Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Targeting of ErbB1, ErbB2, and their Dual Targeting Using Small Molecules and Natural Peptides: Blocking EGFR Cell Signaling Pathways in Cancer: A Mini-Review

Author(s): Sunil Kumar Patnaik, M.J.N. Chandrasekar*, Palathoti Nagarjuna, Deepthi Ramamurthi and Akey Krishna Swaroop

Volume 22, Issue 22, 2022

Published on: 10 August, 2022

Page: [2831 - 2846] Pages: 16

DOI: 10.2174/1389557522666220512152448

Price: $65

Abstract

Cancer is one of the deadliest diseases involving dysregulated cell proliferation and has been the leading cause of death worldwide. The chemotherapeutic drugs currently used for treating cancer have serious drawbacks of non-specific toxicity and drug resistance. The four members of the human epidermal growth factor receptor (EGFR), namely, ErbB1/HER1, ErbB2/HER2/neu, ErbB3/HER3 and ErbB4/HER4, the trans-membrane family of tyrosine kinase receptors, are overexpressed in many types of cancers. These receptors play an important role in cell proliferation, differentiation, invasion, metastasis and angiogenesis and unregulated activation of cancer cells. Overexpression of ErbB1 and ErbB2 occurs in several types of cancers and is associated with a poor prognosis leading to resistance to ErbB1 directed therapies. Heterodimerization with ErbB2/HER2 is a potent activator of Epidermal Growth Factor Receptor-Tyrosine kinase (EGFRTK) complex than EGFR alone. Though ErbB3/HER3 can bind to a ligand, its kinase domain is devoid of catalytic activity and hence relies on its partner (ErbB2/HER2) for initiation of signals, thus, ErbB2 is involved in the activation of ErbB3. However, recent evidence reveals that ErbB1 and ErbB2 are the most important targets for cancer therapy. By inhibiting these two important kinases, the cancer cell signaling transduction pathways can be inhibited. Lapatinib and monoclonal antibodies like trastuzumab have been used for the dual inhibition of ErbB1 and ErbB2 in the treatment of various cancers. Resistance, however, develops soon. The present report reviews the investigations that have been carried out by earlier workers for targeting ErbB1, ErbB2, and both using small molecules and novel peptides that could help/facilitate researchers to design and develop better cancer chemotherapy.

Keywords: Cancer, ErbB1/HER1, ErbB2/HER2, peptides, receptor tyrosine kinase, dual targeting.

Graphical Abstract
[1]
2020.
[2]
Kakde, D.; Jain, D.; Shrivastava, V.; Kakde, R.; Patil, A.T. Cancer therapeutics-opportunities, challenges and advances in drug delivery. J. Appl. Pharm. Sci., 2011, 1(9), 1-10.
[3]
Srivastava, Jitendra Kumar.; Pillai, Girinath G.; Bhat, Hans Raj; Verma, Amita; Ahsan, Udaya Pratap; Singh, Aarif Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating epidermal growth factor receptor tyrosine kinase. Sci. Rep., 2017, 7(1), 5851.
[http://dx.doi.org/10.1038/s41598-017-05934-5]
[4]
Ahsan, A.; Ramanand, S.G. AhBerginsan, I.L.; Zhao, L.; Whitehead, C.E.; Rehemtulla, A.; Ray, D.; Pratt, W.B.; Lawrence, T.S.; Nyati, M.K. Efficacy of an EGFR-specific peptide against EGFR-dependent cancer cell lines and tumor xenografts. Neoplasia, 2014, 16(2), 105-114.
[5]
Wang, Xiaoyu; Xu, Linfeng; Lao, Yuanzhi; Zhang, Hongmei; Xu, Hongxi Natural products targeting EGFR signaling pathways as potential anticancer drugs. Curr. Protein Pept. Sci. 19(4), 2018, (9), 380-38.
[6]
Wee, P.; Wang, Z.; Epidermal, G.F.R.C.P.S.P. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel), 2017, 9(5), 52.
[http://dx.doi.org/10.3390/cancers9050052] [PMID: 28513565]
[7]
Elmetwally, S.A.; Saied, K.F.; Eissa, I.H.; Elkaeed, E.B. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem., 2019, 88, 102944.
[http://dx.doi.org/10.1016/j.bioorg.2019.102944] [PMID: 31051400]
[8]
Ahammad, I.; Sarker, M.R.I.; Khan, A.M.; Islam, S.; Hossain, M. Virtual screening to identify novel inhibitors of pan ERBB family of proteins from natural products with known anti-tumorigenic properties. Int. J. Pept. Res. Ther., 2020, 26, 1923-1938.
[9]
Wang, Y. Breast cancer metastasis driven by ErbB2 and 14-3-3zeta: A division of labor. Cell Adhes. Migr., 2010, 4(1), 7-9.
[http://dx.doi.org/10.4161/cam.4.1.10497] [PMID: 20009581]
[10]
Yang, L.; Li, Y.; Bhattacharya, A.; Zhang, Y. Dual inhibition of ErbB1 and ErbB2 in cancer by recombinant human prolidase mutant hPEPD-G278D. Oncotarget, 2016, 7(27), 42340-42352.
[http://dx.doi.org/10.18632/oncotarget.9851] [PMID: 27286447]
[11]
Hu, J-B.; Dong, M-J.; Zhang, J.; Holistic, A. In silico approach to develop novel inhibitors targeting ErbB1 and ErbB2 kinases. Trop. J. Pharm. Res., 2016, 15(2), 231-239.
[http://dx.doi.org/10.4314/tjpr.v15i2.3]
[12]
Chiu, C.G.; Masoudi, H.; Leung, S.; Voduc, D.K.; Gilks, B.; Huntsman, D.G.; Wiseman, S.M. HER-3 overexpression is prognostic of reduced breast cancer survival. Ann. Surg., 2010, 251(6), 1107-1116.
[13]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[http://dx.doi.org/10.1038/35052073] [PMID: 11252954]
[14]
Tebbutt, N.; Pedersen, M.W.; Johns, T.G. Targeting the ERBB family in cancer: Couples therapy. Nat. Rev. Cancer, 2013, 13(9), 663-673.
[http://dx.doi.org/10.1038/nrc3559] [PMID: 23949426]
[15]
Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201.
[http://dx.doi.org/10.1038/s41392-021-00572-w] [PMID: 34054126]
[16]
Roskoski, R., Jr The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res., 2014, 79, 34-74.
[http://dx.doi.org/10.1016/j.phrs.2013.11.002] [PMID: 24269963]
[17]
Miller, V.A.; Hirsh, V.; Cadranel, J.; Chen, Y.M.; Park, K.; Kim, S.W.; Zhou, C.; Su, W.C.; Wang, M.; Sun, Y.; Heo, D.S.; Crino, L.; Tan, E.H.; Chao, T.Y.; Shahidi, M.; Cong, X.J.; Lorence, R.M.; Yang, J.C. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): A phase 2b/3 randomised trial. Lancet Oncol., 2012, 13(5), 528-538.
[http://dx.doi.org/10.1016/S1470-2045(12)70087-6] [PMID: 22452896]
[18]
Lavacchi, D.; Mazzoni, F.; Giaccone, G. Clinical evaluation of dacomitinib for the treatment of metastatic non-small cell lung cancer (NSCLC): Current perspectives. Drug Des. Devel. Ther., 2019, 13, 3187-3198.
[http://dx.doi.org/10.2147/DDDT.S194231] [PMID: 31564835]
[19]
Yver, A. Osimertinib (AZD9291)-a science-driven, collaborative approach to rapid drug design and development. Ann. Oncol., 2016, 27(6), 1165-1170.
[http://dx.doi.org/10.1093/annonc/mdw129] [PMID: 26961148]
[20]
Efferth, T. Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib. Phytomedicine, 2017, 37, 58-61.
[http://dx.doi.org/10.1016/j.phymed.2017.11.003] [PMID: 29174651]
[21]
Youssif, B.G.M.; Abdelrahman, M.H.; Abdelazeem, A.H.; Abdelgawad, M.A.; Ibrahim, H.M.; Salem, O.I.A.; Mohamed, M.F.A.; Treambleau, L.; Bukhari, S.N.A. Design, synthesis, mechanistic and histopathological studies of small-molecules of novel indole-2-carboxamides and pyrazino[1,2-a]indol-1(2H)-ones as potential anticancer agents effecting the reactive oxygen species production. Eur. J. Med. Chem., 2018, 146, 260-273.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.042] [PMID: 29407956]
[22]
Biscaglia, F.; Rajendran, S.; Conflitti, P.; Benna, C.; Sommaggio, R.; Litti, L.; Mocellin, S.; Bocchinfuso, G.; Rosato, A.; Palleschi, A.; Nitti, D.; Gobbo, M.; Meneghetti, M. Enhanced EGFR targeting activity of plasmonic nanostructures with engineered GE11 peptide. Adv. Healthc. Mater., 2017, 6(23), 1700596.
[http://dx.doi.org/10.1002/adhm.201700596] [PMID: 28945012]
[23]
Li, E.D.; Lin, Q.; Meng, Y.Q.; Zhang, L.Y.; Song, P.P.; Li, N.; Xin, J.C.; Yang, P.; Bao, C.N.; Zhang, D.Q.; Zhang, Y.; Wang, J.K.; Zhang, Q.R.; Liu, H.M. 2,4-Disubstituted quinazolines targeting breast cancer cells via EGFR-PI3K. Eur. J. Med. Chem., 2019, 172, 36-47.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.030] [PMID: 30939352]
[24]
Xia, L.; Zheng, Z.; Liu, J.Y.; Chen, Y.J.; Ding, J.; Hu, G.S.; Hu, Y.H.; Liu, S.; Luo, W.X.; Xia, N.S.; Liu, W. Targeting triple-negative breast cancer with combination therapy of EGFR CAR T cells and CDK7 inhibition. Cancer Immunol. Res., 2021, 9(6), 707-722.
[http://dx.doi.org/10.1158/2326-6066.CIR-20-0405] [PMID: 33875483]
[25]
Sharko, A.C.; Lim, C.U.; McDermott, M.S.J.; Hennes, C.; Philavong, K.P.; Aiken, T.; Tatarskiy, V.V.; Roninson, I.B.; Broude, E.V. The inhibition of CDK8/19 mediator kinases prevents the development of resistance to EGFR-targeting drugs. Cells, 2021, 10(1), 144.
[http://dx.doi.org/10.3390/cells10010144] [PMID: 33445730]
[26]
Koga, T.; Kobayashi, Y.; Tomizawa, K.; Suda, K.; Kosaka, T.; Sesumi, Y.; Fujino, T.; Nishino, M.; Ohara, S.; Chiba, M.; Shimoji, M.; Takemoto, T.; Suzuki, M.; Jänne, P.A.; Mitsudomi, T. Activity of a novel HER2 inhibitor, poziotinib, for HER2 exon 20 mutations in lung cancer and mechanism of acquired resistance: An in vitro study. Lung Cancer, 2018, 126, 72-79.
[http://dx.doi.org/10.1016/j.lungcan.2018.10.019] [PMID: 30527195]
[27]
Pahuja, K.B.; Nguyen, T.T.; Jaiswal, B.S.; Prabhash, K.; Thaker, T.M.; Senger, K.; Chaudhuri, S.; Kljavin, N.M.; Antony, A.; Phalke, S.; Kumar, P.; Mravic, M.; Stawiski, E.W.; Vargas, D.; Durinck, S.; Gupta, R.; Khanna-Gupta, A.; Trabucco, S.E.; Sokol, E.S.; Hartmaier, R.J.; Singh, A.; Chougule, A.; Trivedi, V.; Dutt, A.; Patil, V.; Joshi, A.; Noronha, V.; Ziai, J.; Banavali, S.D.; Ramprasad, V.; DeGrado, W.F.; Bueno, R.; Jura, N.; Seshagiri, S. Actionable activating oncogenic ERBB2/HER2 transmembrane and juxtamembrane domain mutations. Cancer Cell, 2018, 34(5), 792-806.e5.
[http://dx.doi.org/10.1016/j.ccell.2018.09.010] [PMID: 30449325]
[28]
Costales, M.G.; Hoch, D.G.; Abegg, D.; Childs-Disney, J.L.; Velagapudi, S.P.; Adibekian, A.; Disney, M.D. A designed small molecule inhibitor of a non-coding RNA sensitizes HER2 negative cancers to herceptin. J. Am. Chem. Soc., 2019, 141(7), 2960-2974.
[http://dx.doi.org/10.1021/jacs.8b10558] [PMID: 30726072]
[29]
Croessmann, S.; Formisano, L.; Kinch, L.N.; Gonzalez-Ericsson, P.I.; Sudhan, D.R.; Nagy, R.J.; Mathew, A.; Bernicker, E.H.; Cristofanilli, M.; He, J.; Cutler, R.E., Jr; Lalani, A.S.; Miller, V.A.; Lanman, R.B.; Grishin, N.V.; Arteaga, C.L. Combined blockade of activating ERBB2 mutations and ER results in synthetic lethality of ER+/HER2 mutant breast cancer. Clin. Cancer Res., 2019, 25(1), 277-289.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1544] [PMID: 30314968]
[30]
Xu, Z.; Guo, D.; Jiang, Z.; Tong, R.; Jiang, P.; Bai, L.; Chen, L.; Zhu, Y.; Guo, C.; Shi, J.; Yu, D. Novel HER2-targeting antibody-drug conjugates of trastuzumab beyond T-DM1 in breast cancer: Trastuzumab deruxtecan (DS-8201a) and (Vic-) trastuzumab duocarmazine (SYD985). Eur. J. Med. Chem., 2019, 183, 111682.
[http://dx.doi.org/10.1016/j.ejmech.2019.111682] [PMID: 31563805]
[31]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; de Feo, G.; Caponigro, F. F.; Salomon, D.S. Gene, 2006, 366, 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[32]
Liu, L.; Greger, J.; Shi, H.; Liu, Y.; Greshock, J.; Annan, R.; Halsey, W.; Sathe, G.M.; Martin, A-M.; Gilmer, T.M. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: Activation of AXL. Cancer Res., 2009, 69(17), 6871-6878.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4490] [PMID: 19671800]
[33]
Amin, D.N.; Sergina, N.; Lim, L.; Goga, A.; Moasser, M.M. HER3 signalling is regulated through a multitude of redundant mechanisms in HER2-driven tumour cells. Biochem. J., 2012, 447(3), 417-425.
[http://dx.doi.org/10.1042/BJ20120724] [PMID: 22853430]
[34]
Deng, Y.; Li, J. Rational optimization of tumor suppressor-derived peptide inhibitor selectivity between oncogene tyrosine kinases ErbB1 and ErbB2. Arch. Pharm. (Weinheim), 2017, 350(12), e1700181.
[http://dx.doi.org/10.1002/ardp.201700181] [PMID: 29131383]
[35]
Ryan, Q.; Ibrahim, A.; Cohen, M.H.; Johnson, J.; Ko, C-W.; Sridhara, R.; Justice, R.; Pazdur, R. FDA drug approval summary: Lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist, 2008, 13(10), 1114-1119.
[36]
Chu, I.; Blackwell, K.; Chen, S.; Slingerland, J. The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res., 2005, 65(1), 18-25.
[PMID: 15665275]
[37]
Ghorab, M.M.; Alsaid, M.S.; Soliman, A.M.; Al-Mishari, A.A. Benzo[g]quinazolin-based scaffold derivatives as dual EGFR/HER2 inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 67-73.
[http://dx.doi.org/10.1080/14756366.2017.1389922] [PMID: 29098904]
[38]
Minuto, M.; Varaldo, E.; Marcocci, G.; de Santanna, A.; Ciccone, E.; Cortese, K. ERBB1-and ERBB2-positive medullary thyroid carcinoma: A case report. Diseases, 2018, 6(2), 25.
[http://dx.doi.org/10.3390/diseases6020025] [PMID: 29642647]
[39]
Das, D.; Xie, L.; Wang, J.; Xu, X.; Zhang, Z.; Shi, J.; Le, X.; Hong, J. Discovery of new quinazoline derivatives as irreversible dual EGFR/HER2 inhibitors and their anticancer activities - Part 1. Bioorg. Med. Chem. Lett., 2019, 29(4), 591-596.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.056] [PMID: 30600209]
[40]
Maher, M.; Kassab, A.E.; Zaher, A.F.; Mahmoud, Z. Novel pyrazolo[3,4-d]pyrimidines: Design, synthesis, anticancer activity, dual EGFR/ErbB2 receptor tyrosine kinases inhibitory activity, effects on cell cycle profile and caspase-3-mediated apoptosis. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 532-546.
[http://dx.doi.org/10.1080/14756366.2018.1564046] [PMID: 30688116]
[41]
Sever, B.; Altıntop, M.D.; Radwan, M.O.; Özdemir, A.; Otsuka, M.; Fujita, M.; Ciftci, H.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. Eur. J. Med. Chem., 2019, 182, 111648.
[http://dx.doi.org/10.1016/j.ejmech.2019.111648] [PMID: 31493743]
[42]
Bello, M.; Guadarrama-García, C.; Rodriguez-Fonseca, R.A. Dissecting the molecular recognition of dual lapatinib derivatives for EGFR/HER2. J. Comput. Aided Mol. Des., 2020, 34(3), 293-303.
[http://dx.doi.org/10.1007/s10822-019-00270-4] [PMID: 31828486]
[43]
Alkahtani, H.M.; Abdalla, A.N.; Obaidullah, A.J.; Alanazi, M.M.; Almehizia, A.A.; Alanazi, M.G.; Ahmed, A.Y.; Alwassil, O.I.; Darwish, H.W.; Abdel-Aziz, A.A.; El-Azab, A.S. Synthesis, cytotoxic evaluation, and molecular docking studies of novel quinazoline derivatives with benzenesulfonamide and anilide tails: Dual inhibitors of EGFR/HER2. Bioorg. Chem., 2020, 95, 103461.
[http://dx.doi.org/10.1016/j.bioorg.2019.103461] [PMID: 31838290]
[44]
Mohamad Zain, W.N.I.W.; Bowen, J.; Bateman, E.; Keefe, D. Cytotoxic effects of the dual ErbB tyrosine kinase inhibitor, lapatinib, on walker 256 rat breast tumour and IEC-6 Rat normal small intestinal cell lines. Biomedicines, 2019, 8(1), 2.
[http://dx.doi.org/10.3390/biomedicines8010002]
[45]
Rossini, A.; Giussani, M.; Ripamonti, F.; Aiello, P.; Regondi, V.; Balsari, A.; Triulzi, T.; Tagliabue, E. Combined targeting of EGFR and HER2 against prostate cancer stem cells. Cancer Biol. Ther., 2020, 21(5), 463-475.
[http://dx.doi.org/10.1080/15384047.2020.1727702] [PMID: 32089070]
[46]
Thomas, A.; Virdee, P.S.; Eatock, M.; Lord, S.R.; Falk, S.; Anthoney, D.A.; Turkington, R.C.; Goff, M.; Elhussein, L.; Collins, L.; Love, S.; Moschandreas, J.; Middleton, M.R. Dual Erb B Inhibition in Oesophago-gastric Cancer (DEBIOC): A phase I dose escalating safety study and randomised dose expansion of AZD8931 in combination with oxaliplatin and capecitabine chemotherapy in patients with oesophagogastric adenocarcinoma. Eur. J. Cancer, 2020, 124, 131-141.
[http://dx.doi.org/10.1016/j.ejca.2019.10.010] [PMID: 31765988]
[47]
Sun, M.; Jia, J.; Sun, H.; Wang, F. Design and synthesis of a novel class EGFR/HER2 dual inhibitors containing tricyclic oxazine fused quinazolines scaffold. Bioorg. Med. Chem. Lett., 2020, 30(9), 127045.
[http://dx.doi.org/10.1016/j.bmcl.2020.127045] [PMID: 32139324]
[48]
Wu, D.; Gao, Y.; Qi, Y.; Chen, L.; Ma, Y.; Li, Y. Peptide-based cancer therapy: Opportunity and challenge. Cancer Lett., 2014, 351(1), 13-22.
[49]
Lee, A.C-L.; Harris, J.L.; Khanna, K.K.; Hong, J-H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci., 2019, 20(10), 2383.
[http://dx.doi.org/10.3390/ijms20102383] [PMID: 31091705]
[50]
O’Brien-Simpson, N.M.; Hoffmann, R.; Chia, C.S.B.; Wade, J.D. Editorial: Antimicrobial and anticancer peptides. Front Chem., 2018, 6, 13.
[http://dx.doi.org/10.3389/fchem.2018.00013] [PMID: 29468150]
[51]
Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities. Front Chem., 2017, 5, 5.
[http://dx.doi.org/10.3389/fchem.2017.00005] [PMID: 28271058]
[52]
Chiangjong, W.; Chutipongtanate, S.; Hongeng, S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int. J. Oncol., 2020, 57(3), 678-696. [Review
[http://dx.doi.org/10.3892/ijo.2020.5099] [PMID: 32705178]
[53]
Hewitt, W.M.; Leung, S.S.; Pye, C.R.; Ponkey, A.R.; Bednarek, M.; Jacobson, M.P.; Lokey, R.S. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. J. Am. Chem. Soc., 2015, 137(2), 715-721.
[http://dx.doi.org/10.1021/ja508766b] [PMID: 25517352]
[54]
Lee, S.; Xie, J.; Chen, X. Peptides and peptide hormones for molecular imaging and disease diagnosis. Chem. Rev., 2010, 110(5), 3087-3111.
[http://dx.doi.org/10.1021/cr900361p] [PMID: 20225899]
[55]
Chen, K.; Sun, X.; Niu, G.; Ma, Y.; Yap, L.P.; Hui, X.; Wu, K.; Fan, D.; Conti, P.S.; Chen, X. Evaluation of 64Cu labeled GX1: A phage display peptide probe for PET imaging of tumor vasculature. Mol. Imaging Biol., 2012, 14(1), 96-105.
[http://dx.doi.org/10.1007/s11307-011-0479-1] [PMID: 21360213]
[56]
Chen, K.; Conti, P.S. Target-specific delivery of peptide-based probes for PET imaging. Adv. Drug Deliv. Rev., 2010, 62(11), 1005-1022.
[http://dx.doi.org/10.1016/j.addr.2010.09.004] [PMID: 20851156]
[57]
Buonfiglio, R.; Recanatini, M.; Masetti, M. Protein flexibility in drug discovery: From theory to computation. ChemMedChem, 2015, 10(7), 1141-1148.
[http://dx.doi.org/10.1002/cmdc.201500086] [PMID: 25891095]
[58]
Spector, N.L.; Xia, W.; Burris, III, H.; Hurwitz, H.; Dees, E.C.; Dowlati, A.; O’Neil, B.; Overmoyer, B.; Marcom, P.K.; Blackwell, K.L.; Smith, D.A.; Koch, K.M.; Stead, A.; Mangum, S.; Ellis, M.J.; Liu, L.; Man, A.K.; Bremer, T.M.; Harris, J.; Bacus, S. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol., 2005, 23(11), 2502-2512.
[59]
Mine, Y.; Munir, H.; Nakanishi, Y.; Sugiyama, D. Biomimetic peptides for the treatment of cancer. Anticancer Res., 2016, 36(7), 3565-3570.
[PMID: 27354624]
[60]
Valdehita, A.; Bajo, A.M.; Schally, A.V.; Varga, J.L.; Carmena, M.J.; Prieto, J.C. Vasoactive intestinal peptide (VIP) induces transactivation of EGFR and HER2 in human breast cancer cells. Mol. Cell. Endocrinol., 2009, 302(1), 41-48.
[http://dx.doi.org/10.1016/j.mce.2008.11.024] [PMID: 19101605]
[61]
Kohno, M.; Horibe, T.; Haramoto, M.; Yano, Y.; Ohara, K.; Nakajima, O.; Matsuzaki, K.; Kawakami, K. A novel hybrid peptide targeting EGFR-expressing cancers. Eur. J. Cancer, 2011, 47(5), 773-783.
[http://dx.doi.org/10.1016/j.ejca.2010.10.021] [PMID: 21112771]
[62]
Tyagi, A.; Kapoor, P.; Kumar, R.; Chaudhary, K.; Gautam, A.; Raghava, G.P. In silico models for designing and discovering novel anticancer peptides. Sci. Rep., 2013, 3(1), 2984.
[http://dx.doi.org/10.1038/srep02984] [PMID: 24136089]
[63]
Sudhakar, D.R. P, K.; Subbarao, N. Docking and molecular dynamics simulation study of EGFR1 with EGF-like peptides to understand molecular interactions. Mol. Biosyst., 2016, 12(6), 1987-1995.
[http://dx.doi.org/10.1039/C6MB00032K] [PMID: 27072492]
[64]
Xiang, Z.; Yang, X.; Xu, J.; Lai, W.; Wang, Z.; Hu, Z.; Tian, J.; Geng, L.; Fang, Q. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials, 2017, 115, 53-64.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.022] [PMID: 27888699]
[65]
Schroeder, J.A. EGFR-based inhibitor peptides for combinatorial inactivation of ERBB1, ERBB2, and ERBB3. U.S. Patent 10,066,004, 2018.
[66]
Zhong, H.; He, J.; Yu, J.; Li, X.; Mei, Y.; Hao, L.; Wu, X. Mig6 not only inhibits EGFR and HER2 but also targets HER3 and HER4 in a differential specificity: Implications for targeted esophageal cancer therapy. Biochimie, 2021, 190, 132-142.
[http://dx.doi.org/10.1016/j.biochi.2021.07.002] [PMID: 34293452]
[67]
Accardo, A.; Tesauro, D.; Morelli, G. Peptide-based targeting strategies for simultaneous imaging and therapy with nanovectors. Polym. J., 2013, 45(5), 481-493.
[http://dx.doi.org/10.1038/pj.2012.215]
[68]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[http://dx.doi.org/10.1016/j.drudis.2009.10.009] [PMID: 19879957]
[69]
Aronson, M.R.; Simonson, A.W.; Orchard, L.M.; Llinás, M.; Medina, S.H. Lipopeptisomes: Anticancer peptide-assembled particles for fusolytic oncotherapy. Acta Biomater., 2018, 80, 269-277.
[http://dx.doi.org/10.1016/j.actbio.2018.09.025] [PMID: 30240951]
[70]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy