Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Perspective

Protein Engineering for Improved Health: Technological Perspectives

Author(s): Mandeep, Rajeshwari Sinha and Pratyoosh Shukla*

Volume 20, Issue 9, 2019

Page: [856 - 860] Pages: 5

DOI: 10.2174/138920372009190917095307

Abstract

Protein engineering has enabled development of novel proteins aimed at disease diagnosis, alleviation and improved health attributes. The present article provides an overview of recent approaches and techniques used to modify proteins at diverse levels, which find therapeutically relevant applications. There is immense interest among researchers to discover new and increasingly valuable solutions for various health related issues and protein engineering could be a possible venue to sort out such problems. In this mini review we have tried to decipher some of the novel aspects of protein engineering in terms of protein-based therapeutics and diagnostics, in-silico tools and related approaches. A special emphasis has been given for some innovative aspects of protein-nanoparticle conjugates; use of artificial intelligence (AI)- based tools and post-translational modifications. Utilization of such approaches in protein engineering might be ground breaking in future research endeavor of researchers across the world.

Keywords: Protein engineering, healthcare, protein-based therapeutics, diagnostics, in-silico tools, protein-nanoparticle conjugates, post-translational modifications.

Graphical Abstract
[1]
Shukla, P. Futuristic protein engineering: Developments and avenues. Curr. Protein Pept. Sci., 2018, 19, 3-4.
[2]
Lutz, S.; Iamurri, S.M. Protein engineering: Past, present, and future. Methods Mol. Biol., 2018, 1685, 1-12.
[3]
Singh, R.K.; Lee, J.K.; Selvaraj, C.; Singh, R.; Li, J.; Kim, S.Y.; Kalia, V.C. Protein engineering approaches in the post-genomic era. Curr. Protein Pept. Sci., 2018, 19, 5-15.
[4]
Sinha, R.; Shukla, P. Current trends in protein engineering: Updates and progress. Curr. Protein Pept. Sci., 2019, 20, 398-407.
[5]
Lorch, M.S.; Collado, M.S.; Argüelles, M.H.; Rota, R.P.; Spinsanti, L.I.; Lozano, M.E.; Goñi, S.E. Production of recombinant NS1 protein and its possible use in encephalitic flavivirus differential diagnosis. Protein Expr. Purif., 2019, 153, 18-25.
[6]
Kureshi, R.; Bahri, M.; Spangler, J.B. Reprogramming immune proteins as therapeutics using molecular engineering. Curr. Opin. Chem. Eng., 2018, 19, 27-34.
[7]
Gupta, S.K.; Shukla, P. Microbial platform technology for recombinant antibody fragment production: A review. Crit. Rev. Microbiol., 2017, 43, 31-42.
[8]
Sinha, R.; Shukla, P. Antimicrobial peptides: Recent insights on biotechnological interventions and future perspectives. Protein Pept. Lett., 2019, 26, 79-87.
[9]
Dangi, A.K.; Sinha, R.; Dwivedi, S.; Gupta, S.K.; Shukla, P.S. Cell line techniques and gene editing tools for antibody production: A review. Front. Pharmacol., 2018, 9, 630.
[10]
Dubey, K.K.; Luke, G.A.; Knox, C.; Kumar, P.; Pletschke, B.I.; Singh, P.K.; Shukla, P. Vaccine and antibody production in plants: Developments and computational tools. Brief. Funct. Genomics, 2018, 17, 295-307.
[11]
Usmani, S.S.; Kumar, R.; Bhalla, S.; Kumar, V.; Raghava, G.P. In silico tools and databases for designing peptide-based vaccine and drugs. Adv. Protein Chem. Struct. Biol., 2018, 112, 221-263.
[12]
Farhadi, T.; Hashemian, S.M. Computer-aided design of amino acid-based therapeutics: A review. Drug Des. Devel. Ther., 2018, 12, 1239.
[13]
Burnside, D.; Schoenrock, A.; Moteshareie, H.; Hooshyar, M.; Basra, P.; Hajikarimlou, M.; Dick, K.; Barnes, B.; Kazmirchuk, T.; Jessulat, M.; Pitre, S.; Samanfar, B.; Babu, M.; Green, J.R.; Wong, A.; Dehne, F.; Biggar, K.K.; Golshani, A. In silico engineering of synthetic binding proteins from random amino acid sequences. iScience, 2019, 11, 375-387
[14]
Kazmirchuk, T.; Dick, K.; Burnside, D.J.; Barnes, B.; Moteshareie, H.; Hajikarimlou, M.; Omidi, K.; Ahmed, D.; Low, A.; Lettl, C.; Hooshyar, M.; Schoenrock, A.; Pitre, S.; Babu, M.; Cassol, E.; Samanfar, B.; Wong, A.; Dehne, F.; Green, J.R.; Golshani, A. Designing anti-Zika virus peptides derived from predicted human-Zika virus protein-protein interactions. Comput. Biol. Chem., 2017, 71, 180-187.
[15]
Dash, R.; Das, R.; Junaid, M.; Akash, M.F.; Islam, A.; Hosen, S.Z. In silico-based vaccine design against Ebola virus glycoprotein. Adv. Appl. Bioinforma. Chem., 2017, 10, 11-28.
[16]
Vashistha, R.; Chhabra, D.; Shukla, P. Integrated artificial intelligence approaches for disease diagnostics. Indian J. Microbiol., 2018, 58, 252-255.
[17]
Vashistha, R.; Dangi, A. K.; Kumar, A.; Chhabra, D.; Shukla, P. Futuristic biosensors for cardiac health care: An artificial intelligence approach. 3 Biotech., 2018, 8, 358.
[18]
Spicer, C.D.; Jumeaux, C.; Gupta, B.; Stevens, M.M. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chemical. Soc. Rev., 2018, 47, 3574-3620.
[19]
Kao, C.W.; Wu, P.T.; Liao, M.Y.; Chung, I.J.; Yang, K.C.; Tseng, W.Y.; Yu, J. Magnetic nanoparticles conjugated with peptides derived from monocyte chemoattractant protein-1 as a tool for targeting atherosclerosis. Pharmaceutics, 2018, 10, 62.
[20]
Altunbek, M.; Keleştemur, S.; Baran, G.; Çulha, M. Role of modification route for zinc oxide nanoparticles on protein structure and their effects on glioblastoma cells. Int. J. Biol. Macromol., 2018, 118, 271-278.
[21]
Singh, B.N.; Singh, B.R.; Gupta, V.K.; Kharwar, R.N.; Pecoraro, L. Coating with microbial hydrophobins: A novel approach to develop smart drug nanoparticles. Trends Biotechnol., 2018, 36, 1103-1106.
[22]
Jacob, J.; Haponiuk, J.T.; Thomas, S.; Gopi, S. Biopolymer based nanomaterials in drug delivery systems: A review. Mater. Today Chem., 2018, 9, 43-55.
[23]
Elzoghby, A.O.; Freag, M.S.; Elkhodairy, K.A. Biopolymeric nanoparticles for targeted drug delivery to brain tumors. In: Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors; Kesharwani, P.; Gupta, U., Eds.; Elsevier, 2018; pp. 169-190.
[24]
Xu, B.; Zhang, W.; Chen, Y.; Xu, Y.; Wang, B.; Zong, L. Eudragit® L100-coated mannosylated chitosan nanoparticles for oral protein vaccine delivery. Int. J. Biol. Macromol., 2018, 113, 534-542.
[25]
Xiong, J.; Han, S.; Ding, S.; He, J.; Zhang, H. Antibody-nanoparticle conjugate constructed with trastuzumab and nanoparticle albumin-bound paclitaxel for targeted therapy of human epidermal growth factor receptor 2-positive gastric cancer. Oncol. Rep., 2018, 39, 1396-1404.
[26]
Diaz, D.; Care, A.; Sunna, A. Bioengineering strategies for protein-based nanoparticles. Genes, 2018, 9, 370.
[27]
Lagassé, H.D.; Alexaki, A.; Simhadri, V.L.; Katagiri, N.H.; Jankowski, W.; Sauna, Z.E.; Kimchi-Sarfaty, C. Recent advances in (therapeutic protein) drug development. F1000 Res., 2017, 6, 113.
[28]
Gupta, S.K.; Shukla, P. Glycosylation control technologies for recombinant therapeutic proteins. Appl. Microbiol. Biotechnol., 2018, 102, 10457-10468.
[29]
Moradi, S.V.; Hussein, W.M.; Varamini, P.; Simerska, P.; Toth, I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci., 2016, 7, 2492-2500.
[30]
Sambataro, F.; Pennuto, M. Post-translational modifications and protein quality control in motor neuron and polyglutamine diseases. Front. Mol. Neurosci., 2017, 10, 82.
[31]
Cao, Y.; Li, D.; Fu, Y.; Bai, Q.; Chen, Y.; Bai, X.; Zhang, J. Rational design and efficacy of a multi-epitope recombinant protein vaccine against foot-and-mouth disease virus serotype A in pigs. Antiviral Res., 2017, 140, 133-141.
[32]
Alberts, B.M.; Sacre, S.M.; Bush, P.G.; Mullen, L.M. Engineering of TIMP-3 as a LAP-fusion protein for targeting to sites of inflammation. J. Cell. Mol. Med., 2019, 23, 1617-1621.
[33]
Nishiyama, K. Exploration of peptides that fit into the thermally vibrating active site of cathepsin K protease by alternating artificial intelligence and molecular simulation. Chem. Phys. Lett., 2017, 682, 26-29.
[34]
Neek, M.; Kim, T.I.; Wang, S.W. Protein-based nanoparticles in cancer vaccine development. Nanomedicine, 2019, 15, 164-174.
[35]
Delplace, V.; Ortin-Martinez, A.; Tsai, E.L.S.; Amin, A.N.; Wallace, V.; Shoichet, M.S. Controlled release strategy designed for intravitreal protein delivery to the retina. J. Control. Release, 2019, 293, 10-20.
[36]
Gu, H.; Liao, Y.; Zhang, J.; Wang, Y.; Liu, Z.; Cheng, P.; Wang, X.; Zou, Q.; Gu, J. Rational design and evaluation of an artificial Escherichia coli K1 protein vaccine candidate based on the structure of OmpA. Front. Cell. Infect. Microbiol., 2018, 8, 172.
[37]
Dubey, K.K.; Luke, G.A.; Knox, C.; Kumar, P.; Pletschke, B.I.; Singh, P.K.; Shukla, P. Vaccine and antibody production in plants: Developments and computational tools. Brief. Funct. Genomics, 2018, 17, 295-307.

© 2024 Bentham Science Publishers | Privacy Policy