Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Zinc-mediated Neurotransmission in Alzheimer's Disease: A Potential Role of the GPR39 in Dementia

Author(s): Michal Rychlik* and Katarzyna Mlyniec

Volume 18, Issue 1, 2020

Page: [2 - 13] Pages: 12

DOI: 10.2174/1570159X17666190704153807

Price: $65

Abstract

With more people reaching an advanced age in modern society, there is a growing need for strategies to slow down age-related neuropathology and loss of cognitive functions, which are a hallmark of Alzheimer's disease. Neuroprotective drugs and candidate drug compounds target one or more processes involved in the neurodegenerative cascade, such as excitotoxicity, oxidative stress, misfolded protein aggregation and/or ion dyshomeostasis. A growing body of research shows that a G-protein coupled zinc (Zn2+) receptor (GPR39) can modulate the abovementioned processes.

Zn2+itself has a diverse activity profile at the synapse, and by binding to numerous receptors, it plays an important role in neurotransmission. However, Zn2+ is also necessary for the formation of toxic oligomeric forms of amyloid beta, which underlie the pathology of Alzheimer’s disease. Furthermore, the binding of Zn2+ by amyloid beta causes a disruption of zincergic signaling, and recent studies point to GPR39 and its intracellular targets being affected by amyloid pathology.

In this review, we present neurobiological findings related to Zn2+ and GPR39, focusing on its signaling pathways, neural plasticity, interactions with other neurotransmission systems, as well as on the effects of pathophysiological changes observed in Alzheimer's disease on GPR39 function.

Direct targeting of the GPR39 might be a promising strategy for the pharmacotherapy of zincergic dyshomeostasis observed in Alzheimer’s disease. The information presented in this article will hopefully fuel further research into the role of GPR39 in neurodegeneration and help in identifying novel therapeutic targets for dementia.

Keywords: Metal ions, brain, memory, cognitive, aging, glutamate, hippocampus.

Graphical Abstract
[1]
Villemagne, V.L.; Pike, K.E.; Chételat, G.; Ellis, K.A.; Mulligan, R.S.; Bourgeat, P.; Ackermann, U.; Jones, G.; Szoeke, C.; Salvado, O.; Martins, R.; O’Keefe, G.; Mathis, C.A.; Klunk, W.E.; Ames, D.; Masters, C.L.; Rowe, C.C. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann. Neurol., 2011, 69(1), 181-192.
[http://dx.doi.org/10.1002/ana.22248] [PMID: 21280088]
[2]
Reiman, E.M.; Langbaum, J.B.; Tariot, P.N.; Lopera, F.; Bateman, R.J.; Morris, J.C.; Sperling, R.A.; Aisen, P.S.; Roses, A.D.; Welsh-Bohmer, K.A.; Carrillo, M.C.; Weninger, S. CAP--advancing the evaluation of preclinical Alzheimer disease treatments. Nat. Rev. Neurol., 2016, 12(1), 56-61.
[http://dx.doi.org/10.1038/nrneurol.2015.177] [PMID: 26416539]
[3]
Raskin, J.; Cummings, J.; Hardy, J.; Schuh, K.; Dean, R.A. Neurobiology of alzheimer’s disease: Integrated molecular, physiological, anatomical, biomarker, and cognitive dimensions. Curr. Alzheimer Res., 2015, 12(8), 712-722.https://doi.org/1875-5828/1
[http://dx.doi.org/10.2174/1567205012666150701103107] [PMID: 26412218]
[4]
Ingelsson, M.; Fukumoto, H.; Newell, K.L.; Growdon, J.H.; Hedley-Whyte, E.T.; Frosch, M.P.; Albert, M.S.; Hyman, B.T.; Irizarry, M.C. Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology, 2004, 62(6), 925-931.
[http://dx.doi.org/10.1212/01.WNL.0000115115.98960.37] [PMID: 15037694]
[5]
Cline, E.N.; Bicca, M.A.; Viola, K.L.; Klein, W.L. The amyloid-β oligomer hypothesis: Beginning of the third decade. J. Alzheimers Dis., 2018, 64(s1), S567-S610.
[http://dx.doi.org/10.3233/JAD-179941] [PMID: 29843241]
[6]
Spires-Jones, T.L.; Hyman, B.T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron, 2014, 82(4), 756-771.
[http://dx.doi.org/10.1016/j.neuron.2014.05.004] [PMID: 24853936]
[7]
Roberts, B.R.; Ryan, T.M.; Bush, A.I.; Masters, C.L.; Duce, J.A. The role of metallobiology and amyloid-β peptides in Alzheimer’s disease. J. Neurochem., 2012, 120(Suppl. 1), 149-166.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07500.x] [PMID: 22121980]
[8]
Besser, L.; Chorin, E.; Sekler, I.; Silverman, W.F.; Atkin, S.; Russell, J.T.; Hershfinkel, M. Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J. Neurosci., 2009, 29(9), 2890-2901.
[http://dx.doi.org/10.1523/JNEUROSCI.5093-08.2009] [PMID: 19261885]
[9]
Hershfinkel, M.; Moran, A.; Grossman, N.; Sekler, I. A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc. Natl. Acad. Sci. USA, 2001, 98(20), 11749-11754.
[http://dx.doi.org/10.1073/pnas.201193398] [PMID: 11573009]
[10]
Zhang, Y.; Gladyshev, V.N. Comparative genomics of trace element dependence in biology. J. Biol. Chem., 2011, 286(27), 23623-23629.
[http://dx.doi.org/10.1074/jbc.R110.172833] [PMID: 21566146]
[11]
Mulkidjanian, A.Y. On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol. Direct, 2009, 4, 26.
[http://dx.doi.org/10.1186/1745-6150-4-26] [PMID: 19703272]
[12]
Frederickson, C.J. Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol., 1989, 31, 145-238.
[http://dx.doi.org/10.1016/S0074-7742(08)60279-2] [PMID: 2689380]
[13]
Frederickson, C.J.; Moncrieff, D.W. Zinc-containing neurons. Biol. Signals, 1994, 3(3), 127-139.
[http://dx.doi.org/10.1159/000109536] [PMID: 7531563]
[14]
Pan, E.; Zhang, X.A.; Huang, Z.; Krezel, A.; Zhao, M.; Tinberg, C.E.; Lippard, S.J.; McNamara, J.O. Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron, 2011, 71(6), 1116-1126.
[http://dx.doi.org/10.1016/j.neuron.2011.07.019] [PMID: 21943607]
[15]
Perez-Rosello, T.; Anderson, C.T.; Schopfer, F.J.; Zhao, Y.; Gilad, D.; Salvatore, S.R.; Freeman, B.A.; Hershfinkel, M.; Aizenman, E.; Tzounopoulos, T. Synaptic Zn2+ inhibits neurotransmitter release by promoting endocannabinoid synthesis. J. Neurosci., 2013, 33(22), 9259-9272.
[http://dx.doi.org/10.1523/JNEUROSCI.0237-13.2013] [PMID: 23719795]
[16]
Anderson, C.T.; Radford, R.J.; Zastrow, M.L.; Zhang, D.Y.; Apfel, U-P.; Lippard, S.J.; Tzounopoulos, T. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proc. Natl. Acad. Sci. USA, 2015, 112(20), E2705-E2714.
[http://dx.doi.org/10.1073/pnas.1503348112] [PMID: 25947151]
[17]
Kalappa, B.I.; Anderson, C.T.; Goldberg, J.M.; Lippard, S.J.; Tzounopoulos, T. AMPA receptor inhibition by synaptically released zinc. Proc. Natl. Acad. Sci. USA, 2015, 112(51), 15749-15754.
[http://dx.doi.org/10.1073/pnas.1512296112] [PMID: 26647187]
[18]
Cole, T.B.; Wenzel, H.J.; Kafer, K.E.; Schwartzkroin, P.A.; Palmiter, R.D. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl. Acad. Sci. USA, 1999, 96(4), 1716-1721.
[http://dx.doi.org/10.1073/pnas.96.4.1716] [PMID: 9990090]
[19]
Palmiter, R.D.; Cole, T.B.; Quaife, C.J.; Findley, S.D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. USA, 1996, 93(25), 14934-14939.
[http://dx.doi.org/10.1073/pnas.93.25.14934] [PMID: 8962159]
[20]
McAllister, B.B.; Dyck, R.H. Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci. Biobehav. Rev., 2017, 80, 329-350.
[http://dx.doi.org/10.1016/j.neubiorev.2017.06.006] [PMID: 28624432]
[21]
Adlard, P.A.; Parncutt, J.M.; Finkelstein, D.I.; Bush, A.I. Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J. Neurosci., 2010, 30(5), 1631-1636.
[http://dx.doi.org/10.1523/JNEUROSCI.5255-09.2010] [PMID: 20130173]
[22]
Martel, G.; Hevi, C.; Friebely, O.; Baybutt, T.; Shumyatsky, G.P. Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear. Learn. Mem., 2010, 17(11), 582-590.
[http://dx.doi.org/10.1101/lm.1962010] [PMID: 21036893]
[23]
Yoo, M.H.; Kim, T.Y.; Yoon, Y.H.; Koh, J.Y. Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation. Sci. Rep., 2016, 6, 28548.
[http://dx.doi.org/10.1038/srep28548] [PMID: 27352957]
[24]
Patrick Wu, H.P.; Dyck, R.H. Signaling by synaptic zinc is required for whisker-mediated, fine texture discrimination. Neuroscience, 2018, 369, 242-247.
[http://dx.doi.org/10.1016/j.neuroscience.2017.11.020] [PMID: 29158108]
[25]
Birinyi, A.; Parker, D.; Antal, M.; Shupliakov, O. Zinc co-localizes with GABA and glycine in synapses in the lamprey spinal cord. J. Comp. Neurol., 2001, 433(2), 208-221.
[http://dx.doi.org/10.1002/cne.1136] [PMID: 11283960]
[26]
Wang, Z.; Danscher, G.; Kim, Y.K.; Dahlstrom, A.; Mook Jo, S. Inhibitory zinc-enriched terminals in the mouse cerebellum: double-immunohistochemistry for zinc transporter 3 and glutamate decarboxylase. Neurosci. Lett., 2002, 321(1-2), 37-40.
[http://dx.doi.org/10.1016/S0304-3940(01)02560-5] [PMID: 11872251]
[27]
Leal, S.L.; Yassa, M.A. Integrating new findings and examining clinical applications of pattern separation. Nat. Neurosci., 2018, 21(2), 163-173.
[http://dx.doi.org/10.1038/s41593-017-0065-1] [PMID: 29371654]
[28]
Lu, C.; Malenka, R.C. NMDA receptor-dependent long-term potentiation and long-term depression; LTP/LTD, 2012, pp. 1-15.
[29]
Nicoll, R.A.; Schmitz, D. Synaptic Plasticity at Hippocampal Mossy Fibre Synapses. Nat. Rev. Neurosci. Nat. Pub., 2005, 6(11), 863-876.
[30]
Vergnano, A.M.; Rebola, N.; Savtchenko, L.P.; Pinheiro, P.S.; Casado, M.; Kieffer, B.L.; Rusakov, D.A.; Mulle, C.; Paoletti, P. Zinc dynamics and action at excitatory synapses. Neuron, 2014, 82(5), 1101-1114.
[http://dx.doi.org/10.1016/j.neuron.2014.04.034] [PMID: 24908489]
[31]
Takeda, A.; Suzuki, M.; Tempaku, M.; Ohashi, K.; Tamano, H. Influx of extracellular Zn(2+) into the hippocampal CA1 neurons is required for cognitive performance via long-term potentiation. Neuroscience, 2015, 304, 209-216.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.042] [PMID: 26204819]
[32]
Takeda, A.; Tamano, H. The impact of synaptic Zn2+ dynamics on cognition and its decline. Int. J. Mol. Sci., 2017, 18(11), 2411.
[http://dx.doi.org/10.3390/ijms18112411] [PMID: 29135924]
[33]
Medvedeva, Y.V.; Ji, S.G.; Yin, H.Z.; Weiss, J.H. Differential vulnerability of CA1 versus CA3 pyramidal neurons after ischemia: Possible relationship to sources of Zn2+ accumulation and its entry into and prolonged effects on mitochondria. J. Neurosci., 2017, 37(3), 726-737.
[http://dx.doi.org/10.1523/JNEUROSCI.3270-16.2016] [PMID: 28100752]
[34]
Shah, N.H.; Aizenman, E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl. Stroke Res., 2014, 5(1), 38-58.
[http://dx.doi.org/10.1007/s12975-013-0297-7] [PMID: 24323720]
[35]
Sindreu, C.B.; Varoqui, H.; Erickson, J.D.; Pérez-Clausell, J. Boutons containing vesicular zinc define a subpopulation of synapses with low AMPAR content in rat hippocampus. Cereb. Cortex, 2003, 13(8), 823-829.
[http://dx.doi.org/10.1093/cercor/13.8.823] [PMID: 12853368]
[36]
Blakemore, L.J.; Trombley, P.Q. Zinc as a neuromodulator in the central nervous system with a focus on the olfactory bulb. Front. Cell. Neurosci., 2017, 11, 297.
[http://dx.doi.org/10.3389/fncel.2017.00297] [PMID: 29033788]
[37]
Paoletti, P.; Vergnano, A.M.; Barbour, B.; Casado, M. Glutamatergic Synapses. Neuroscience. Pergamon January, 2009, 12, 126-136.
[38]
Romero-Hernandez, A.; Simorowski, N.; Karakas, E.; Furukawa, H. Molecular basis for subtype specificity and high-affinity zinc inhibition in the GluN1-GluN2A NMDA receptor amino-terminal domain. Neuron, 2016, 92(6), 1324-1336.
[http://dx.doi.org/10.1016/j.neuron.2016.11.006] [PMID: 27916457]
[39]
Vogt, K.; Mellor, J.; Tong, G.; Nicoll, R. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron, 2000, 26(1), 187-196.
[http://dx.doi.org/10.1016/S0896-6273(00)81149-6] [PMID: 10798403]
[40]
Gladding, C.M.; Raymond, L.A. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol. Cell. Neurosci., 2011, 48(4), 308-320.
[http://dx.doi.org/10.1016/j.mcn.2011.05.001] [PMID: 21600287]
[41]
Shetty, M.S.; Sharma, M.; Sajikumar, S. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory. Aging Cell, 2017, 16(1), 136-148.
[http://dx.doi.org/10.1111/acel.12537] [PMID: 27633878]
[42]
Piochon, C.; Kano, M.; Hansel, C. LTD-like molecular pathways in developmental synaptic pruning. Nat. Neurosci., 2016, 19(10), 1299-1310.
[http://dx.doi.org/10.1038/nn.4389] [PMID: 27669991]
[43]
Papouin, T.; Ladépêche, L.; Ruel, J.; Sacchi, S.; Labasque, M.; Hanini, M.; Groc, L.; Pollegioni, L.; Mothet, J.P.; Oliet, S.H.R. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell, 2012, 150(3), 633-646.
[http://dx.doi.org/10.1016/j.cell.2012.06.029] [PMID: 22863013]
[44]
Frederickson, C.J.; Giblin, L.J.; Krezel, A.; McAdoo, D.J.; Mueller, R.N.; Zeng, Y.; Balaji, R.V.; Masalha, R.; Thompson, R.B.; Fierke, C.A.; Sarvey, J.M.; de Valdenebro, M.; Prough, D.S.; Zornow, M.H. Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp. Neurol., 2006, 198(2), 285-293.
[http://dx.doi.org/10.1016/j.expneurol.2005.08.030] [PMID: 16443223]
[45]
Izumi, Y.; Auberson, Y.P.; Zorumski, C.F. Zinc modulates bidirectional hippocampal plasticity by effects on NMDA receptors. J. Neurosci., 2006, 26(27), 7181-7188.
[http://dx.doi.org/10.1523/JNEUROSCI.1258-06.2006] [PMID: 16822975]
[46]
Ventriglia, M.; Brewer, G.J.; Simonelli, I.; Mariani, S.; Siotto, M.; Bucossi, S.; Squitti, R. Zinc in alzheimer’s disease: A meta-analysis of serum, plasma, and cerebrospinal fluid studies. J. Alzheimers Dis., 2015, 46(1), 75-87.
[http://dx.doi.org/10.3233/JAD-141296] [PMID: 25697706]
[47]
Religa, D.; Strozyk, D.; Cherny, R.A.; Volitakis, I.; Haroutunian, V.; Winblad, B.; Naslund, J.; Bush, A.I. Elevated cortical zinc in Alzheimer disease. Neurology, 2006, 67(1), 69-75.
[http://dx.doi.org/10.1212/01.wnl.0000223644.08653.b5] [PMID: 16832080]
[48]
DeGrado, T.R.; Kemp, B.J.; Pandey, M.K.; Jiang, H.; Gunderson, T.M.; Linscheid, L.R.; Woodwick, A.R.; McConnell, D.M.; Fletcher, J.G.; Johnson, G.B.; Petersen, R.C.; Knopman, D.S.; Lowe, V.J. First PET imaging studies with 63Zn-Zinc citrate in healthy human participants and patients with alzheimer disease. Mol. Imaging, 2016. 15153601211667379
[http://dx.doi.org/10.1177/1536012116673793] [PMID: 27941122]
[49]
Bredesen, D.E. Metabolic profiling distinguishes three subtypes of Alzheimer’s disease. Aging (Albany NY), 2015, 7(8), 595-600.
[http://dx.doi.org/10.18632/aging.100801] [PMID: 26343025]
[50]
Adlard, P.A.; Cherny, R.A.; Finkelstein, D.I.; Gautier, E.; Robb, E.; Cortes, M.; Volitakis, I.; Liu, X.; Smith, J.P.; Perez, K.; Laughton, K.; Li, Q.X.; Charman, S.A.; Nicolazzo, J.A.; Wilkins, S.; Deleva, K.; Lynch, T.; Kok, G.; Ritchie, C.W.; Tanzi, R.E.; Cappai, R.; Masters, C.L.; Barnham, K.J.; Bush, A.I. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron, 2008, 59(1), 43-55.
[http://dx.doi.org/10.1016/j.neuron.2008.06.018] [PMID: 18614028]
[51]
Faux, N.G.; Ritchie, C.W.; Gunn, A.; Rembach, A.; Tsatsanis, A.; Bedo, J.; Harrison, J.; Lannfelt, L.; Blennow, K.; Zetterberg, H.; Ingelsson, M.; Masters, C.L.; Tanzi, R.E.; Cummings, J.L.; Herd, C.M.; Bush, A.I. PBT2 rapidly improves cognition in Alzheimer’s Disease: additional phase II analyses. J. Alzheimers Dis., 2010, 20(2), 509-516.
[http://dx.doi.org/10.3233/JAD-2010-1390] [PMID: 20164561]
[52]
Johanssen, T.; Suphantarida, N.; Donnelly, P.S.; Liu, X.M.; Petrou, S.; Hill, A.F.; Barnham, K.J. PBT2 inhibits glutamate-induced excitotoxicity in neurons through metal-mediated preconditioning. Neurobiol. Dis., 2015, 81, 176-185.
[http://dx.doi.org/10.1016/j.nbd.2015.02.008] [PMID: 25697105]
[53]
Li, S.; Hong, S.; Shepardson, N.E.; Walsh, D.M.; Shankar, G.M.; Selkoe, D. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron, 2009, 62(6), 788-801.
[http://dx.doi.org/10.1016/j.neuron.2009.05.012] [PMID: 19555648]
[54]
Texidó, L.; Martín-Satué, M.; Alberdi, E.; Solsona, C.; Matute, C. Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium, 2011, 49(3), 184-190.
[http://dx.doi.org/10.1016/j.ceca.2011.02.001] [PMID: 21349580]
[55]
Sepulveda, F.J.; Parodi, J.; Peoples, R.W.; Opazo, C.; Aguayo, L.G. Synaptotoxicity of Alzheimer beta amyloid can be explained by its membrane perforating property. PLoS One, 2010, 5(7)e11820
[http://dx.doi.org/10.1371/journal.pone.0011820] [PMID: 20676404]
[56]
Kabogo, D.; Rauw, G.; Amritraj, A.; Baker, G.; Kar, S. ß-amyloid-related peptides potentiate k+-evoked glutamate release from adult rat hippocampal slices. Neurobiol. Aging, 2010, 31(7), 1164-1172.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.08.009] [PMID: 18819729]
[57]
Takeda, A.; Tamano, H.; Tempaku, M.; Sasaki, M.; Uematsu, C.; Sato, S.; Kanazawa, H.; Datki, Z.L.; Adlard, P.A.; Bush, A.I. Extracellular Zn2+ is essential for amyloid β1-42-induced cognitive decline in the normal brain and its rescue. J. Neurosci., 2017, 37(30), 7253-7262.
[http://dx.doi.org/10.1523/JNEUROSCI.0954-17.2017] [PMID: 28652412]
[58]
Kessels, H.W.; Nabavi, S.; Malinow, R. Metabotropic NMDA receptor function is required for β-amyloid-induced synaptic depression. Proc. Natl. Acad. Sci. USA, 2013, 110(10), 4033-4038.
[http://dx.doi.org/10.1073/pnas.1219605110] [PMID: 23431156]
[59]
Bush, A.I.; Pettingell, W.H.; Multhaup, G. d Paradis, M.; Vonsattel, J.P.; Gusella, J.F.; Beyreuther, K.; Masters, C.L.; Tanzi, R.E. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science, 1994, 265(5177), 1464-1467.
[http://dx.doi.org/10.1126/science.8073293] [PMID: 8073293]
[60]
Lee, M.C.; Yu, W.C.; Shih, Y.H.; Chen, C.Y.; Guo, Z.H.; Huang, S.J.; Chan, J.C.C.; Chen, Y.R. Zinc ion rapidly induces toxic, off-pathway amyloid-β oligomers distinct from amyloid-β derived diffusible ligands in Alzheimer’s disease. Sci. Rep., 2018, 8(1), 4772.
[http://dx.doi.org/10.1038/s41598-018-23122-x] [PMID: 29555950]
[61]
Deshpande, A.; Kawai, H.; Metherate, R.; Glabe, C.G.; Busciglio, J. A role for synaptic zinc in activity-dependent Abeta oligomer formation and accumulation at excitatory synapses. J. Neurosci., 2009, 29(13), 4004-4015.
[http://dx.doi.org/10.1523/JNEUROSCI.5980-08.2009] [PMID: 19339596]
[62]
Bero, A.W.; Yan, P.; Roh, J.H.; Cirrito, J.R.; Stewart, F.R.; Raichle, M.E.; Lee, J.M.; Holtzman, D.M. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat. Neurosci., 2011, 14(6), 750-756.
[http://dx.doi.org/10.1038/nn.2801] [PMID: 21532579]
[63]
Bero, A.W.; Bauer, A.Q.; Stewart, F.R.; White, B.R.; Cirrito, J.R.; Raichle, M.E.; Culver, J.P.; Holtzman, D.M. Bidirectional relationship between functional connectivity and amyloid-β deposition in mouse brain. J. Neurosci., 2012, 32(13), 4334-4340.
[http://dx.doi.org/10.1523/JNEUROSCI.5845-11.2012] [PMID: 22457485]
[64]
Hardingham, G.E.; Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci., 2010, 11(10), 682-696.
[http://dx.doi.org/10.1038/nrn2911] [PMID: 20842175]
[65]
Zhou, X.; Hollern, D.; Liao, J.; Andrechek, E.; Wang, H. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death Dis., 2013, 4(3), e560-e11.
[http://dx.doi.org/10.1038/cddis.2013.82] [PMID: 23538441]
[66]
Bordji, K.; Becerril-Ortega, J.; Nicole, O.; Buisson, A. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid-ß production. J. Neurosci., 2010, 30(47), 15927-15942.
[http://dx.doi.org/10.1523/JNEUROSCI.3021-10.2010] [PMID: 21106831]
[67]
Rush, T.; Buisson, A. Reciprocal disruption of neuronal signaling and Aβ production mediated by extrasynaptic NMDA receptors: a downward spiral. Cell Tissue Res., 2014, 356(2), 279-286.
[http://dx.doi.org/10.1007/s00441-013-1789-1] [PMID: 24496511]
[68]
Dolev, I.; Fogel, H.; Milshtein, H.; Berdichevsky, Y.; Lipstein, N.; Brose, N.; Gazit, N.; Slutsky, I. Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. Nat. Neurosci., 2013, 16(5), 587-595.
[http://dx.doi.org/10.1038/nn.3376] [PMID: 23563578]
[69]
McKee, K.K.; Tan, C.P.; Palyha, O.C.; Liu, J.; Feighner, S.D.; Hreniuk, D.L.; Smith, R.G.; Howard, A.D.; Van der Ploeg, L.H. Cloning and characterization of two human G protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors. Genomics, 1997, 46(3), 426-434.
[http://dx.doi.org/10.1006/geno.1997.5069] [PMID: 9441746]
[70]
Egerod, K.L.; Holst, B.; Petersen, P.S.; Hansen, J.B.; Mulder, J.; Hökfelt, T.; Schwartz, T.W. GPR39 splice variants versus antisense gene LYPD1: expression and regulation in gastrointestinal tract, endocrine pancreas, liver, and white adipose tissue. Mol. Endocrinol., 2007, 21(7), 1685-1698.
[http://dx.doi.org/10.1210/me.2007-0055] [PMID: 17488974]
[71]
Jackson, V.R.; Nothacker, H-P.; Civelli, O. GPR39 receptor expression in the mouse brain. Neuroreport, 2006, 17(8), 813-816.
[http://dx.doi.org/10.1097/01.wnr.0000215779.76602.93] [PMID: 16708020]
[72]
Popovics, P.; Stewart, A.J. GPR39: a Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell. Mol. Life Sci., 2011, 68(1), 85-95.
[http://dx.doi.org/10.1007/s00018-010-0517-1] [PMID: 20812023]
[73]
Młyniec, K.; Doboszewska, U.; Szewczyk, B.; Sowa-Kućma, M.; Misztak, P.; Piekoszewski, W.; Trela, F.; Ostachowicz, B.; Nowak, G. The involvement of the GPR39-Zn(2+)-sensing receptor in the pathophysiology of depression. Studies in rodent models and suicide victims. Neuropharmacology, 2014, 79, 290-297.
[http://dx.doi.org/10.1016/j.neuropharm.2013.12.001] [PMID: 24333148]
[74]
Młyniec, K.; Starowicz, G.; Gaweł, M.; Frąckiewicz, E.; Nowak, G. Potential antidepressant-like properties of the TC G-1008, a GPR39 (zinc receptor) agonist. J. Affect. Disord., 2016, 201, 179-184.
[http://dx.doi.org/10.1016/j.jad.2016.05.007] [PMID: 27235821]
[75]
Cuzon Carlson, V.C.; Ford, M.M.; Carlson, T.L.; Lomniczi, A.; Grant, K.A.; Ferguson, B.; Cervera-Juanes, R.P. Modulation of Gpr39, a G-protein coupled receptor associated with alcohol use in non-human primates, curbs ethanol intake in mice. Neuropsychopharmacology, 2019, 44(6), 1103-1113.
[http://dx.doi.org/10.1038/s41386-018-0308-1] [PMID: 30610192]
[76]
Hodge, R.D.; Trygve, E.B.; Jeremy, A.M.; Kimberly, A.S.; Eliza, R.B.; Lucas, T.G.; Jennie, L.C.; Brian, L.; Osnat, P.; Zizhen, Y.; Jeroen, E.; Thomas, H.; Boaz, P.L.; Soraya, I.S.; Brian, A.; Allison, B.E.S.L. Conserved cell types with divergent features between human and mouse cortex. bioRxiv, 2018, 1-112.
[http://dx.doi.org/10.1101/3848266]
[77]
Tasic, B.; Yao, Z.; Graybuck, L.T.; Smith, K.A.; Nguyen, T.N.; Bertagnolli, D.; Goldy, J.; Garren, E.; Economo, M.N.; Viswanathan, S.; Penn, O.; Bakken, T.; Menon, V.; Miller, J.; Fong, O.; Hirokawa, K.E.; Lathia, K.; Rimorin, C.; Tieu, M.; Larsen, R.; Casper, T.; Barkan, E.; Kroll, M.; Parry, S.; Shapovalova, N.V.; Hirschstein, D.; Pendergraft, J.; Sullivan, H.A.; Kim, T.K.; Szafer, A.; Dee, N.; Groblewski, P.; Wickersham, I.; Cetin, A.; Harris, J.A.; Levi, B.P.; Sunkin, S.M.; Madisen, L.; Daigle, T.L.; Looger, L.; Bernard, A.; Phillips, J.; Lein, E.; Hawrylycz, M.; Svoboda, K.; Jones, A.R.; Koch, C.; Zeng, H. Shared and distinct transcriptomic cell types across neocortical areas. Nature, 2018, 563(7729), 72-78.
[http://dx.doi.org/10.1038/s41586-018-0654-5] [PMID: 30382198]
[78]
Dittmer, S.; Sahin, M.; Pantlen, A.; Saxena, A.; Toutzaris, D.; Pina, A.L.; Geerts, A.; Golz, S.; Methner, A. The constitutively active orphan G-protein-coupled receptor GPR39 protects from cell death by increasing secretion of pigment epithelium-derived growth factor. J. Biol. Chem., 2008, 283(11), 7074-7081.
[http://dx.doi.org/10.1074/jbc.M704323200] [PMID: 18180304]
[79]
Holst, B.; Egerod, K.L.; Schild, E.; Vickers, S.P.; Cheetham, S.; Gerlach, L.O.; Storjohann, L.; Stidsen, C.E.; Jones, R.; Beck-Sickinger, A.G.; Schwartz, T.W. GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology, 2007, 148(1), 13-20.
[http://dx.doi.org/10.1210/en.2006-0933] [PMID: 16959833]
[80]
Holst, B.; Holliday, N.D.; Bach, A.; Elling, C.E.; Cox, H.M.; Schwartz, T.W. Common structural basis for constitutive activity of the ghrelin receptor family. J. Biol. Chem., 2004, 279(51), 53806-53817.
[http://dx.doi.org/10.1074/jbc.M407676200] [PMID: 15383539]
[81]
Yasuda, S.; Miyazaki, T.; Munechika, K.; Yamashita, M.; Ikeda, Y.; Kamizono, A. Isolation of Zn2+ as an endogenous agonist of GPR39 from fetal bovine serum. J. Recept. Signal Transduct. Res., 2007, 27(4), 235-246.
[http://dx.doi.org/10.1080/10799890701506147] [PMID: 17885920]
[82]
Abramovitch-Dahan, C.; Asraf, H.; Bogdanovic, M.; Sekler, I.; Bush, A.I.; Hershfinkel, M. Amyloid β attenuates metabotropic zinc sensing receptor, mZnR/GPR39, dependent Ca2+, ERK1/2 and Clusterin signaling in neurons. J. Neurochem., 2016, 139(2), 221-233.
[http://dx.doi.org/10.1111/jnc.13760] [PMID: 27501363]
[83]
Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-MTOR pathways: Cross-talk and compensation. Trends Biochem. Sci., 2011, 36(6), 320-328.
[84]
Hershfinkel, M. The Zinc Sensing Receptor, ZnR/GPR39, in Health and Disease. Int. J. Mol. Sci., 2018, 19(2)E439
[http://dx.doi.org/10.3390/ijms19020439] [PMID: 29389900]
[85]
Shimizu, Y.; Koyama, R.; Kawamoto, T. Rho kinase-dependent desensitization of GPR39; a unique mechanism of GPCR downregulation. Biochem. Pharmacol., 2017, 140, 105-114.
[http://dx.doi.org/10.1016/j.bcp.2017.06.115] [PMID: 28619258]
[86]
Kovacs, Z.; Schacht, T.; Herrmann, A-K.; Albrecht, P.; Lefkimmiatis, K.; Methner, A. Protein kinase inhibitor β enhances the constitutive activity of G-protein-coupled zinc receptor GPR39. Biochem. J., 2014, 462(1), 125-132.
[http://dx.doi.org/10.1042/BJ20131198] [PMID: 24869658]
[87]
Sanchez, A.; Tripathy, D.; Yin, X.; Luo, J.; Martinez, J.; Grammas, P. Pigment epithelium-derived factor (PEDF) protects cortical neurons in vitro from oxidant injury by activation of extracellular signal-regulated kinase (ERK) 1/2 and induction of Bcl-2. Neurosci. Res., 2012, 72(1), 1-8.
[http://dx.doi.org/10.1016/j.neures.2011.09.003] [PMID: 21946416]
[88]
Subramaniam, S.; Unsicker, K. ERK and cell death: ERK1/2 in neuronal death. FEBS J., 2010, 277(1), 22-29.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07367.x] [PMID: 19843173]
[89]
Dou, P.; Zhang, D.; Cheng, Z.; Zhou, G.; Zhang, L. PKIB promotes cell proliferation and the invasion-metastasis cascade through the PI3K/Akt pathway in NSCLC cells. Exp. Biol. Med. (Maywood), 2016, 241(17), 1911-1918.
[http://dx.doi.org/10.1177/1535370216655908] [PMID: 27325557]
[90]
Dabanaka, K.; Chung, S.; Nakagawa, H.; Nakamura, Y.; Okabayashi, T.; Sugimoto, T.; Hanazaki, K.; Furihata, M. PKIB expression strongly correlated with phosphorylated Akt expression in breast cancers and also with triple-negative breast cancer subtype. Med. Mol. Morphol., 2012, 45(4), 229-233.
[http://dx.doi.org/10.1007/s00795-011-0565-0] [PMID: 23224602]
[91]
Zimmermann, S.; Moelling, K. Phosphorylation and Regulation of Raf by Akt (Protein Kinase B). Science (80-.), 1999, 286(5445), 1741-1744.
[92]
Dumaz, N.; Marais, R. Protein kinase A blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras. J. Biol. Chem., 2003, 278(32), 29819-29823.
[http://dx.doi.org/10.1074/jbc.C300182200] [PMID: 12801936]
[93]
Kremer, A.; Louis, J.V.; Jaworski, T.; Van Leuven, F. GSK3 and alzheimer’s disease: Facts and fiction. Front. Mol. Neurosci., 2011, 4, 17.
[http://dx.doi.org/10.3389/fnmol.2011.00017] [PMID: 21904524]
[94]
Sato, S.; Huang, X-P.; Kroeze, W.K.; Roth, B.L. Discovery and characterization of novel GPR39 agonists allosterically modulated by zinc. Mol. Pharmacol., 2016, 90(6), 726-737.
[http://dx.doi.org/10.1124/mol.116.106112] [PMID: 27754899]
[95]
Oertel, D.; Young, E.D. What’s a cerebellar circuit doing in the auditory system? Trends Neurosci., 2004, 27(2), 104-110.
[http://dx.doi.org/10.1016/j.tins.2003.12.001] [PMID: 15102490]
[96]
Chorin, E.; Vinograd, O.; Fleidervish, I.; Gilad, D.; Herrmann, S.; Sekler, I.; Aizenman, E.; Hershfinkel, M. Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J. Neurosci., 2011, 31(36), 12916-12926.
[http://dx.doi.org/10.1523/JNEUROSCI.2205-11.2011] [PMID: 21900570]
[97]
Gilad, D.; Shorer, S.; Ketzef, M.; Friedman, A.; Sekler, I.; Aizenman, E.; Hershfinkel, M. Homeostatic regulation of KCC2 activity by the zinc receptor mZnR/GPR39 during seizures. Neurobiol. Dis., 2015, 81, 4-13.
[http://dx.doi.org/10.1016/j.nbd.2014.12.020] [PMID: 25562657]
[98]
Ganay, T.; Asraf, H.; Aizenman, E.; Bogdanovic, M.; Sekler, I.; Hershfinkel, M. Regulation of neuronal pH by the metabotropic Zn(2+)-sensing Gq-coupled receptor, mZnR/GPR39. J. Neurochem., 2015, 135(5), 897-907.
[http://dx.doi.org/10.1111/jnc.13367] [PMID: 26375174]
[99]
Mango, D.; Nisticò, R. Role of ASIC1a in Aβ-induced synaptic alterations in the hippocampus. Pharmacol. Res., 2018, 131, 61-65.
[http://dx.doi.org/10.1016/j.phrs.2018.03.016] [PMID: 29574226]
[100]
Lacour, A.; Espinosa, A.; Louwersheimer, E.; Heilmann, S.; Hernández, I.; Wolfsgruber, S.; Fernández, V.; Wagner, H.; Rosende-Roca, M.; Mauleón, A.; Moreno-Grau, S.; Vargas, L.; Pijnenburg, Y.A.; Koene, T.; Rodríguez-Gómez, O.; Ortega, G.; Ruiz, S.; Holstege, H.; Sotolongo-Grau, O.; Kornhuber, J.; Peters, O.; Frölich, L.; Hüll, M.; Rüther, E.; Wiltfang, J.; Scherer, M.; Riedel-Heller, S.; Alegret, M.; Nöthen, M.M.; Scheltens, P.; Wagner, M.; Tárraga, L.; Jessen, F.; Boada, M.; Maier, W.; van der Flier, W.M.; Becker, T.; Ramirez, A.; Ruiz, A. Genome-wide significant risk factors for Alzheimer’s disease: Role in progression to dementia due to Alzheimer’s disease among subjects with mild cognitive impairment. Mol. Psychiatry, 2017, 22(1), 153-160.
[http://dx.doi.org/10.1038/mp.2016.18] [PMID: 26976043]
[101]
Charnay, Y.; Imhof, A.; Vallet, P.G.; Kovari, E.; Bouras, C.
Giannakopoulos, P. Clusterin in neurological disorders: Molecular perspectives and clinical relevance. Brain Res. Bull., 2012, 88(5), 434-443.
[102]
Li, X.; Ma, Y.; Wei, X.; Li, Y.; Wu, H.; Zhuang, J.; Zhao, Z. Clusterin in Alzheimer’s disease: a player in the biological behavior of amyloid-beta. Neurosci. Bull., 2014, 30(1), 162-168.
[http://dx.doi.org/10.1007/s12264-013-1391-2] [PMID: 24353014]
[103]
Zádori, D.; Veres, G.; Szalárdy, L.; Klivényi, P.; Toldi, J.; Vécsei, L. Glutamatergic dysfunctioning in Alzheimer’s disease and related therapeutic targets. J. Alzheimers Dis., 2014, 42(Suppl. 3), S177-S187.
[http://dx.doi.org/10.3233/JAD-132621] [PMID: 24670398]
[104]
Lagostena, L.; Rosato-Siri, M.; D’Onofrio, M.; Brandi, R.; Arisi, I.; Capsoni, S.; Franzot, J.; Cattaneo, A.; Cherubini, E. In the adult hippocampus, chronic nerve growth factor deprivation shifts GABAergic signaling from the hyperpolarizing to the depolarizing direction. J. Neurosci., 2010, 30(3), 885-893.
[http://dx.doi.org/10.1523/JNEUROSCI.3326-09.2010] [PMID: 20089897]
[105]
Molinaro, G.; Battaglia, G.; Riozzi, B.; Di Menna, L.; Rampello, L.; Bruno, V.; Nicoletti, F. Memantine treatment reduces the expression of the K+/Cl- cotransporter KCC2 in the hippocampus and cerebral cortex, and attenuates behavioural responses mediated by GABA(A) receptor activation in mice. Brain Res., 2009, 1265, 75-79.
[http://dx.doi.org/10.1016/j.brainres.2009.02.016] [PMID: 19236854]
[106]
Schulte, J.T.; Wierenga, C.J.; Bruining, H. Chloride transporters and GABA polarity in developmental, neurological and psychiatric conditions. Neurosci. Biobehav. Rev., 2018, 90(March), 260-271.
[http://dx.doi.org/10.1016/j.neubiorev.2018.05.001] [PMID: 29729285]
[107]
Löscher, W.; Hönack, D. High doses of memantine (1-amino-3,5-dimethyladamantane) induce seizures in kindled but not in non-kindled rats. Naunyn Schmiedebergs Arch. Pharmacol., 1990, 341(5), 476-481.
[http://dx.doi.org/10.1007/BF00176343]
[108]
Khan, M.Z. A possible significant role of zinc and GPR39 zinc sensing receptor in Alzheimer disease and epilepsy. Biomed. Pharmacother., 2016, 79(24), 263-272.
[http://dx.doi.org/10.1016/j.biopha.2016.02.026] [PMID: 27044837]
[109]
Gonzales, E.B.; Sumien, N. Acidity and acid-sensing ion channels in the normal and alzheimer’s disease brain. J. Alzheimers Dis., 2017, 57(4), 1137-1144.
[http://dx.doi.org/10.3233/JAD-161131] [PMID: 28211811]
[110]
Mlyniec, K. Zinc in the glutamatergic theory of depression. Curr. Neuropharmacol., 2015, 13(4), 505-513.
[http://dx.doi.org/10.2174/1570159X13666150115220617] [PMID: 26412070]
[111]
Kepp, K.P. Alzheimer’s disease: How metal ions define β-amyloid function. Coord. Chem. Rev., 2017, 351, 127-159.
[http://dx.doi.org/10.1016/j.ccr.2017.05.007]
[112]
Tena-Campos, M.; Ramon, E.; Borroto-Escuela, D.O.; Fuxe, K.; Garriga, P. The zinc binding receptor GPR39 interacts with 5-HT1A and GalR1 to form dynamic heteroreceptor complexes with signaling diversity. Biochim. Biophys. Acta, 2015, 1852(12), 2585-2592.
[http://dx.doi.org/10.1016/j.bbadis.2015.09.003] [PMID: 26365466]
[113]
Yasuda, S.; Ishida, J. GPR39-1b, the 5-transmembrane isoform of GPR39 interacts with neurotensin receptor NTSR1 and modifies its function. J. Recept. Signal Transduct. Res., 2014, 34(4), 307-312.
[http://dx.doi.org/10.3109/10799893.2014.885050] [PMID: 24512471]
[114]
Gahete, M.D.; Rubio, A.; Córdoba-Chacón, J.; Gracia-Navarro, F.; Kineman, R.D.; Avila, J.; Luque, R.M.; Castaño, J.P. Expression of the ghrelin and neurotensin systems is altered in the temporal lobe of Alzheimer’s disease patients. J. Alzheimers Dis., 2010, 22(3), 819-828.
[http://dx.doi.org/10.3233/JAD-2010-100873] [PMID: 20858966]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy