Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Development of Formulation Methods and Physical Characterization of Injectable Sodium Selenite Nanoparticles for the Delivery of Sorafenib tosylate

Author(s): Sivakumar S. Moni*, Mohammad F. Alam*, Mohammed M. Safhi , Muhammad H. Sultan, Hafiz A. Makeen and Mohamed E. Elmobark

Volume 21, Issue 8, 2020

Page: [659 - 666] Pages: 8

DOI: 10.2174/1389201021666191230124041

open access plus

Abstract

Background: Sorafenib is the first oral therapeutic agent to show the activity against human hepatocellular carcinoma. Sorafenib leads to severe toxicity due to the multiple-dose regimen. Reducing the overall dose of sorafenib through injectable dosage form to release sustainably is of therapeutically more important to combat drug-induced toxicity.

Objective: The purpose of this study was to formulate and evaluate the physical parameters of sorafenib- loaded Sodium Selenite Nanoparticles (SSSNP).

Methods: Two different methods: chemical crosslinking and solvent evaporation were applied for the formulation of nanoparticles using various crosslinkers such as formaldehyde, magnesium sulfate, tripolyphosphate, dextran sulfate, and aluminum hydroxide. Physical characterization was performed with zeta potential analysis, polydispersity index, particle size and scanning electron microscopic studies for morphological analysis for all the formulated nanoparticles developed using the chemical crosslinking technique based ionic interaction.

Results: Tripolyphosphate was selected as an ideal crosslinker and used for nanoparticle formulation with the solvent evaporation technique. Based on the physical characterization, SSSNP was formulated successfully with the solvent evaporation technique using tripolyphosphate as a cross-linker. The zeta potential of SSSNP was -37.5 mV, PDI was approximately 0.3 to 0.4, and the observed size (diameter) was in the range of 208 nm to 0.2 μm. Furthermore, the particles were smooth in morphology and appeared as crystals.

Conclusion: The novel injectable sorafenib loaded sodium selenite nanoparticle dosage form will serve better than conventional oral dosage form to elicit a safe therapeutic effect.

Keywords: Hepatoma, sorafenib, sodium selenite, nanoparticles, formulation and development, physical characterization.

Graphical Abstract
[1]
Dong,, Ju;; Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 589-604.
[http://dx.doi.org/10.1038/s41575-019-0186-y] [PMID: 31439937]
[2]
Sulieman, A.; Ali, A.; Shouki, B.; Hani, A.; Hind, A.; Khaled, S. Cancer Incidence Report Saudi Arabia.Kingdom of Saudi Arabia Saudi Health Council National Health Information Center. Saudi Cancer Registry; , 2015, pp. 1-84.
[3]
Pejin, B.; Jovanović, K.K.; Mojović, M.; Savić, A.G. New and highly potent antitumor natural products from marine-derived fungi: Covering the period from 2003 to 2012. Curr. Top. Med. Chem., 2013, 13(21), 2745-2766.
[http://dx.doi.org/10.2174/15680266113136660197] [PMID: 24083789]
[4]
Pejin, B.; Glumac, M. New cytotoxic natural products from the mangrove biome: Covering the period 2007-2015. Nat. Prod. Res., 2019, 33(11), 1624-1628.
[http://dx.doi.org/10.1080/14786419.2018.1425854] [PMID: 29334263]
[5]
Medavaram, S.; Zhang, Y. Emerging therapies in advanced hepatocellular carcinoma. Exp. Hematol. Oncol., 2018, 7(17)
[http://dx.doi.org/10.1186/s40164-018-0109-6] [PMID: 30087805]
[6]
Leathers, J.S.; Balderramo, D.; Prieto, J.; Diehl, F.; Gonzalez-Ballerga, E.; Ferreiro, M.R.; Carrera, E.; Barreyro, F.; Diaz-Ferrer, J.; Singh, D.; Mattos, A.Z.; Carrilho, F.; Debes, J.D. Sorafenib for treatment of hepatocellular carcinoma: A survival analysis from the South American liver research network. J. Clin. Gastroenterol., 2019, 53(6), 464-469.
[http://dx.doi.org/10.1097/MCG.0000000000001085] [PMID: 29952857]
[7]
Bosch, F.X.; Ribes, J.; Díaz, M.; Cléries, R. Primary liver cancer: Worldwide incidence and trends. Gastroenterology,, 2004, 127(5) ,(Suppl. 1), S5-S16.
[http://dx.doi.org/10.1053/j.gastro.2004.09.011] [PMID: 15508102]
[8]
Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath, J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.; Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky, A.; Riedl, B.; Post, L.E.; Bollag, G.; Trail, P.A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res., 2004, 64(19), 7099-7109.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1443] [PMID: 15466206]
[9]
Torchilin, V.P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J., 2007, 9(2), E128-E147.
[http://dx.doi.org/10.1208/aapsj0902015] [PMID: 17614355]
[10]
Liping, F.; Qiong, Liu.; Liming, S.; Liming, S. Proteomic study on sodium selenite-induced apoptosis of human cervical cancer HeLa cells. J. Trace Elem. Med. Biol., 2011, 25(3), 130-137.
[PMID: 21767938]
[11]
Minami, H.; Kawada, K.; Ebi, H.; Kitagawa, K.; Kim, Y.I.; Araki, K.; Mukai, H.; Tahara, M.; Nakajima, H.; Nakajima, K. Phase I and pharmacokinetic study of sorafenib, an oral multikinase inhibitor, in Japanese patients with advanced refractory solid tumors. Cancer Sci., 2008, 99(7), 1492-1498.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00837.x] [PMID: 18477034]
[12]
Wang, H.; Sun, S.; Zhang, Y.; Wang, J.; Zhang, S.; Yao, X.; Chen, L.; Gao, Z.; Xie, B. Improved drug targeting to liver tumor by sorafenib-loaded folate-decorated bovine serum albumin nanoparticles. Drug Deliv., 2019, 26(1), 89-97.
[http://dx.doi.org/10.1080/10717544.2018.1561766] [PMID: 30744448]
[13]
Wang, X.Q.; Fan, J.M.; Liu, Y.O.; Zhao, B.; Jia, Z.R.; Zhang, Q. Bioavailability and pharmacokinetics of sorafenib suspension, nanoparticles and nanomatrix for oral administration to rat. Int. J. Pharm., 2011, 419(1-2), 339-346.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.003] [PMID: 21843612]
[14]
Kim, D.H.; Kim, M.D.; Choi, C.W.; Chung, C.W.; Ha, S.H.; Kim, C.H. Anti-tumor activity of sorafenib incorporated nanoparticles of dextran / poly(dl-lactide-co-glycolide) block copolymer. Nanoscale Res. Lett., 2012, 7(1), 1-6.
[http://dx.doi.org/10.1186/1556-276X-7-91] [PMID: 22214494]
[15]
Abouelhag, H.A.; Sivakumar, S.M.; Bagul, U.S.; Mohamed, E.; Safhi, M.M. Preparation and physical characterization of cisplatin chitosan nanoparticles by zeta nano sizer “prime step for formulation and development”. IJPSR, 2017, 8(10), 4245-4249.
[16]
Clift, M.J.; Rothen-Rutishauser, B.; Brown, D.M.; Duffin, R.; Donaldson, K.; Proudfoot, L.; Guy, K.; Stone, V. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol., 2008, 232(3), 418-427.
[http://dx.doi.org/10.1016/j.taap.2008.06.009] [PMID: 18708083]
[17]
Ito, T.; Sun, L.; Bevan, M.A.; Crooks, R.M. Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir, 2004, 20(16), 6940-6945.
[http://dx.doi.org/10.1021/la049524t] [PMID: 15274607]
[18]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[19]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(7), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[20]
Aftab, S.; Shah, A.; Nadhman, A.; Kurbanoglu, S.; Aysıl Ozkan, S.; Dionysiou, D.D.; Shukla, S.S.; Aminabhavi, T.M. Nanomedicine: An effective tool in cancer therapy. Int. J. Pharm., 2018, 540(1-2), 132-149.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.007] [PMID: 29427746]
[21]
Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[22]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12320-12364.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[23]
Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol., 2010, 7(11), 653-664.
[http://dx.doi.org/10.1038/nrclinonc.2010.139] [PMID: 20838415]

© 2024 Bentham Science Publishers | Privacy Policy