disease: A meta-analysis randomized controlled trials: 786. Mov. Disord., 2019, 34.
[28]
Bonifácio. M.J.; Palma, P.N.; Almeida, L.; Soares-da-Silva, P. Catechol-O-methyltransferase and its inhibitors in Parkinson’s disease. CNS Drug Rev., 2007, 13(3), 352-379.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00020.x] [PMID: 17894650]
[29]
Jankovic, J.; Tan, E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry, 2020, 91(8), 795-808.
[http://dx.doi.org/10.1136/jnnp-2019-322338] [PMID: 32576618]
[30]
Nutt, J.G.; Woodward, W.R.; Beckner, R.M.; Stone, C.K.; Berggren, K.; Carter, J.H.; Gancher, S.T.; Hammerstad, J.P.; Gordin, A. Effect of peripheral catechol-O-methyltransferase inhibition on the pharmacokinetics and pharmacodynamics of levodopa in parkinsonian patients. Neurology, 1994, 44(5), 913-919.
[http://dx.doi.org/10.1212/WNL.44.5.913] [PMID: 8190296]
[31]
Follett, K.A. The surgical treatment of Parkinson’s disease. Annu. Rev. Med., 2000, 51(1), 135-147.
[http://dx.doi.org/10.1146/annurev.med.51.1.135] [PMID: 10774457]
[32]
Rezai, A.R.; Kopell, B.H.; Gross, R.E.; Vitek, J.L.; Sharan, A.D.; Limousin, P.; Benabid, A.L. Deep brain stimulation for Parkinson’s disease: Surgical issues. Mov. Disord., 2006, 21(S14)(Suppl. 14), S197-S218.
[http://dx.doi.org/10.1002/mds.20956] [PMID: 16810673]
[33]
Rodriguez, R.L.; Fernandez, H.H.; Haq, I.; Okun, M.S. Pearls in patient selection for deep brain stimulation. Neurologist, 2007, 13(5), 253-260.
[http://dx.doi.org/10.1097/NRL.0b013e318095a4d5] [PMID: 17848865]
[34]
Benabid, A.L. Deep brain stimulation for Parkinson’s disease. Curr. Opin. Neurobiol., 2003, 13(6), 696-706.
[http://dx.doi.org/10.1016/j.conb.2003.11.001] [PMID: 14662371]
[35]
Pillon, B.; Ardouin, C.; Damier, P.; Krack, P.; Houeto, J-L.; Klinger, H.; Bonnet, A.M.; Pollak, P.; Benabid, A.L.; Agid, Y. Neuropsychological changes between “off” and “on” STN or GPi stimulation in Parkinson’s disease. Neurology, 2000, 55(3), 411-418.
[http://dx.doi.org/10.1212/WNL.55.3.411] [PMID: 10932277]
[36]
Lagrange, E.; Krack, P.; Moro, E.; Ardouin, C.; Van Blercom, N.; Chabardes, S.; Benabid, A.L.; Pollak, P. Bilateral subthalamic nucleus stimulation improves health-related quality of life in PD. Neurology, 2002, 59(12), 1976-1978.
[http://dx.doi.org/10.1212/01.WNL.0000037486.82390.1C] [PMID: 12499496]
[37]
Tavella, A.; Bergamasco, B.; Bosticco, E.; Lanotte, M.; Perozzo, P.; Rizzone, M.; Torre, E.; Lopiano, L. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: Long-term follow-up. Neurol. Sci., 2002, 23(2)(Suppl. 2), S111-S112.
[http://dx.doi.org/10.1007/s100720200094] [PMID: 12548368]
[38]
Weaver, F.; Follett, K.; Hur, K.; Ippolito, D.; Stern, M. Deep brain stimulation in Parkinson disease: A metaanalysis of patient outcomes. J. Neurosurg., 2005, 103(6), 956-967.
[http://dx.doi.org/10.3171/jns.2005.103.6.0956] [PMID: 16381181]
[39]
Bratsos, S.; Karponis, D.; Saleh, S.N. Efficacy and safety of deep brain stimulation in the treatment of Parkinson’s disease: A systematic review and meta-analysis of randomized controlled trials. Cureus, 2018, 10(10), e3474.
[http://dx.doi.org/10.7759/cureus.3474] [PMID: 30648026]
[40]
Masaeli, R.; Zandsalimi, K.; Tayebi, L. Biomaterials evaluation: Conceptual refinements and practical reforms. Ther. Innov. Regul. Sci., 2019, 53(1), 120-127.
[http://dx.doi.org/10.1177/2168479018774320] [PMID: 29756484]
[41]
Williams, D.F. On the nature of biomaterials. Biomaterials, 2009, 30(30), 5897-5909.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.027] [PMID: 19651435]
[42]
Rai, R.; Tallawi, M.; Roether, J.A.; Detsch, R.; Barbani, N.; Rosellini, E.; Kaschta, J.; Schubert, D.W.; Boccaccini, A.R. Sterilization effects on the physical properties and cytotoxicity of poly (glycerol sebacate). Mater. Lett., 2013, 105, 32-35.
[http://dx.doi.org/10.1016/j.matlet.2013.04.024]
[43]
Ren, Y.; Zhao, X.; Liang, X.; Ma, P.X.; Guo, B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int. J. Biol. Macromol., 2017, 105(Pt 1), 1079-1087.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.130] [PMID: 28746885]
[44]
Senthilkumar, K.S.; Saravanan, K.S.; Chandra, G.; Sindhu, K.M.; Jayakrishnan, A.; Mohanakumar, K.P. Unilateral implantation of dopamine-loaded biodegradable hydrogel in the striatum attenuates motor abnormalities in the 6-hydroxydopamine model of hemi-parkinsonism. Behav. Brain Res., 2007, 184(1), 11-18.
[http://dx.doi.org/10.1016/j.bbr.2007.06.025] [PMID: 17765334]
[45]
Ucar, B.; Humpel, C. Therapeutic efficacy of glial cell-derived neurotrophic factor loaded collagen scaffolds in ex vivo organotypic brain slice Parkinson’s disease models. Brain Res. Bull., 2019, 149, 86-95.
[http://dx.doi.org/10.1016/j.brainresbull.2019.04.012] [PMID: 31004735]
[46]
Wang, T-Y.; Bruggeman, K.F.; Kauhausen, J.A.; Rodriguez, A.L.; Nisbet, D.R.; Parish, C.L. Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson’s disease. Biomaterials, 2016, 74, 89-98.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.039] [PMID: 26454047]
[47]
Struzyna, L.A.; Browne, K.D.; Brodnik, Z.D.; Burrell, J.C.; Harris, J.P.; Chen, H.I.; Wolf, J.A.; Panzer, K.V.; Lim, J.; Duda, J.E. España, R.A.; Cullen, D.K. Tissue engineered nigrostriatal pathway for treatment of Parkinson’s disease. J. Tissue Eng. Regen. Med., 2018, 12(7), 1702-1716.
[http://dx.doi.org/10.1002/term.2698] [PMID: 29766664]
[48]
Silva Adaya, D.; Aguirre-Cruz, L.; Guevara, J.; Ortiz-Islas, E. Nanobiomaterials’ applications in neurodegenerative diseases. J. Biomater. Appl., 2017, 31(7), 953-984.
[http://dx.doi.org/10.1177/0885328216659032] [PMID: 28178902]
[49]
Yang, X.; Zheng, R.; Cai, Y.; Liao, M.; Yuan, W.; Liu, Z. Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats. Int. J. Nanomedicine, 2012, 7, 2077-2086.
[PMID: 22619544]
[50]
Pehlivan, S.B. Nanotechnology-based drug delivery systems for targeting, imaging and diagnosis of neurodegenerative diseases. Pharm. Res., 2013, 30(10), 2499-2511.
[http://dx.doi.org/10.1007/s11095-013-1156-7] [PMID: 23959851]
[51]
Md, S.; Khan, R.A.; Mustafa, G.; Chuttani, K.; Baboota, S.; Sahni, J.K.; Ali, J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur. J. Pharm. Sci., 2013, 48(3), 393-405.
[http://dx.doi.org/10.1016/j.ejps.2012.12.007] [PMID: 23266466]
[52]
Gendelman, H.E.; Anantharam, V.; Bronich, T.; Ghaisas, S.; Jin, H.; Kanthasamy, A.G.; Liu, X.; McMillan, J.; Mosley, R.L.; Narasimhan, B.; Mallapragada, S.K. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine, 2015, 11(3), 751-767.
[http://dx.doi.org/10.1016/j.nano.2014.12.014] [PMID: 25645958]
[53]
Zhang, G.; Xia, Y.; Wan, F.; Ma, K.; Guo, X.; Kou, L.; Yin, S.; Han, C.; Liu, L.; Huang, J.; Xiong, N.; Wang, T. New Perspectives on Roles of Alpha-Synuclein in Parkinson’s Disease. Front. Aging Neurosci., 2018, 10, 370.
[http://dx.doi.org/10.3389/fnagi.2018.00370] [PMID: 30524265]
[54]
Chatterjee, D.; Kordower, J.H. Immunotherapy in Parkinson’s disease: Current status and future directions. Neurobiol. Dis., 2019, 132, 104587.
[http://dx.doi.org/10.1016/j.nbd.2019.104587] [PMID: 31454546]
[55]
George, S.; Brundin, P. Immunotherapy in Parkinson’s disease: micromanaging alpha-synuclein aggregation. J. Parkinsons Dis., 2015, 5(3), 413-424.
[http://dx.doi.org/10.3233/JPD-150630] [PMID: 26406122]
[56]
Zella, S.M.A.; Metzdorf, J.; Ciftci, E.; Ostendorf, F.; Muhlack, S.; Gold, R. Tönges, L. Emerging immunotherapies for Parkinson disease. Neurol. Ther., 2019, 8(1), 29-44.
[http://dx.doi.org/10.1007/s40120-018-0122-z] [PMID: 30539376]
[57]
Koprich, J.B.; Kalia, L.V.; Brotchie, J.M. Animal models of α-synucleinopathy for Parkinson disease drug development. Nat. Rev. Neurosci., 2017, 18(9), 515-529.
[http://dx.doi.org/10.1038/nrn.2017.75] [PMID: 28747776]
[58]
Lee, J.C.; Kim, S.J.; Hong, S.; Kim, Y. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp. Mol. Med., 2019, 51(5), 1-10.
[http://dx.doi.org/10.1038/s12276-019-0250-2] [PMID: 31073121]
[59]
Buongiorno, M.; Antonelli, F.; Compta, Y.; Fernandez, Y.; Pavia, J. Lomeña, F.; Ríos, J.; Ramírez, I.; García, J.R.; Soler, M.; Cámara, A.; Fernández, M.; Basora, M.; Salazar, F.; Sanchez-Etayo, G.; Valldeoriola, F.; Barrio, J.R.; Marti, M.J. Cross-sectional and longitudinal cognitive correlates of FDDNP PET and CSF amyloid-β and tau in Parkinson’s disease. J. Alzheimers Dis., 2017, 55(3), 1261-1272.
[http://dx.doi.org/10.3233/JAD-160698] [PMID: 27814297]
[60]
Olanow, C.W.; Savolainen, M.; Chu, Y.; Halliday, G.M.; Kordower, J.H. Temporal evolution of microglia and α-synuclein accumulation following foetal grafting in Parkinson’s disease. Brain, 2019, 142(6), 1690-1700.
[http://dx.doi.org/10.1093/brain/awz104] [PMID: 31056668]
[61]
Stokholm, M.G.; Iranzo, A. Østergaard, K.; Serradell, M.; Otto, M.; Svendsen, K.B.; Garrido, A.; Vilas, D.; Borghammer, P.; Santamaria, J.; Møller, A.; Gaig, C.; Brooks, D.J.; Tolosa, E.; Pavese, N. Assessment of neuroinflammation in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study. Lancet Neurol., 2017, 16(10), 789-796.
[http://dx.doi.org/10.1016/S1474-4422(17)30173-4] [PMID: 28684245]
[62]
Watson, D.J.; Kobinger, G.P.; Passini, M.A.; Wilson, J.M.; Wolfe, J.H. Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol. Ther., 2002, 5(5 Pt 1), 528-537.
[http://dx.doi.org/10.1006/mthe.2002.0584] [PMID: 11991743]
[63]
Campochiaro, P.A.; Lauer, A.K.; Sohn, E.H.; Mir, T.A.; Naylor, S.; Anderton, M.C.; Kelleher, M.; Harrop, R.; Ellis, S.; Mitrophanous, K.A. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum. Gene Ther., 2017, 28(1), 99-111.
[http://dx.doi.org/10.1089/hum.2016.117] [PMID: 27710144]
[64]
Pluta, K.; Luce, M.J.; Bao, L. Agha‐Mohammadi, S.; Reiser, J. Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. J. Gene Med., 2005, 7(6), 803-817.
[http://dx.doi.org/10.1002/jgm.712] [PMID: 15655804]
[65]
Kühn, A.A.; Trottenberg, T.; Kivi, A.; Kupsch, A.; Schneider, G-H.; Brown, P. The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Exp. Neurol., 2005, 194(1), 212-220.
[http://dx.doi.org/10.1016/j.expneurol.2005.02.010] [PMID: 15899258]
[66]
Mallet, N.; Pogosyan, A.; Sharott, A.; Csicsvari, J.; Bolam, J.P.; Brown, P.; Magill, P.J. Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J. Neurosci., 2008, 28(18), 4795-4806.
[http://dx.doi.org/10.1523/JNEUROSCI.0123-08.2008] [PMID: 18448656]
[67]
Kühn, A.A.; Kempf, F.; Brücke, C.; Gaynor Doyle, L.; Martinez-Torres, I.; Pogosyan, A.; Trottenberg, T.; Kupsch, A.; Schneider, G.H.; Hariz, M.I.; Vandenberghe, W.; Nuttin, B.; Brown, P. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J. Neurosci., 2008, 28(24), 6165-6173.
[http://dx.doi.org/10.1523/JNEUROSCI.0282-08.2008] [PMID: 18550758]
[68]
Kaplitt, M.G.; Feigin, A.; Tang, C.; Fitzsimons, H.L.; Mattis, P.; Lawlor, P.A.; Bland, R.J.; Young, D.; Strybing, K.; Eidelberg, D.; During, M.J. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet, 2007, 369(9579), 2097-2105.
[http://dx.doi.org/10.1016/S0140-6736(07)60982-9] [PMID: 17586305]
[69]
LeWitt, P.A.; Rezai, A.R.; Leehey, M.A.; Ojemann, S.G.; Flaherty, A.W.; Eskandar, E.N.; Kostyk, S.K.; Thomas, K.; Sarkar, A.; Siddiqui, M.S.; Tatter, S.B.; Schwalb, J.M.; Poston, K.L.; Henderson, J.M.; Kurlan, R.M.; Richard, I.H.; Van Meter, L.; Sapan, C.V.; During, M.J.; Kaplitt, M.G.; Feigin, A. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol., 2011, 10(4), 309-319.
[http://dx.doi.org/10.1016/S1474-4422(11)70039-4] [PMID: 21419704]
[70]
Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J. Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; Gruber, D.; Hamel, W.; Herzog, J.; Hilker, R.; Klebe, S.; Kloss, M.; Koy, J.; Krause, M.; Kupsch, A.; Lorenz, D.; Lorenzl, S.; Mehdorn, H.M.; Moringlane, J.R.; Oertel, W.; Pinsker, M.O.; Reichmann, H.; Reuss, A.; Schneider, G.H.; Schnitzler, A.; Steude, U.; Sturm, V.; Timmermann, L.; Tronnier, V.; Trottenberg, T.; Wojtecki, L.; Wolf, E.; Poewe, W.; Voges, J. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med., 2006, 355(9), 896-908.
[http://dx.doi.org/10.1056/NEJMoa060281] [PMID: 16943402]
[71]
Buttery, P.C.; Barker, R.A. Gene and cell-based therapies for Parkinson’s disease: where are we? Neurotherapeutics, 2020, 17(4), 1539-1562.
[http://dx.doi.org/10.1007/s13311-020-00940-4] [PMID: 33128174]
[72]
Ciesielska, A.; Samaranch, L.; San Sebastian, W.; Dickson, D.W.; Goldman, S.; Forsayeth, J.; Bankiewicz, K.S. Depletion of AADC activity in caudate nucleus and putamen of Parkinson’s disease patients; implications for ongoing AAV2-AADC gene therapy trial. PLoS One, 2017, 12(2), e0169965.
[http://dx.doi.org/10.1371/journal.pone.0169965] [PMID: 28166239]
[73]
Sánchez-Pernaute. R.; Harvey-White, J.; Cunningham, J.; Bankiewicz, K.S. Functional effect of adeno-associated virus mediated gene transfer of aromatic L-amino acid decarboxylase into the striatum of 6-OHDA-lesioned rats. Mol. Ther., 2001, 4(4), 324-330.
[http://dx.doi.org/10.1006/mthe.2001.0466] [PMID: 11592835]
[74]
Bankiewicz, K.S.; Eberling, J.L.; Kohutnicka, M.; Jagust, W.; Pivirotto, P.; Bringas, J.; Cunningham, J.; Budinger, T.F.; Harvey-White, J. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp. Neurol., 2000, 164(1), 2-14.
[http://dx.doi.org/10.1006/exnr.2000.7408] [PMID: 10877910]
[75]
Palfi, S.; Gurruchaga, J.M.; Ralph, G.S.; Lepetit, H.; Lavisse, S.; Buttery, P.C.; Watts, C.; Miskin, J.; Kelleher, M.; Deeley, S.; Iwamuro, H.; Lefaucheur, J.P.; Thiriez, C.; Fenelon, G.; Lucas, C.; Brugières, P.; Gabriel, I.; Abhay, K.; Drouot, X.; Tani, N.; Kas, A.; Ghaleh, B.; Le Corvoisier, P.; Dolphin, P.; Breen, D.P.; Mason, S.; Guzman, N.V.; Mazarakis, N.D.; Radcliffe, P.A.; Harrop, R.; Kingsman, S.M.; Rascol, O.; Naylor, S.; Barker, R.A.; Hantraye, P.; Remy, P.; Cesaro, P.; Mitrophanous, K.A. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet, 2014, 383(9923), 1138-1146.
[http://dx.doi.org/10.1016/S0140-6736(13)61939-X] [PMID: 24412048]
[76]
Palfi, S.; Gurruchaga, J.M.; Lepetit, H.; Howard, K.; Ralph, G.S.; Mason, S.; Gouello, G.; Domenech, P.; Buttery, P.C.; Hantraye, P.; Tuckwell, N.J.; Barker, R.A.; Mitrophanous, K.A. Long-term follow-up of a phase I/II study of ProSavin, a lentiviral vector gene therapy for Parkinson’s disease. Hum. Gene Ther. Clin. Dev., 2018, 29(3), 148-155.
[http://dx.doi.org/10.1089/humc.2018.081] [PMID: 30156440]
[77]
Axelsen, T.M.; Woldbye, D.P.D. Gene therapy for Parkinson’s disease, an update. J. Parkinsons Dis., 2018, 8(2), 195-215.
[http://dx.doi.org/10.3233/JPD-181331] [PMID: 29710735]
[78]
Chen, W.; Hu, Y.; Ju, D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm. Sin. B, 2020, 10(8), 1347-1359.
[http://dx.doi.org/10.1016/j.apsb.2020.01.015] [PMID: 32963936]
[79]
Merola, A.; Van Laar, A.; Lonser, R.; Bankiewicz, K. Gene therapy for Parkinson’s disease: contemporary practice and emerging concepts. Expert Rev. Neurother., 2020, 20(6), 577-590.
[http://dx.doi.org/10.1080/14737175.2020.1763794] [PMID: 32425079]
[80]
Hu, B-Y.; Weick, J.P.; Yu, J.; Ma, L-X.; Zhang, X-Q.; Thomson, J.A.; Zhang, S.C. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl. Acad. Sci. USA, 2010, 107(9), 4335-4340.
[http://dx.doi.org/10.1073/pnas.0910012107] [PMID: 20160098]
[81]
McFarthing, K.; Prakash, N.; Simuni, T. Clinical trial highlights: 1. gene therapy for Parkinson’s, 2. phase 3 study in focus - intec pharma’s accordion pill, 3. clinical trials resources. J. Parkinsons Dis., 2019, 9(2), 251-264.
[http://dx.doi.org/10.3233/JPD-199001] [PMID: 31127735]
[82]
Christine, C.W.; Starr, P.A.; Larson, P.S.; Eberling, J.L.; Jagust, W.J.; Hawkins, R.A.; VanBrocklin, H.F.; Wright, J.F.; Bankiewicz, K.S.; Aminoff, M.J. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology, 2009, 73(20), 1662-1669.
[http://dx.doi.org/10.1212/WNL.0b013e3181c29356] [PMID: 19828868]
[83]
Eberling, J.L.; Jagust, W.J.; Christine, C.W.; Starr, P.; Larson, P.; Bankiewicz, K.S.; Aminoff, M.J. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology, 2008, 70(21), 1980-1983.
[http://dx.doi.org/10.1212/01.wnl.0000312381.29287.ff] [PMID: 18401019]
[84]
Muramatsu, S.; Fujimoto, K.; Kato, S.; Mizukami, H.; Asari, S.; Ikeguchi, K.; Kawakami, T.; Urabe, M.; Kume, A.; Sato, T.; Watanabe, E.; Ozawa, K.; Nakano, I. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol. Ther., 2010, 18(9), 1731-1735.
[http://dx.doi.org/10.1038/mt.2010.135] [PMID: 20606642]
[85]
Christine, C.W.; Bankiewicz, K.S.; Van Laar, A.D.; Richardson, R.M.; Ravina, B.; Kells, A.P.; Boot, B.; Martin, A.J.; Nutt, J.; Thompson, M.E.; Larson, P.S. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson’s disease. Ann. Neurol., 2019, 85(5), 704-714.
[http://dx.doi.org/10.1002/ana.25450] [PMID: 30802998]
[86]
Nagatsu, T.; Nagatsu, I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson’s disease (PD): historical overview and future prospects. J. Neural Transm. (Vienna), 2016, 123(11), 1255-1278.
[http://dx.doi.org/10.1007/s00702-016-1596-4] [PMID: 27491309]
[87]
Marks, W.J., Jr; Ostrem, J.L.; Verhagen, L.; Starr, P.A.; Larson, P.S.; Bakay, R.A.; Taylor, R.; Cahn-Weiner, D.A.; Stoessl, A.J.; Olanow, C.W.; Bartus, R.T. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol., 2008, 7(5), 400-408.
[http://dx.doi.org/10.1016/S1474-4422(08)70065-6] [PMID: 18387850]
[88]
Marks, W.J., Jr; Bartus, R.T.; Siffert, J.; Davis, C.S.; Lozano, A.; Boulis, N.; Vitek, J.; Stacy, M.; Turner, D.; Verhagen, L.; Bakay, R.; Watts, R.; Guthrie, B.; Jankovic, J.; Simpson, R.; Tagliati, M.; Alterman, R.; Stern, M.; Baltuch, G.; Starr, P.A.; Larson, P.S.; Ostrem, J.L.; Nutt, J.; Kieburtz, K.; Kordower, J.H.; Olanow, C.W. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol., 2010, 9(12), 1164-1172.
[http://dx.doi.org/10.1016/S1474-4422(10)70254-4] [PMID: 20970382]
[89]
Warren Olanow, C.; Bartus, R.T.; Baumann, T.L.; Factor, S.; Boulis, N.; Stacy, M.; Turner, D.A.; Marks, W.; Larson, P.; Starr, P.A.; Jankovic, J.; Simpson, R.; Watts, R.; Guthrie, B.; Poston, K.; Henderson, J.M.; Stern, M.; Baltuch, G.; Goetz, C.G.; Herzog, C.; Kordower, J.H.; Alterman, R.; Lozano, A.M.; Lang, A.E. Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: A double-blind, randomized, controlled trial. Ann. Neurol., 2015, 78(2), 248-257.
[http://dx.doi.org/10.1002/ana.24436] [PMID: 26061140]
[90]
Freed, C.R.; Greene, P.E.; Breeze, R.E.; Tsai, W.Y.; DuMouchel, W.; Kao, R.; Dillon, S.; Winfield, H.; Culver, S.; Trojanowski, J.Q.; Eidelberg, D.; Fahn, S. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med., 2001, 344(10), 710-719.
[http://dx.doi.org/10.1056/NEJM200103083441002] [PMID: 11236774]
[91]
Olanow, C.W.; Goetz, C.G.; Kordower, J.H.; Stoessl, A.J.; Sossi, V.; Brin, M.F.; Shannon, K.M.; Nauert, G.M.; Perl, D.P.; Godbold, J.; Freeman, T.B. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol., 2003, 54(3), 403-414.
[http://dx.doi.org/10.1002/ana.10720] [PMID: 12953276]
[92]
Barker, R.A. Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease. Nat. Med., 2019, 25(7), 1045-1053.
[http://dx.doi.org/10.1038/s41591-019-0507-2] [PMID: 31263283]
[93]
Jang, S.E.; Qiu, L.; Chan, L.L.; Tan, E-K.; Zeng, L. Current status of stem cell-derived therapies for Parkinson’s disease: from cell assessment and imaging modalities to clinical trials. Front. Neurosci., 2020, 14, 558532.
[http://dx.doi.org/10.3389/fnins.2020.558532] [PMID: 33177975]
[94]
Backlund, E-O.; Granberg, P-O.; Hamberger, B.; Knutsson, E. Mårtensson, A.; Sedvall, G.; Seiger, A.; Olson, L. Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J. Neurosurg., 1985, 62(2), 169-173.
[http://dx.doi.org/10.3171/jns.1985.62.2.0169] [PMID: 2578558]
[95]
Waters, C.; Itabashi, H.H.; Apuzzo, M.L.J.; Weiner, L.P. Adrenal to caudate transplantation--postmortem study. Mov. Disord., 1990, 5(3), 248-250.
[http://dx.doi.org/10.1002/mds.870050312] [PMID: 2388643]
[96]
Kompoliti, K.; Chu, Y.; Shannon, K.M.; Kordower, J.H. Neuropathological study 16 years after autologous adrenal medullary transplantation in a Parkinson’s disease patient. Mov. Disord., 2007, 22(11), 1630-1633.
[http://dx.doi.org/10.1002/mds.21528] [PMID: 17534949]
[97]
Kordower, J.H.; Cochran, E.; Penn, R.D.; Goetz, C.G. Putative chromaffin cell survival and enhanced host-derived TH-fiber innervation following a functional adrenal medulla autograft for Parkinson’s disease. Ann. Neurol., 1991, 29(4), 405-412.
[http://dx.doi.org/10.1002/ana.410290411] [PMID: 1681779]
[98]
Goetz, C.G.; Stebbins, G.T., III; Klawans, H.L.; Koller, W.C.; Grossman, R.G.; Bakay, R.A.E.; Penn, R.D. United parkinson foundation neurotransplantation registry on adrenal medullary transplants: presurgical, and 1- and 2-year follow-up. Neurology, 1991, 41(11), 1719-1722.
[http://dx.doi.org/10.1212/WNL.41.11.1719] [PMID: 1944898]
[99]
Jankovic, J.; Grossman, R.; Goodman, C.; Pirozzolo, F.; Schneider, L.; Zhu, Z.; Scardino, P.; Garber, A.J.; Jhingran, S.G.; Martin, S. Clinical, biochemical, and neuropathologic findings following transplantation of adrenal medulla to the caudate nucleus for treatment of Parkinson’s disease. Neurology, 1989, 39(9), 1227-1234.
[http://dx.doi.org/10.1212/WNL.39.9.1227] [PMID: 2475820]
[100]
Marmor, M.F.; Wolfensberger, T. The retinal pigment epithelium. Funct. Dis., 1998, 103-134.
[101]
Watts, R.L.; Raiser, C.D.; Stover, N.P.; Cornfeldt, M.L.; Schweikert, A.W.; Allen, R.C.; Subramanian, T.; Doudet, D.; Honey, C.R.; Bakay, R.A. Stereotaxic intrastriatal implantation of human retinal pigment epithelial (hRPE) cells attached to gelatin microcarriers: a potential new cell therapy for Parkinson’s disease. J. Neural Transm. Suppl., 2003, 65, 215-227.
[http://dx.doi.org/10.1007/978-3-7091-0643-3_14] [PMID: 12946059]
[102]
Barker, R.A.; Drouin-Ouellet, J.; Parmar, M. Cell-based therapies for Parkinson disease-past insights and future potential. Nat. Rev. Neurol., 2015, 11(9), 492-503.
[http://dx.doi.org/10.1038/nrneurol.2015.123] [PMID: 26240036]
[103]
Stover, N.P.; Bakay, R.A.E.; Subramanian, T.; Raiser, C.D.; Cornfeldt, M.L.; Schweikert, A.W.; Allen, R.C.; Watts, R.L. Intrastriatal implantation of human retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease. Arch. Neurol., 2005, 62(12), 1833-1837.
[http://dx.doi.org/10.1001/archneur.62.12.1833] [PMID: 16344341]
[104]
Gross, R.E.; Watts, R.L.; Hauser, R.A.; Bakay, R.A.E.; Reichmann, H.; von Kummer, R.; Ondo, W.G.; Reissig, E.; Eisner, W.; Steiner-Schulze, H.; Siedentop, H.; Fichte, K.; Hong, W.; Cornfeldt, M.; Beebe, K.; Sandbrink, R. Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol., 2011, 10(6), 509-519.
[http://dx.doi.org/10.1016/S1474-4422(11)70097-7] [PMID: 21565557]
[105]
Yin, F.; Tian, Z.M.; Liu, S.; Zhao, Q.J.; Wang, R.M.; Shen, L.; Wieman, J.; Yan, Y. Transplantation of human retinal pigment epithelium cells in the treatment for Parkinson disease. CNS Neurosci. Ther., 2012, 18(12), 1012-1020.
[http://dx.doi.org/10.1111/cns.12025] [PMID: 23190934]
[106]
Mínguez-Castellanos. A.; Escamilla-Sevilla, F.; Hotton, G.R.; Toledo-Aral, J.J.; Ortega-Moreno, A.; Méndez-Ferrer, S.; Martín-Linares, J.M.; Katati, M.J.; Mir, P.; Villadiego, J.; Meersmans, M.; Pérez-García, M.; Brooks, D.J.; Arjona, V.; López-Barneo, J. Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study. J. Neurol. Neurosurg. Psychiatry, 2007, 78(8), 825-831.
[http://dx.doi.org/10.1136/jnnp.2006.106021] [PMID: 17220289]
[107]
Arjona, V. Mínguez-Castellanos, A.; Montoro, R.J.; Ortega, A.; Escamilla, F.; Toledo-Aral, J.J.; Pardal, R.; Méndez-Ferrer, S.; Martín, J.M.; Pérez, M.; Katati, M.J.; Valencia, E.; García, T.; López-Barneo, J. Autotransplantation of human carotid body cell aggregates for treatment of Parkinson’s disease. Neurosurgery, 2003, 53(2), 321-328.
[http://dx.doi.org/10.1227/01.NEU.0000073315.88827.72] [PMID: 12925247]
[108]
Jones, E.A.; Kinsey, S.E.; English, A.; Jones, R.A.; Straszynski, L.; Meredith, D.M.; Markham, A.F.; Jack, A.; Emery, P.; McGonagle, D. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum., 2002, 46(12), 3349-3360.
[http://dx.doi.org/10.1002/art.10696] [PMID: 12483742]
[109]
Hellmann, M.A.; Panet, H.; Barhum, Y.; Melamed, E.; Offen, D. Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine-lesioned rodents. Neurosci. Lett., 2006, 395(2), 124-128.
[http://dx.doi.org/10.1016/j.neulet.2005.10.097] [PMID: 16359791]
[110]
Barzilay, R.; Kan, I.; Ben-Zur, T.; Bulvik, S.; Melamed, E.; Offen, D. Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols. Stem Cells Dev., 2008, 17(3), 547-554.
[http://dx.doi.org/10.1089/scd.2007.0172] [PMID: 18513164]
[111]
Whone, A.L.; Kemp, K.; Sun, M.; Wilkins, A.; Scolding, N.J. Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res., 2012, 1431, 86-96.
[http://dx.doi.org/10.1016/j.brainres.2011.10.038] [PMID: 22143094]
[112]
Park, H.J.; Lee, P.H.; Bang, O.Y.; Lee, G.; Ahn, Y.H. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J. Neurochem., 2008, 107(1), 141-151.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05589.x] [PMID: 18665911]
[113]
Lee, J.S.; Hong, J.M.; Moon, G.J.; Lee, P.H.; Ahn, Y.H.; Bang, O.Y. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells, 2010, 28(6), 1099-1106.
[http://dx.doi.org/10.1002/stem.430] [PMID: 20506226]
[114]
Connick, P.; Kolappan, M.; Crawley, C.; Webber, D.J.; Patani, R.; Michell, A.W.; Du, M.Q.; Luan, S.L.; Altmann, D.R.; Thompson, A.J.; Compston, A.; Scott, M.A.; Miller, D.H.; Chandran, S. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol., 2012, 11(2), 150-156.
[http://dx.doi.org/10.1016/S1474-4422(11)70305-2] [PMID: 22236384]
[115]
Huang, L.; Zhang, C.; Gu, J.; Wu, W.; Shen, Z.; Zhou, X.; Lu, H.A. Randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transplant., 2018, 27(2), 325-334.
[http://dx.doi.org/10.1177/0963689717729379] [PMID: 29637820]
[116]
Brazzini, A.; Cantella, R.; De la Cruz, A.; Yupanqui, J. León, C.; Jorquiera, T.; Brazzini, M.; Ortega, M.; Saenz, L.N. Intraarterial autologous implantation of adult stem cells for patients with Parkinson disease. J. Vasc. Interv. Radiol., 2010, 21(4), 443-451.
[http://dx.doi.org/10.1016/j.jvir.2010.01.008] [PMID: 20346882]
[117]
Venkataramana, N.K.; Kumar, S.K.; Balaraju, S.; Radhakrishnan, R.C.; Bansal, A.; Dixit, A.; Rao, D.K.; Das, M.; Jan, M.; Gupta, P.K.; Totey, S.M. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl. Res., 2010, 155(2), 62-70.
[http://dx.doi.org/10.1016/j.trsl.2009.07.006] [PMID: 20129486]
[118]
Venkataramana, N.K.; Pal, R.; Rao, S.A.; Naik, A.L.; Jan, M.; Nair, R.; Sanjeev, C.C.; Kamble, R.B.; Murthy, D.P.; Chaitanya, K. Bilateral transplantation of allogenic adult human bone marrow-derived mesenchymal stem cells into the subventricular zone of Parkinson’s disease: a pilot clinical study. Stem Cells Int., 2012, 2012, 931902.
[http://dx.doi.org/10.1155/2012/931902] [PMID: 22550521]
[119]
Hayashi, T.; Wakao, S.; Kitada, M.; Ose, T.; Watabe, H.; Kuroda, Y.; Mitsunaga, K.; Matsuse, D.; Shigemoto, T.; Ito, A.; Ikeda, H.; Fukuyama, H.; Onoe, H.; Tabata, Y.; Dezawa, M. Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. J. Clin. Invest., 2013, 123(1), 272-284.
[http://dx.doi.org/10.1172/JCI62516] [PMID: 23202734]
[120]
Denu, R.A.; Nemcek, S.; Bloom, D.D.; Goodrich, A.D.; Kim, J.; Mosher, D.F.; Hematti, P. Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta Haematol., 2016, 136(2), 85-97.
[http://dx.doi.org/10.1159/000445096] [PMID: 27188909]
[121]
Santos, F.; Andrade, P.Z.; Abecasis, M.M.; Gimble, J.M.; Chase, L.G.; Campbell, A.M.; Boucher, S.; Vemuri, M.C.; Silva, C.L.; Cabral, J.M. Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng. Part C Methods, 2011, 17(12), 1201-1210.
[http://dx.doi.org/10.1089/ten.tec.2011.0255] [PMID: 21895491]
[122]
Arthur, A.; Zannettino, A.; Gronthos, S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J. Cell. Physiol., 2009, 218(2), 237-245.
[http://dx.doi.org/10.1002/jcp.21592] [PMID: 18792913]
[123]
Richards, E.J. Inherited epigenetic variation--revisiting soft inheritance. Nat. Rev. Genet., 2006, 7(5), 395-401.
[http://dx.doi.org/10.1038/nrg1834] [PMID: 16534512]
[124]
Wang, Q.; Chuikov, S.; Taitano, S.; Wu, Q.; Rastogi, A.; Tuck, S.J.; Corey, J.M.; Lundy, S.K.; Mao-Draayer, Y. Dimethyl fumarate protects neural stem/progenitor cells and neurons from oxidative damage through Nrf2-ERK1/2 MAPK pathway. Int. J. Mol. Sci., 2015, 16(6), 13885-13907.
[http://dx.doi.org/10.3390/ijms160613885] [PMID: 26090715]
[125]
Kahroba, H.; Ramezani, B.; Maadi, H.; Sadeghi, M.R.; Jaberie, H.; Ramezani, F. The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Res. Rev., 2021, 65, 101211.
[http://dx.doi.org/10.1016/j.arr.2020.101211] [PMID: 33186670]
[126]
Takahashi, J. Strategies for bringing stem cell-derived dopamine neurons to the clinic: The Kyoto trial. Prog. Brain Res., 2017, 230, 213-226.
[http://dx.doi.org/10.1016/bs.pbr.2016.11.004] [PMID: 28552230]
[127]
Steinbeck, J.A.; Studer, L. Moving stem cells to the clinic: potential and limitations for brain repair. Neuron, 2015, 86(1), 187-206.
[http://dx.doi.org/10.1016/j.neuron.2015.03.002] [PMID: 25856494]
[128]
Wang, Y.K.; Zhu, W.W.; Wu, M.H.; Wu, Y.H.; Liu, Z.X.; Liang, L.M.; Sheng, C.; Hao, J.; Wang, L.; Li, W.; Zhou, Q.; Hu, B.Y. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s disease. Stem Cell Reports, 2018, 11(1), 171-182.
[http://dx.doi.org/10.1016/j.stemcr.2018.05.010] [PMID: 29910127]
[129]
Yamanaka, S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif., 2008, 41(Suppl. 1), 51-56.
[http://dx.doi.org/10.1111/j.1365-2184.2008.00493.x] [PMID: 18181945]
[130]
Spinelli, V.; Guillot, P.V.; De Coppi, P. Induced pluripotent stem (iPS) cells from human fetal stem cells (hFSCs). Organogenesis, 2013, 9(2), 101-110.
[http://dx.doi.org/10.4161/org.25197] [PMID: 23823661]
[131]
Takahashi, J. iPS cell-based therapy for Parkinson’s disease: A Kyoto trial. Regen. Ther., 2020, 13, 18-22.
[http://dx.doi.org/10.1016/j.reth.2020.06.002] [PMID: 33490319]
[132]
Cyranoski, D. Reprogrammed’stem cells implanted into patient with Parkinson’s disease. Nature, 2018, 563, 1-2.
[133]
Rodriguez-Oroz, M.C.; Jahanshahi, M.; Krack, P.; Litvan, I.; Macias, R.; Bezard, E.; Obeso, J.A. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol., 2009, 8(12), 1128-1139.
[http://dx.doi.org/10.1016/S1474-4422(09)70293-5] [PMID: 19909911]
[134]
Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; Halliday, G.; Goetz, C.G.; Gasser, T.; Dubois, B.; Chan, P.; Bloem, B.R.; Adler, C.H.; Deuschl, G. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord., 2015, 30(12), 1591-1601.
[http://dx.doi.org/10.1002/mds.26424] [PMID: 26474316]
[135]
Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging, 2003, 24(2), 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[136]
Pirtošek. Z; Bajenaru, O; Kovács, N; Milanov, I; Relja, M; Skorvanek, M. Update on the management of Parkinson’s disease for general neurologists. Parkinsons Dis., 2020, 2020, 9131474.
[http://dx.doi.org/10.1155/2020/9131474]
[137]
Brundin, P.; Nilsson, O.G.; Gage, F.H. Björklund, A. Cyclosporin A increases survival of cross-species intrastriatal grafts of embryonic dopamine-containing neurons. Exp. Brain Res., 1985, 60(1), 204-208.
[http://dx.doi.org/10.1007/BF00237035] [PMID: 3930278]
[138]
Brundin, P.; Karlsson, J. Emgård, M.; Schierle, G.S.K.; Hansson, O.; Petersén, A.; Castilho, R.F. Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant., 2000, 9(2), 179-195.
[http://dx.doi.org/10.1177/096368970000900205] [PMID: 10811392]
[139]
Spits, C.; Mateizel, I.; Geens, M.; Mertzanidou, A.; Staessen, C.; Vandeskelde, Y.; Van der Elst, J.; Liebaers, I.; Sermon, K. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat. Biotechnol., 2008, 26(12), 1361-1363.
[http://dx.doi.org/10.1038/nbt.1510] [PMID: 19029912]
[140]
Stoddard-Bennett, T.; Pera, R.R. Stem cell therapy for Parkinson’s disease: safety and modeling. Neural Regen. Res., 2020, 15(1), 36-40.
[http://dx.doi.org/10.4103/1673-5374.264446] [PMID: 31535640]
[141]
Duan, W-M.; Widner, H.; Brundin, P. Temporal pattern of host responses against intrastriatal grafts of syngeneic, allogeneic or xenogeneic embryonic neuronal tissue in rats. Exp. Brain Res., 1995, 104(2), 227-242.
[http://dx.doi.org/10.1007/BF00242009] [PMID: 7672016]
[142]
Galpern, W.R.; Burns, L.H.; Deacon, T.W.; Dinsmore, J.; Isacson, O. Xenotransplantation of porcine fetal ventral mesencephalon in a rat model of Parkinson’s disease: functional recovery and graft morphology. Exp. Neurol., 1996, 140(1), 1-13.
[http://dx.doi.org/10.1006/exnr.1996.0109] [PMID: 8682173]
[143]
Larsson, L.C.; Frielingsdorf, H.; Mirza, B.; Hansson, S.J.; Anderson, P.; Czech, K.A.; Strandberg, M.; Widner, H. Porcine neural xenografts in rats and mice: donor tissue development and characteristics of rejection. Exp. Neurol., 2001, 172(1), 100-114.
[http://dx.doi.org/10.1006/exnr.2001.7738] [PMID: 11681844]
[144]
Kikuchi, T.; Morizane, A.; Doi, D.; Magotani, H.; Onoe, H.; Hayashi, T.; Mizuma, H.; Takara, S.; Takahashi, R.; Inoue, H.; Morita, S.; Yamamoto, M.; Okita, K.; Nakagawa, M.; Parmar, M.; Takahashi, J. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature, 2017, 548(7669), 592-596.
[http://dx.doi.org/10.1038/nature23664] [PMID: 28858313]
[145]
Astradsson, A.; Aziz, T.Z. Parkinson’s disease: fetal cell or stem cell-derived treatments. Clin. Evid., 2015, 2015, 1203.
[PMID: 25898159]
[146]
Han, F.; Baremberg, D.; Gao, J.; Duan, J.; Lu, X.; Zhang, N.; Chen, Q. Development of stem cell-based therapy for Parkinson’s disease. Transl. Neurodegener., 2015, 4(1), 16.
[http://dx.doi.org/10.1186/s40035-015-0039-8] [PMID: 26339485]
[147]
Ma, Y.; Tang, C.; Chaly, T.; Greene, P.; Breeze, R.; Fahn, S. Dopamine cell implantation in Parkinson’s disease: Long-Term Clinical and 18F-FDOPA PET Outcomes. J. Nucl. Med., 2010, 51(1), 7.
[http://dx.doi.org/10.2967/jnumed.109.066811] [PMID: 20008998]
[148]
Piccini, P.; Pavese, N.; Hagell, P.; Reimer, J. Björklund, A.; Oertel, W.H.; Quinn, N.P.; Brooks, D.J.; Lindvall, O. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain, 2005, 128(Pt 12), 2977-2986.
[http://dx.doi.org/10.1093/brain/awh649] [PMID: 16246865]
[149]
Barker, R.A.; Barrett, J.; Mason, S.L. Björklund, A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol., 2013, 12(1), 84-91.
[http://dx.doi.org/10.1016/S1474-4422(12)70295-8] [PMID: 23237903]
[150]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[151]
Calabrese, V.; Cornelius, C.; Mancuso, C.; Pennisi, G.; Calafato, S.; Bellia, F.; Bates, T.E.; Giuffrida Stella, A.M.; Schapira, T.; Dinkova Kostova, A.T.; Rizzarelli, E. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem. Res., 2008, 33(12), 2444-2471.
[http://dx.doi.org/10.1007/s11064-008-9775-9] [PMID: 18629638]
[152]
Calabrese, E.J.; Baldwin, L.A. Chemical hormesis: its historical foundations as a biological hypothesis. Toxicol. Pathol., 1999, 27(2), 195-216.
[http://dx.doi.org/10.1177/019262339902700207] [PMID: 10207984]
[153]
Calabrese, V.; Copani, A.; Testa, D.; Ravagna, A.; Spadaro, F.; Tendi, E.; Nicoletti, V.G.; Giuffrida Stella, A.M. Nitric oxide synthase induction in astroglial cell cultures: effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J. Neurosci. Res., 2000, 60(5), 613-622.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000601)60:5<613::AID-JNR6>3.0.CO;2-8] [PMID: 10820432]
[154]
Gerich, F.J.; Funke, F.; Hildebrandt, B.; Fasshauer, M.; Müller, M. H2O2-mediated modulation of cytosolic signaling and organelle function in rat hippocampus. Pflugers Arch., 2009, 458(5), 937-952.
[http://dx.doi.org/10.1007/s00424-009-0672-0] [PMID: 19430810]
[155]
Calabrese, V.; Guagliano, E.; Sapienza, M.; Panebianco, M.; Calafato, S.; Puleo, E.; Pennisi, G.; Mancuso, C.; Butterfield, D.A.; Stella, A.G. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem. Res., 2007, 32(4-5), 757-773.
[http://dx.doi.org/10.1007/s11064-006-9203-y] [PMID: 17191135]
[156]
Calabrese, V.; Boyd-Kimball, D.; Scapagnini, G.; Butterfield, D.A. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo, 2004, 18(3), 245-267.
[PMID: 15341181]
[157]
Mancuso, C.; Scapagini, G. Currò, D.; Giuffrida Stella, A.M.; De Marco, C.; Butterfield, D.A.; Calabrese, V. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front. Biosci., 2007, 12(1), 1107-1123.
[http://dx.doi.org/10.2741/2130] [PMID: 17127365]
[158]
Dattilo, S.; Mancuso, C.; Koverech, G.; Di Mauro, P.; Ontario, M.L.; Petralia, C.C.; Petralia, A.; Maiolino, L.; Serra, A.; Calabrese, E.J.; Calabrese, V. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun. Ageing, 2015, 12(1), 20.
[http://dx.doi.org/10.1186/s12979-015-0046-8] [PMID: 26543490]
[159]
Siciliano, R.; Barone, E.; Calabrese, V.; Rispoli, V.; Butterfield, D.A.; Mancuso, C. Experimental research on nitric oxide and the therapy of Alzheimer disease: a challenging bridge. CNS Neurol. Disord. Drug Targets, 2011, 10(7), 766-776.
[http://dx.doi.org/10.2174/187152711798072356] [PMID: 21999733]
[160]
Westerheide, S.D.; Raynes, R.; Powell, C.; Xue, B.; Uversky, V.N. HSF transcription factor family, heat shock response, and protein intrinsic disorder. Curr. Protein Pept. Sci., 2012, 13(1), 86-103.
[http://dx.doi.org/10.2174/138920312799277956] [PMID: 22044151]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy