Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Formation of Carbon-Nitrogen Bond Mediated by Hypervalent Iodine Reagents Under Metal-free Conditions

Author(s): Yaxin O. Yang, Xi Wang, Jiaxi Xiao, Yadong Li, Fengxia Sun* and Yunfei Du*

Volume 25, Issue 1, 2021

Published on: 17 November, 2020

Page: [68 - 132] Pages: 65

DOI: 10.2174/1385272822999201117154919

Price: $65

Abstract

In the past several decades, hypervalent iodine chemistry has witnessed prosperous development as hypervalent iodine reagents have been widely used in various organic transformations. Specifically, hypervalent iodine reagents have been vastly used in various bondforming reactions. Among these oxidative coupling reactions, the reactions involving the formation of C-N bond have been extensively explored to construct various heterocyclic skeletons and synthesize various useful building blocks. This review article is to summarize all the transformations in which carbon-nitrogen bond formation occurred by using hypervalent iodine reagents under metal-free conditions.

Keywords: Hypervalent iodine reagent, oxidative coupling, C-N bond formation, oxidation, metal-free conditions, rearrangement.

Graphical Abstract
[1]
Kaiho, T. Iodine Chemistry and Applications; John Wiley & Sons, Inc., 2014, p. 103.
[2]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[3]
Ghosh, M.K.; Rajkiewicz, A.A.; Kalek, M. Organocatalytic group transfer reactions with hypervalent iodine reagents. Synthesis, 2019, 51, 359-370.
[http://dx.doi.org/10.1055/s-0037-1609639]
[4]
Singh, F.V.; Wirth, T. Oxidative functionalization with hypervalent halides.In: Comprehensive Organic Synthesis II; Elsevier: Cardiff, 2014, pp. 880-933.
[5]
Kitamura, T.; Tazawa, Y.; Morshed, H.M.; Kobayashi, S. Convenient chlorination with concentrated hydrochloric acid in the presence of iodosylbenzene. Synthesis, 2012, 44, 1159-1162.
[http://dx.doi.org/10.1055/s-0031-1290578]
[6]
Togo, H.; Nabana, T.; Yamaguchi, K. Preparation and reactivities of novel (diacetoxyiodo)arenes bearing heteroaromatics. J. Org. Chem., 2000, 65(24), 8391-8394.
[http://dx.doi.org/10.1021/jo001186n] [PMID: 11101405]
[7]
Yusubov, M.S.; Funk, T.V.; Chi, K-W.; Cha, E-H.; Kim, G.H.; Kirschning, A.; Zhdankin, V.V. Preparation and X-ray structures of 3-[bis(trifluoro-acetoxy)iodo]benzoic acid and 3-[hydroxy(tosyloxy)iodo]benzoic acid: new recyclable hypervalent iodine reagents. J. Org. Chem., 2008, 73(1), 295-297.
[http://dx.doi.org/10.1021/jo702112s] [PMID: 18062703]
[8]
Sascha, S.; Thomas, W. Eine praktische und hochreaktive polyfluorierte hypervalente iod(III)-verbindung. Angew. Chem., 2010, 122, 2846-2850.
[http://dx.doi.org/10.1002/ange.200907134]
[9]
Farid, U.; Wirth, T. Highly stereoselective metal-free oxyaminations using chiral hypervalent iodine reagents. Angew. Chem. Int. Ed. Engl., 2012, 51(14), 3462-3465.
[http://dx.doi.org/10.1002/anie.201107703] [PMID: 22278888]
[10]
Richardson, R.D.; Zayed, J.M.; Altermann, S.; Smith, D.; Wirth, T. Tetrafluoro-IBA and-IBX: hypervalent iodine reagents. Angew. Chem. Int. Ed. Engl., 2007, 46(34), 6529-6532.
[http://dx.doi.org/10.1002/anie.200702313] [PMID: 17645277]
[11]
Kieltsch, I.; Eisenberger, P.; Togni, A. Mild electrophilic trifluoromethylation of carbon- and sulfur-centered nucleophiles by a hypervalent iodine(III)-CF3 reagent. Angew. Chem. Int. Ed. Engl., 2007, 46(5), 754-757.
[http://dx.doi.org/10.1002/anie.200603497] [PMID: 17154193]
[12]
Tian, J.; Gao, W-C.; Zhou, D-M.; Zhang, C. Recyclable hypervalent iodine(III) reagent iodosodilactone as an efficient coupling reagent for direct esterification, amidation, and peptide coupling. Org. Lett., 2012, 14(12), 3020-3023.
[http://dx.doi.org/10.1021/ol301085v] [PMID: 22671301]
[13]
Derek, H.R.B.; Christopher, R.A.G.; Jacek, W.M.; William, B.; Motherwell, W.B.; Alan, S. Observations on the chemistry of the iodoxy group. Tetrahedron Lett., 1982, 23, 957-960.
[http://dx.doi.org/10.1016/S0040-4039(00)86993-2]
[14]
Koposov, A.Y.; Karimov, R.R.; Geraskin, I.M.; Nemykin, V.N.; Zhdankin, V.V. 2-iodylphenol ethers: preparation, X-ray crystal structure, and reactivity of new hypervalent iodine(V) oxidizing reagents. J. Org. Chem., 2006, 71(22), 8452-8458.
[http://dx.doi.org/10.1021/jo0614947] [PMID: 17064019]
[15]
Yoshimura, A.; Banek, C.T.; Yusubov, M.S.; Nemykin, V.N.; Zhdankin, V.V. Preparation, X-ray structure, and reactivity of 2-iodylpyridines: recyclable hypervalent iodine(V) reagents. J. Org. Chem., 2011, 76(10), 3812-3819.
[http://dx.doi.org/10.1021/jo200163m] [PMID: 21462949]
[16]
Yusubov, S.M.; Yusubova, Y.R.; Nemykin, N.V.; Maskaev, V.A.; Geraskina, R.M.; Kirschning, A.; Zhdankin, V.V. Potassium 4-iodylbenzenesulfonate: preparation, structure, and application as a reagent for oxidative iodination of arenes. Eur. J. Org. Chem., 2012, 2012, 5935-5942.
[http://dx.doi.org/10.1002/ejoc.201201064]
[17]
Kommreddy, A.; Bowsher, S.M.; Gunna, R.M.; Botha, K.; Vinod, K.V. Expedient synthesis and solvent-dependent oxidation behavior of a water-soluble IBX derivative. Tetrahedron Lett., 2008, 49, 4378-4382.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.017]
[18]
Thottumkara, P.A.; Vinod, K.T. Synthesis and oxidation reactions of a user- and eco-friendly hypervalent iodine reagent. Tetrahedron Lett., 2002, 43, 569-572.
[http://dx.doi.org/10.1016/S0040-4039(01)02217-1]
[19]
Cui, L-Q.; Dong, Z-L.; Liu, K.; Zhang, C. Design, synthesis, structure, and dehydrogenation reactivity of a water-soluble o-iodoxybenzoic acid derivative bearing a trimethylammonium group. Org. Lett., 2011, 13(24), 6488-6491.
[http://dx.doi.org/10.1021/ol202777h] [PMID: 22082110]
[20]
Frigerio, M.; Santagostino, M.; Sputore, S. A user-friendly entry to 2-iodoxybenzoic acid (IBX). J. Org. Chem., 1999, 64, 4537-4538.
[http://dx.doi.org/10.1021/jo9824596]
[21]
Meprathu, V.B.; Justik, W.M.; Protasiewicz, D.J. ortho-Phosphoryl stabilized hypervalent iodosyl-and iodyl-benzene reagents. Tetrahedron Lett., 2005, 46, 5187-5190.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.111]
[22]
Koposov, Y.A.; Litvinov, N.D.; Zhdankin, V.V. 2-Iodoxybenzenesulfamides: new pseudobenziodoxole-based hypervalent iodine reagents. Tetrahedron Lett., 2004, 45, 2719-2721.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.053]
[23]
Dohi, T.; Nakae, T.; Takenaga, N.; Uchiyama, T.; Fukushima, K-I.; Fujika, H.; Kita, Y. μ-Oxo-bridged hypervalent iodine(III) compound as an extreme oxidant for aqueous oxidations. Synthesis, 2012, 44, 1183-1189.
[http://dx.doi.org/10.1055/s-0031-1290579]
[24]
Pirovani, V.R.; Ferreira, R.V.B.; Coelho, F. Highly functionalized spirocyclohexadienones from Morita-Baylis-Hillman adducts. Synlett, 2009, 2009, 2333-2337.
[http://dx.doi.org/10.1055/s-0029-1217725]
[25]
Gallos, J.; Varvoglis, A.; Alcock, W.N. Oxo-bridged compounds of iodine(III): syntheses, structure, and properties of µ-oxo-bis. J. Chem. Soc., Perkin Trans. 1, 1985, 1985, 757-763.
[http://dx.doi.org/10.1039/P19850000757]
[26]
Alcock, W.N.; Countryman, M.R.; Esperas, S.; Sawyer, F.J. Secondary bonding. Part 5. The crystal and molecular structures of phenyliodine(III) diacetate and bis(dichloroacetate). J. Chem. Soc., Dalton Trans., 1979, 1979, 854-860.
[http://dx.doi.org/10.1039/DT9790000854]
[27]
Yamada, Y.; Okawara, M. Syntheses and reactions of functional polymers. LXIII. Syntheses of phenyl polystyryliodonium salts. Macromol. Chem. Phys., 1972, 152, 153-162.
[http://dx.doi.org/10.1002/macp.1972.021520116]
[28]
Nam, N-H.; Sardari, S.; Parang, K. Reactions of solid-supported reagents and solid supports with alcohols and phenols through their hydroxyl functional group. J. Comb. Chem., 2003, 5(5), 479-546.
[http://dx.doi.org/10.1021/cc020106l] [PMID: 12959554]
[29]
Togo, H.; Nogami, G.; Yokoyama, M. Synthetic application of poly. Synlett, 1998, 1998, 534-536.
[http://dx.doi.org/10.1055/s-1998-1713]
[30]
An, D.; Song, W-K.; Peng, Z-H.; Zhang, Y-J. Transition-metal-free hypervalent iodine(III) reagent-promoted site-selective solid-phase synthesis of mononitroarylamines. ChemistrySelect, 2018, 3, 12946-12950.
[http://dx.doi.org/10.1002/slct.201801783]
[31]
Mudithanapelli, C.; Dhorma, L.P.; Kim, M-H. PIFA-promoted, solvent-controlled selective functionalization of C(sp2)-H or C(sp3)-H: nitration via C-N bond cleavage of CH3NO2, cyanation, or oxygenation in water. Org. Lett., 2019, 21(9), 3098-3102.
[http://dx.doi.org/10.1021/acs.orglett.9b00751] [PMID: 30986072]
[32]
Deng, Q-H.; Bleith, T.; Wadepohl, H.; Gade, L.H. Enantioselective iron-catalyzed azidation of β-keto esters and oxindoles. J. Am. Chem. Soc., 2013, 135(14), 5356-5359.
[http://dx.doi.org/10.1021/ja402082p] [PMID: 23537339]
[33]
More, A.A.; Pathe, G.K.; Parida, K.N.; Maksymenko, S.; Lipisa, Y.B.; Szpilman, A.M. α-N-Heteroarylation and α-azidation of ketones via enolonium species. J. Org. Chem., 2018, 83(4), 2442-2447.
[http://dx.doi.org/10.1021/acs.joc.7b03058] [PMID: 29334466]
[34]
Yu, T-Y.; Zheng, Z-J.; Dang, T-T.; Zhang, F-X.; Wei, H. Synthesis of acyl azides from 1,3-diketones via oxidative cleavage of two C-C bonds. J. Org. Chem., 2018, 83(17), 10589-10594.
[http://dx.doi.org/10.1021/acs.joc.8b01417] [PMID: 30080043]
[35]
Zheng, Z-J.; Yu, T-Y.; Xu, P-F.; Wei, H. (Diacetoxyiodo)benzene-mediated selective synthesis of α-azido ketones or acyl azides from β-keto acids. Asian J. Org. Chem., 2018, 7, 1579-1582.
[http://dx.doi.org/10.1002/ajoc.201800319]
[36]
Chennaiah, A.; Vankar, Y.D. One-step TEMPO-catalyzed and water-mediated stereoselective conversion of glycals into 2-azido-2-deoxysugars with a PIFA-trimethylsilyl azide reagent system. Org. Lett., 2018, 20(9), 2611-2614.
[http://dx.doi.org/10.1021/acs.orglett.8b00814] [PMID: 29664303]
[37]
Li, X-N.; Cen, P-H.; Liu, G-S. Iodine(III) reagent (ABX–N3)-induced intermolecular anti-Markovnikov hydroazidation of unactivated alkenes. Sci. China Chem., 2019, 62, 1537-1541.
[http://dx.doi.org/10.1007/s11426-019-9628-9]
[38]
Reddy, T.R.; Rao, D.S.; Kashyap, S. Visible-light activated metal catalyst-free vicinal diazidation of olefins with sulfonium iodate(I) species. Chem. Commun. (Camb.), 2019, 55(19), 2833-2836.
[http://dx.doi.org/10.1039/C9CC00007K] [PMID: 30766978]
[39]
Shen, J-B.; Xu, J.; Huang, L.; Zhu, Q.; Zhang, P-F. Hypervalent iodine(III)-promoted rapid cascade reaction of quinoxalinones with unactivated alkenes and TMSN3. Adv. Synth. Catal., 2019, 362, 230-241.
[http://dx.doi.org/10.1002/adsc.201901314]
[40]
Fang, C.; Qian, W-X.; Bao, W-L. A mild and clean method for oxidative formation of amides from aldehydes and amines. Synlett, 2008, 2008, 2529-2531.
[http://dx.doi.org/10.1055/s-2008-1078218]
[41]
Zhang, C.; Wang, W-K.; He, T. Dramatic solvent effect in the one-pot synthesis of substituted ureas directly from primary alcohols using the combined reagent of iodobenzene dichloride and sodium azide in ethyl acetate. Synthesis, 2012, 44, 3006-3014.
[http://dx.doi.org/10.1055/s-0032-1316745]
[42]
Manna, S.; Antonchick, A.P. Copper(I)-catalyzed radical addition of acetophenones to alkynes in furan synthesis. Org. Lett., 2015, 17(17), 4300-4303.
[http://dx.doi.org/10.1021/acs.orglett.5b02114] [PMID: 26277912]
[43]
Purkait, N.; Kervefors, G.; Linde, E.; Olofsson, B. Regiospecific N-arylation of aliphatic amines under mild and metal-free reaction conditions. Angew. Chem. Int. Ed. Engl., 2018, 57(35), 11427-11431.
[http://dx.doi.org/10.1002/anie.201807001] [PMID: 29956877]
[44]
Jiang, X-P.; Li, G-Z.; Yu, C-M. Synthesis of N-aryl-3-(arylimino)-3H-indol-2-amines via hypervalent iodine promoted oxidative diamination of indoles. Tetrahedron Lett., 2018, 59, 1506-1510.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.015]
[45]
Yamakoshi, W.; Arisawa, M.; Murai, K. Oxidative rearrangement of primary amines using phI(OAc)2 and Cs2CO3. Org. Lett., 2019, 21(9), 3023-3027.
[http://dx.doi.org/10.1021/acs.orglett.9b00559] [PMID: 30998017]
[46]
Niedermann, K.; Früh, N.; Vinogradova, E.; Wiehn, M.S.; Moreno, A.; Togni, A. A Ritter-type reaction: direct electrophilic trifluoromethylation at nitrogen atoms using hypervalent iodine reagents. Angew. Chem. Int. Ed. Engl., 2011, 50(5), 1059-1063.
[http://dx.doi.org/10.1002/anie.201006021] [PMID: 21268194]
[47]
Niedermann, K.; Früh, N.; Senn, R.; Czarniecki, B.; Verel, R.; Togni, A. Direct electrophilic N-trifluoromethylation of azoles by a hypervalent iodine reagent. Angew. Chem. Int. Ed. Engl., 2012, 51(26), 6511-6515.
[http://dx.doi.org/10.1002/anie.201201572] [PMID: 22615188]
[48]
Lu, N-N.; Huang, L-S.; Xie, L-L.; Cheng, J-J. Transition-metal-free selective iodoarylation of pyrazoles via heterocyclic aryliodonium ylides. Eur. J. Org. Chem., 2018, 2018, 3437-3443.
[http://dx.doi.org/10.1002/ejoc.201800416]
[49]
Sun, B.; Yan, Z-Y.; Jin, C.; Su, W-K. (Diacetoxyiodo)benzene-mediated transition-metal-free amination of C(sp3)–H bonds adjacent to heteroatoms with azoles: synthesis of n-alkylated azoles. Synlett, 2018, 29, 2432-2436.
[http://dx.doi.org/10.1055/s-0037-1610293]
[50]
Patel, O.P.S.; Jaspal, S.; Shinde, V.N.; Nandwana, N.K.; Rangan, K.; Kumar, A. Phenyliodine(III) diacetate-mediated 1,2-ipso-migration in Mannich bases of imidazo[1,2-a]pyridines: preparation of N-acetoxymethyl/alkoxymethyl-N-arylimidazo[1,2-a]pyridine-3-amines. J. Org. Chem., 2020, 85(11), 7309-7321.
[http://dx.doi.org/10.1021/acs.joc.0c00674] [PMID: 32408748]
[51]
Canesi, S.; Bouchu, D.; Ciufolini, M.A. Nitrogenous educts through oxidative amidation of phenols: the bimolecular reaction. Org. Lett., 2005, 7(2), 175-177.
[http://dx.doi.org/10.1021/ol048094v] [PMID: 15646951]
[52]
Kiyokawa, K.; Watanabe, T.; Fra, L.; Kojima, T.; Minakata, S. Hypervalent iodine(III)-mediated decarboxylative Ritter-type amination leading to the production of α-tertiary amine derivatives. J. Org. Chem., 2017, 82(22), 11711-11720.
[http://dx.doi.org/10.1021/acs.joc.7b01202] [PMID: 28603990]
[53]
Qurban, J.; Elsherbini, M.; Alharbi, H.; Wirth, T. Synthesis, characterisation, and reactivity of novel pseudocyclic hypervalent iodine reagents with heteroaryl carbonyl substituents. Chem. Commun. (Camb.), 2019, 55(55), 7998-8000.
[http://dx.doi.org/10.1039/C9CC03905H] [PMID: 31225543]
[54]
Wang, M.; Huang, Z. Transition metal-free N-arylation of secondary amides through iodonium salts as aryne precursors. Org. Biomol. Chem., 2016, 14(43), 10185-10188.
[http://dx.doi.org/10.1039/C6OB01649A] [PMID: 27759135]
[55]
Dihi, T.; Sara, H.; Dochi, M.; Yasui, C.; Kita, Y. Oxidative coupling of n-methoxyamides and related compounds toward aromatic hydrocarbons by designer µ-oxo hypervalent iodine catalyst. Synthesis, 2019, 51, 1185-1195.
[http://dx.doi.org/10.1055/s-0037-1611661]
[56]
Maity, A.; Frey, B.L.; Hoskinson, N.D.; Powers, D.C. Electrocatalytic C-N coupling via anodically generated hypervalent iodine intermediates. J. Am. Chem. Soc., 2020, 142(11), 4990-4995.
[http://dx.doi.org/10.1021/jacs.9b13918] [PMID: 32129617]
[57]
Kiyokawa, K.; Minakata, S. Iodine-based reagents in oxidative amination and oxygenation. Synlett, 2020, 31, 845-855.
[http://dx.doi.org/10.1055/s-0039-1690827]
[58]
Kuribara, T.; Nakajima, M.; Nemoto, T. Visible-light-induced metal-/photocatalyst-free C-H bond imidation of arenes. Org. Lett., 2020, 22(6), 2235-2239.
[http://dx.doi.org/10.1021/acs.orglett.0c00433] [PMID: 32119559]
[59]
Yoshimura, Y.; Ohta, M.; Imahori, T.; Imamichi, T.; Takahata, H. A new entry to carbocyclic nucleosides: oxidative coupling reaction of cycloalkenylsilanes with a nucleobase mediated by hypervalent iodine reagent. Org. Lett., 2008, 10(16), 3449-3452.
[http://dx.doi.org/10.1021/ol8012155] [PMID: 18613695]
[60]
Xu, B-W.; Han, J-W.; Wang, L-M. Metal- and base-free direct N-arylation of pyridazinones by using diaryliodonium salts: an anion effect. Asian J. Org. Chem., 2018, 7, 1674-1680.
[http://dx.doi.org/10.1002/ajoc.201800268]
[61]
Maiti, S.; Kim, J.; Park, J.H.; Nam, D.; Lee, J.B.; Kim, Y-J.; Kee, J-M.; Seo, J.K.; Myung, K.; Rohde, J-U.; Choe, W.; Kwon, O-H.; Hong, S-Y. Chemoselective trifluoroethylation reactions of quinazolinones and identification of photostability. J. Org. Chem., 2019, 84(11), 6737-6751.
[http://dx.doi.org/10.1021/acs.joc.9b00470] [PMID: 31050290]
[62]
Fan, R.; Li, W.; Pu, D.; Zhang, L. Transition-metal-free intermolecular amination of sp3 C-H bonds with sulfonamides. Org. Lett., 2009, 11(6), 1425-1428.
[http://dx.doi.org/10.1021/ol900090f] [PMID: 19222196]
[63]
Mahato, S.; Santra, S.; Zyryanov, G.V.; Majee, A. Metal-free amidation reactions of terminal alkynes with benzenesulfonamide. J. Org. Chem., 2019, 84(6), 3176-3183.
[http://dx.doi.org/10.1021/acs.joc.8b03065] [PMID: 30807157]
[64]
Maiti, S.; Mal, P. Soft-hard acid/base-controlled, oxidative, N-selective arylation of sulfonanilides via a nitrenium ion. J. Org. Chem., 2018, 83(3), 1340-1347.
[http://dx.doi.org/10.1021/acs.joc.7b02841] [PMID: 29304547]
[65]
Lucchetti, N.; Tkacheva, A.; Fantasia, S.; Muniz, K. Radical C-H-amination of heteroarenes using dual initiation by visible light and iodine. Adv. Synth. Catal., 2018, 360, 3889-3893.
[http://dx.doi.org/10.1002/adsc.201800677]
[66]
Shimbo, D.; Shibata, A.; Yudasaka, M.; Maruyama, T.; Tada, N.; Uno, B.; Itoh, A. Synthesis of cis-β-amidevinyl benziodoxolones from the ethynyl benziodoxolone-chloroform complex and sulfonamides. Org. Lett., 2019, 21(23), 9769-9773.
[http://dx.doi.org/10.1021/acs.orglett.9b03990] [PMID: 31742414]
[67]
Ji, D.; He, X.; Xu, Y.; Xu, Z.; Bian, Y.; Liu, W.; Zhu, Q.; Xu, Y. Metal-free remote C-H bond amidation of 8-amidoquinolines on the C5 position under mild conditions. Org. Lett., 2016, 18(18), 4478-4481.
[http://dx.doi.org/10.1021/acs.orglett.6b01980] [PMID: 27584913]
[68]
Wang, Y.; Wang, Y.; Guo, Z-Y.; Zhang, Q.; Li, D. Metal-free oxidative C-H amination of 8-acylaminoquinolines and anilides with N-fluorobenzenesulfonimide. Asian J. Org. Chem., 2016, 5, 1438-1441.
[http://dx.doi.org/10.1002/ajoc.201600389]
[69]
Yang, Y-C.; Yu, Y-T.; Wang, Y.; Zhang, Q.; Li, D. Metal-free remote oxidative benzylic C-H amination of 4-methylanilides with N-fluorobenzene-sulfonimide. Tetrahedron, 2018, 74, 1085-1091.
[http://dx.doi.org/10.1016/j.tet.2018.01.041]
[70]
Xiang, D-H.; Xia, L.; Zhang, Y-H.; Zhang, Q.; Li, D. Remote oxidative C–H amidation of anilides with dibenzenesulfonimides under metal-free conditions. Synlett, 2018, 29, 1400-1404.
[http://dx.doi.org/10.1055/s-0036-1591970]
[71]
Singsardar, M.; Mondal, S.; Sarkar, R.; Hajra, A. (Diacetoxy)iodobenzene-mediated regioselective imidation of imidazoheterocycles with N-fluorobenzenesulfonimide. ACS Omega, 2018, 3(10), 12505-12512.
[http://dx.doi.org/10.1021/acsomega.8b02088] [PMID: 31457983]
[72]
Xiang, D-H.; Li, H.; Zhang, L.; Zhang, Y-H.; Zhang, Q.; Li, D. Divergent reactions between alkynes and dibenzenesulfonimide: selective synthesis of ynamides and enamides under metal-free conditions. Asian J. Org. Chem., 2019, 8, 537-541.
[http://dx.doi.org/10.1002/ajoc.201900110]
[73]
Zhang, Y-Y.; Ye, W-J.; Zhang, H.; Xiao, X. A novel catalyst-free synthesis of 2,2-diaryl enamides from stilbenes via a nitrene transfer reaction. Eur. J. Org. Chem., 2019, 2019, 5720-5724.
[http://dx.doi.org/10.1002/ejoc.201900885]
[74]
Wang, X.; Liu, H.; Xiang, D-H.; Zhang, Q.; Li, D. Hypervalent iodine reagent-mediated selective vinyl C-H amidation of 4-alkoxystyrenes with diarylsulfonimides for preparation of enamides. ChemistrySelect, 2020, 5, 5970-5973.
[http://dx.doi.org/10.1002/slct.202001689]
[75]
Souto, J.A.; González, Y.; Iglesias, A.; Zian, D.; Lishchynskyi, A.; Muñiz, K. Iodine(III)-promoted intermolecular diamination of alkenes. Chem. Asian J., 2012, 7(5), 1103-1111.
[http://dx.doi.org/10.1002/asia.201101025] [PMID: 22383364]
[76]
Yang, H-T.; Lu, X-W.; Xing, M-L.; Sun, X-Q.; Miao, C-B. Hypervalent iodine reagent mediated diamination of [60]fullerene with sulfamides or phosphoryl diamides. Org. Lett., 2014, 16(22), 5882-5885.
[http://dx.doi.org/10.1021/ol5028305] [PMID: 25375027]
[77]
Kiyokawa, K.; Yahata, S.; Kojima, T.; Minakata, S. Hypervalent iodine(III)-mediated oxidative decarboxylation of β,γ-unsaturated carboxylic acids. Org. Lett., 2014, 16(17), 4646-4649.
[http://dx.doi.org/10.1021/ol5022433] [PMID: 25162482]
[78]
Ousmer, M.; Braun, N.A.; Bavoux, C.; Perrin, M.; Ciufolini, M.A. Total synthesis of tricyclic azaspirane derivatives of tyrosine: FR901483 and TAN1251C. J. Am. Chem. Soc., 2001, 123(31), 7534-7538.
[http://dx.doi.org/10.1021/ja016030z] [PMID: 11480973]
[79]
Zheng, G.; Ma, X.; Li, J.; Zhu, D.; Wang, M. Electrophilic N-trifluoromethylation of N-H ketimines. J. Org. Chem., 2015, 80(17), 8910-8915.
[http://dx.doi.org/10.1021/acs.joc.5b01468] [PMID: 26249672]
[80]
Kiyokawa, K.; Okumatsu, D.; Minakata, S. Synthesis of hypervalent iodine(III) reagents containing a transferable (diarylmethylene)amino group and their use in the oxidative amination of silyl ketene acetals. Angew. Chem. Int. Ed. Engl., 2019, 58(26), 8907-8911.
[http://dx.doi.org/10.1002/anie.201904971] [PMID: 31050356]
[81]
Luan, N-N.; Liu, Z-W.; Han, S-J.; Shen, L-H.; Li, J-Y.; Zou, D-P.; Wu, Y-J.; Wu, Y-S.PhI. (OAc)2-Mediated oxidative C-H sulfoximination of imidazopyridines under mild conditions. Tetrahedron Lett., 2020, 61151362
[http://dx.doi.org/10.1016/j.tetlet.2019.151362]
[82]
Zhao, P.; Wu, X.; Geng, X.; Wang, C.; Zhou, Y.; Wu, Y-D.; Wu, A-X. I2/PhI(OAc)2 copromoted amination reaction: synthesis of α-dicarbonylsulfoximine derivatives by incorporating an intact dimethyl sulfoxide. J. Org. Chem., 2019, 84(12), 8322-8329.
[http://dx.doi.org/10.1021/acs.joc.9b01160] [PMID: 31140280]
[83]
Fan, R-H.; Wang, H.; Ye, Y.; Gan, J-H. PhIO/Bu4NI mediated oxidative cyclization of amidoalkylation adducts for the synthesis of N-benzoyl aziridines and oxazolines. Tetrahedron Lett., 2010, 51, 453-456.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.069]
[84]
Fan, R-H.; Wang, L-F.; Ye, Y.; Zhang, J. Facile iodine(III)-induced oxidative cycloaddition of N-sulfonyl imines with methylene compounds under neutral conditions. Tetrahedron Lett., 2009, 50, 3857-3859.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.056]
[85]
Kiyokawa, K.; Kosaka, T.; Minakata, S. Metal-free aziridination of styrene derivatives with iminoiodinane catalyzed by a combination of iodine and ammonium iodide. Org. Lett., 2013, 15(18), 4858-4861.
[http://dx.doi.org/10.1021/ol402276f] [PMID: 24004346]
[86]
Mennie, K.M.; Banik, S.M.; Reichert, E.C.; Jacobsen, E.N. Catalytic diastereo- and enantioselective fluoroamination of alkenes. J. Am. Chem. Soc., 2018, 140(14), 4797-4802.
[http://dx.doi.org/10.1021/jacs.8b02143] [PMID: 29583001]
[87]
Li, X.; Du, Y.; Liang, Z.; Li, X.; Pan, Y.; Zhao, K. Simple conversion of enamines to 2H-azirines and their rearrangements under thermal conditions. Org. Lett., 2009, 11(12), 2643-2646.
[http://dx.doi.org/10.1021/ol9006663] [PMID: 19438258]
[88]
Sun, X.; Lyu, Y.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Formation of functionalized 2H-azirines through PhIO-mediated trifluoroethoxylation and azirination of enamines. Org. Lett., 2013, 15(24), 6222-6225.
[http://dx.doi.org/10.1021/ol4030716] [PMID: 24228898]
[89]
Zhang, Y.; Zhao, X-Y.; Zhuang, C.; Wang, S-L.; Zegrerie-Zhang, D.; Du, Y-F. PhIO/Et3N•3HF-mediated formation of fluorinated 2H-azirines via domino fluorination/azirination reaction of enamines. Adv. Synth. Catal., 2018, 360, 2107-2112.
[http://dx.doi.org/10.1002/adsc.201800124]
[90]
Glachet, T.; Marzag, H.; Saraiva Rosa, N.; Colell, J.F.P.; Zhang, G.; Warren, W.S.; Franck, X.; Theis, T.; Reboul, V. Iodonitrene in action: direct transformation of amino acids into terminal diazirines and 15N2-diazirines and their application as hyperpolarized markers. J. Am. Chem. Soc., 2019, 141(34), 13689-13696.
[http://dx.doi.org/10.1021/jacs.9b07035] [PMID: 31373802]
[91]
Ye, Y.; Wang, H.; Fan, R. Stereoselective construction of highly functionalized azetidines via a [2 + 2]-cycloaddition. Org. Lett., 2010, 12(12), 2802-2805.
[http://dx.doi.org/10.1021/ol100885f] [PMID: 20469873]
[92]
Cui, J.; Jia, Q.; Feng, R-Z.; Liu, S-S.; He, T.; Zhang, C. Boron trifluoride etherate functioning as a fluorine source in an iodosobenzene-mediated intramolecular aminofluorination of homoallylic amines. Org. Lett., 2014, 16(5), 1442-1445.
[http://dx.doi.org/10.1021/ol500238k] [PMID: 24571373]
[93]
Wappes, E.A.; Fosu, S.C.; Chopko, T.C.; Nagib, D.A. Triiodide-mediated δ-amination of secondary C-H bonds. Angew. Chem. Int. Ed. Engl., 2016, 55(34), 9974-9978.
[http://dx.doi.org/10.1002/anie.201604704] [PMID: 27384522]
[94]
Kitamura, T.; Miyake, A.; Muta, K.; Oyamada, A.J. Hypervalent iodine/HF reagents for the synthesis of 3-fluoropyrrolidines. J. Org. Chem., 2017, 82(22), 11721-11726.
[http://dx.doi.org/10.1021/acs.joc.7b01266] [PMID: 28695730]
[95]
Francisco, G.C.; Herrera, J.A.; Suarez, E. Intramolecular hydrogen abstraction promoted by N-radicals: synthesis of chiral 7-oxa-2-azabicyclo[2.2.1]heptane and 8-oxa-6-azabicyclo[3.2.1]octane ring systems. Tetrahedron, 2000, 11, 3879-3882.
[http://dx.doi.org/10.1016/S0957-4166(00)00364-5]
[96]
Kajiyama, D.; Saitoh, T.; Yamaguchi, S.; Nishiyama, S. Oxidative cyclization reactions of tryptamine utilizing hypervalent iodobenzene in routes for pyrroloindole alkaloid synthesis. Synthesis, 2012, 44, 1667-1671.
[http://dx.doi.org/10.1055/s-0031-1291006]
[97]
Serna, S.; Tellitu, I.; Domínguez, E.; Moreno, I.; Sanmartín, R. Expeditious approach to 5-aroyl-pyrrolidinones by a novel PIFA-mediated alkyne amidation reaction. Org. Lett., 2005, 7(14), 3073-3076.
[http://dx.doi.org/10.1021/ol0510623] [PMID: 15987208]
[98]
Wardrop, J.D.; Yermolina, V.M.; Bowen, G.E. Iodine(III)-mediated cyclization of unsaturated O-alkyl hydroxamates: silyl-assisted access to α-vinyl and α-(2-silylvinyl) lactams. Synthesis, 2012, 44, 1199-1207.
[http://dx.doi.org/10.1055/s-0031-1290750]
[99]
Zhu, C.; Liang, Y.; Hong, X.; Sun, H.; Sun, W-Y.; Houk, K.N.; Shi, Z. Iodoarene-catalyzed stereospecific intramolecular sp3 C-H amination: reaction development and mechanistic insights. J. Am. Chem. Soc., 2015, 137(24), 7564-7567.
[http://dx.doi.org/10.1021/jacs.5b03488] [PMID: 26035639]
[100]
Zhang, P-F.; Chen, Z-C. Hypervalent iodine in synthesis 72: a tandem dimerization-cyclocondensation of enaminones with [bis(trifluoroacetoxy)-iodo]benzene: an effective method for the synthesis of highly substituted pyrroles. J. Chem. Res. Synop., 2001, 2001, 150.
[http://dx.doi.org/10.3184/030823401103169324]
[101]
Yu, W.; Du, Y.; Zhao, K. PIDA-mediated oxidative C-C bond formation: novel synthesis of indoles from N-aryl enamines. Org. Lett., 2009, 11(11), 2417-2420.
[http://dx.doi.org/10.1021/ol900576a] [PMID: 19419193]
[102]
Sun, J.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Synthesis of chromeno[2,3-b]indol-11(6H)-one via PhI(OAc)2-mediated intramolecular oxidative C(sp2)–N(H2) bond formation. J. Org. Chem., 2015, 80(2), 1200-1206.
[http://dx.doi.org/10.1021/jo502276b] [PMID: 25506625]
[103]
Zhao, C-Y.; Li, K.; Pang, Y.; Li, J-Q.; Liang, C.; Su, G-F.; Mo, D-L. Iodine(III) reagent-mediated intramolecular amination of 2-alkenylanilines to prepare indoles. Adv. Synth. Catal., 2018, 360, 1919-1925.
[http://dx.doi.org/10.1002/adsc.201701551]
[104]
Xia, H-D.; Zhang, Y-D.; Wang, Y-H.; Zhang, C. Water-soluble hypervalent iodine(III) having an I-N bond. A reagent for the synthesis of indoles. Org. Lett., 2018, 20(13), 4052-4056.
[http://dx.doi.org/10.1021/acs.orglett.8b01615] [PMID: 29911872]
[105]
Jeyakannu, P.; Senadi, C.G.; Chiang, C-H.; Dhandabani, K.G. Chang-Y.-C.; Wang, J.-J. An efficient approach to functionalized indoles from λ3-iodanes via acyloxylation and acyl transfer. Adv. Synth. Catal., 2020, 362, 1.
[http://dx.doi.org/10.1002/adsc.202000402]
[106]
Maiti, S.; Achar, T.K.; Mal, P. An organic intermolecular dehydrogenative annulation reaction. Org. Lett., 2017, 19(8), 2006-2009.
[http://dx.doi.org/10.1021/acs.orglett.7b00562] [PMID: 28406305]
[107]
Maiti, S.; Bose, A.; Mal, P. Oxidative N-arylation for carbazole synthesis by C-C bond activation. J. Org. Chem., 2018, 83(15), 8127-8138.
[http://dx.doi.org/10.1021/acs.joc.8b00921] [PMID: 29847942]
[108]
Bal, A.; Maiti, S.; Mal, P. Iodine(III)-enabled distal C-H functionalization of biarylsulfonanilides. J. Org. Chem., 2018, 83(18), 11278-11287.
[http://dx.doi.org/10.1021/acs.joc.8b01857] [PMID: 30129758]
[109]
Zhang, X.; Hou, W.; Zhang-Negrerie, D.; Zhao, K.; Du, Y. Hypervalent iodine-mediated intramolecular trans-aminocarboxylation and oxoaminocarboxylation of alkynes: divergent cascade annulations of isocoumarins under metal-free conditions. Org. Lett., 2015, 17(21), 5252-5255.
[http://dx.doi.org/10.1021/acs.orglett.5b02611] [PMID: 26458214]
[110]
Janza, B.; Studer, A. Stereoselective cyclization reactions of IBX-generated alkoxyamidyl radicals. J. Org. Chem., 2005, 70(17), 6991-6994.
[http://dx.doi.org/10.1021/jo0509399] [PMID: 16095334]
[111]
Om, P.; Hitesh, B.; Harpreet, K.; Pawan, K.S.; Vijay, S.; Shiv, P.S.; Robert, M.M. Hypervalent iodine oxidative rearrangement of anthranilamides, salicylamides and some β-substituted amides: a new and convenient synthesis of 2-benzimidazolones, 2-benzoxazolones and related compounds. Synthesis, 2007, 36, 541-543.
[112]
He, T.; Gao, W-C.; Wang, W-K.; Zhang, C. Synthesis of oxazolidin-2-ones and imidazolidin-2-ones directly from 1,3-diols or 3-amino alcohols using iodobenzene dichloride and sodium azide. Adv. Synth. Catal., 2014, 356, 1113-1118.
[http://dx.doi.org/10.1002/adsc.201300982]
[113]
Kanyiva, K.S.; Tane, M.; Shibata, T. Iodine-catalyzed synthesis of chiral 4-imidazolidinones using α-amino acid derivatives via dehydrogenative N-H/C(sp3)-H coupling. J. Org. Chem., 2019, 84(20), 12773-12783.
[http://dx.doi.org/10.1021/acs.joc.9b01154] [PMID: 31313588]
[114]
Biswanath, S.; Yallamalla, S.; Harish, H.; Maddeboina, K.; Ravirala, N. Hypervalent iodine-mediated efficient synthesis of imidazoles. Chem. Lett., 2007, 36, 1270-1271.
[http://dx.doi.org/10.1246/cl.2007.1270]
[115]
Lin, J-P.; Zhang, F-H.; Long, Y-Q. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines. Org. Lett., 2014, 16(11), 2822-2825.
[http://dx.doi.org/10.1021/ol500864r] [PMID: 24814536]
[116]
Ramya, S.P.V.; Angapelly, S.; Rani, S.R.; Digwl, S.C.; Kumar, G.C.; Babu, N.B.; Guntuku, L.; Kamal, A. Hypervalent iodine(III) catalyzed rapid and efficient access to benzimidazoles, benzothiazoles and quinoxalines: biological evaluation of some new benzimidazole-imidazo[1,2-a]pyridine conjugates. Arab. J. Chem., 2020, 13, 120-133.
[http://dx.doi.org/10.1016/j.arabjc.2017.02.007]
[117]
Bhattacherjee, D.; Ram, S.; Chauhan, A.S. Yamini; Sheetal; Das, P. Hypervalent iodine(III)-mediated counteranion controlled intramolecular annulation of exocyclic β-enaminone to carbazolone and imidazo[1,2-a]pyridine synthesis. Chemistry, 2019, 25(23), 5934-5939.
[http://dx.doi.org/10.1002/chem.201806299] [PMID: 30688379]
[118]
Pal, G.; Paul, S.; Ghosh, P.P.; Das, R.A. PhIO promoted synthesis of nitrile imines and nitrile oxides within a micellar core in aqueous media: a regiocontrolled approach to synthesizing densely functionalized pyrazole and isoxazoline derivatives. RSC Advances, 2014, 4, 8300-8307.
[http://dx.doi.org/10.1039/c3ra46129g]
[119]
Hou, Y-W.; Cai, C.; Yu, G-L. One-pot synthesis of 1H-indazole-4,7-diols via iodine(III)-mediated [3+2] cyclization in water. Synlett, 2016, 27, 773.
[120]
Liu, Q.; Zhang, X-H.; He, Y.; Hussain, I.M.; Hu, W.; Xiong, Y.; Zhu, X-M. Oxidative rearrangement strategy for synthesis of 2,4,5-trisubstituted oxazoles utilizing hypervalent iodine reagent. Tetrahedron, 2016, 72, 5749.
[http://dx.doi.org/10.1016/j.tet.2016.07.082]
[121]
Ming, L.; Jia-Hui, W.; Wei, L. Rhodium-catalyzed arylzincation of alkynes: ligand control of 1, 4-migration selectivity. Org. Lett., 2018, 20, 6188-6192.
[http://dx.doi.org/10.1021/acs.orglett.8b02668] [PMID: 30489085]
[122]
Tumula, N.; Krishna, R.R.; Balasubramanian, S.; Nakka, M. Hypervalent iodine(III)-mediated solvent-free, regioselective synthesis of 3,4-disubstituted 5-imino-1,2,4-thiadiazoles and 2-aminobenzo[d]thiazoles. Adv. Synth. Catal., 2018, 360, 2806-2812.
[http://dx.doi.org/10.1002/adsc.201800353]
[123]
Nagaraju, T.; Krishna, R.P.; Sridhar, B.; Mangarao, N.PhI. (OAc)2-mediated regioselective synthesis of 5-guanidino-1,2,4-thiadiazoles and 1,2,4-triazolo[1,5-a]pyridines via oxidative N–S and N–N bond formation. Synthesis, 2019, 51, 3600-3610.
[http://dx.doi.org/10.1055/s-0037-1611854]
[124]
Maiti, D.K.; Chatterjee, N.; Pandit, P.; Hota, S.K. Generation of azomethine imine and metal-free formal 1,3-dipolar cycloaddition of imine with PhIO: reaction, scope, and synthesis. Chem. Commun. (Camb.), 2010, 46(12), 2022-2024.
[http://dx.doi.org/10.1039/b924761k] [PMID: 20221479]
[125]
Yoshimura, A.; Fuchs, J.M.; Middleton, K.R.; Maskaev, A.V.; Rohde, G.T.; Saito, A.; Postnikov, P.S.; Yusubov, M.S.; Nemykin, V.N.; Zhdankin, V.V. Pseudocyclic arylbenziodoxaboroles: efficient benzyne precursors triggered by water at room temperature. Chemistry, 2017, 23(66), 16738-16742.
[http://dx.doi.org/10.1002/chem.201704393] [PMID: 28981177]
[126]
Kong, A.; Blakey, B.S. Intramolecular olefin diamination for the stereoselective synthesis of 3-aminopiperidines. Synthesis, 2012, 44, 1190-1198.
[http://dx.doi.org/10.1055/s-0031-1290591]
[127]
Misu, Y.; Togo, H. Novel preparation of 2,1-benzothiazine derivatives from sulfonamides with [hydroxy(tosyloxy)iodo]arenes. Org. Biomol. Chem., 2003, 1(8), 1342-1346.
[http://dx.doi.org/10.1039/b301330h] [PMID: 12929664]
[128]
Christodoulou, S.M.; Kasiotis, M.K.; Fokialakis, N.; Tellitu, I.; Haroutounian, S.S. PIFA-mediated synthesis of novel pyrazoloquinolin-4-ones as potential ligands for the estrogen receptor. Tetrahedron Lett., 2008, 49, 7100.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.098]
[129]
Yasuo, K.; Masami, K. An electrophilic aromatic substitution by N-methoxyamides via hypervalent iodine intermediates. Chem. Lett., 1990, 19, 581.
[http://dx.doi.org/10.1246/cl.1990.581]
[130]
Ding, Q.; He, H.; Cai, Q. Chiral aryliodine-catalyzed asymmetric oxidative C-N bond formation via desymmetrization strategy. Org. Lett., 2018, 20(15), 4554-4557.
[http://dx.doi.org/10.1021/acs.orglett.8b01849] [PMID: 30036067]
[131]
Amano, Y.; Inoue, K.; Nishiyama, S. Oxidative access to quinolinone derivatives with simultaneous rearrangement of functional groups. Synlett, 2008, 2008, 134.
[http://dx.doi.org/10.1055/s-2007-1000829]
[132]
Yang, L.; Zhang-Negrerie, D.; Zhao, K.; Du, Y. Intramolecular functionalization of benzylic methylene adjacent to the ring nitrogen atom in N-aryltetrahydroisoquinoline derivatives. J. Org. Chem., 2016, 81(8), 3372-3379.
[http://dx.doi.org/10.1021/acs.joc.5b02443] [PMID: 26982026]
[133]
Kanyiva, S.K.; Horiuchi, M.; Shibata, T. Metal-free N–H/C–H coupling for efficient asymmetric synthesis of chiral dihydroquinoxalinones from readily available α-amino acids. Eur. J. Org. Chem., 2018, 2018, 1067-1070.
[http://dx.doi.org/10.1002/ejoc.201800012]
[134]
Bera, S.K.; Alam, M.T.; Mal, P. C-N Coupling via antiaromatic endocyclic nitrenium ions. J. Org. Chem., 2019, 84(18), 12009-12020.
[http://dx.doi.org/10.1021/acs.joc.9b01921] [PMID: 31438673]
[135]
Wang, D.; Yu, H.; Sun, S.; Zhong, F. Intermolecular vicinal diaminative assembly of tetrahydroquinoxalines via metal-free oxidative [4 + 2] cycloaddition strategy. Org. Lett., 2020, 22(6), 2425-2430.
[http://dx.doi.org/10.1021/acs.orglett.0c00624] [PMID: 32148049]
[136]
Chen, C-Y.; Hu, W-P.; Liu, M-C.; Yan, P-C.; Wang, J-J.; Chung, M-I. Efficient synthesis of quinoxalines with hypervalent iodine as a catalyst. Trtrahedron, 2013, 69, 9735-9741.
[http://dx.doi.org/10.1016/j.tet.2013.09.027]
[137]
Okumura, S.; Takeda, Y.; Kiyokawa, K.; Minakata, S. Hypervalent iodine(III)-induced oxidative [4+2] annulation of o-phenylenediamines and electron-deficient alkynes: direct synthesis of quinoxalines from alkyne substrates under metal-free conditions. Chem. Commun. (Camb.), 2013, 49(81), 9266-9268.
[http://dx.doi.org/10.1039/c3cc45469j] [PMID: 23995675]
[138]
Ishiwata, Y.; Togo, H. Ion-supported PhI-catalyzed cyclization of N-methoxy-2-arylethanesulfonamides with mCPBA. Tetrahedron Lett., 2009, 50, 5354.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.034]
[139]
Li, L.; Li, Y.; Zhao, Z.; Luo, H.; Ma, Y.N. Facial syntheses of bromobenzothiazines via catalyst-free tandem C-H amination/bromination in water. Org. Lett., 2019, 21(15), 5995-5999.
[http://dx.doi.org/10.1021/acs.orglett.9b02131] [PMID: 31339322]
[140]
Ma Y-N, Guo C-Y, Zhao Q-Y, Zhang J, Chen X-N. Synthesis of dibenzothiazines from sulfides by one-pot N,O-transfer and intramolecular C–H amination. Green Chem., 2018, 20, 2953-2958.
[http://dx.doi.org/10.1039/C8GC01057A]
[141]
Kumar, A.; Parshad, M.; Gupta, K.R.; Kumar, D. Hypervalent iodine mediated oxidation of 1,2-diaminobenzimidazole and its schiff bases: efficient synthesis of 3-amino-1,2,4-benzotriazine and 2-aryl-1,2,4-triazolo[1,5-a]benzimidazoles. Synthesis, 2009, 2009, 1663-1666.
[http://dx.doi.org/10.1055/s-0028-1088055]
[142]
Correa, A.; Tellitu, I.; Domínguez, E.; Moreno, I.; Sanmartin, R. An efficient, PIFA mediated approach to benzo-, naphtho-, and heterocycle-fused pyrrolo[2,1-c][1,4]diazepines. An advantageous access to the antitumor antibiotic DC-81. J. Org. Chem., 2005, 70(6), 2256-2264.
[http://dx.doi.org/10.1021/jo047872u] [PMID: 15760213]
[143]
Malamidou-Xenikaki, E.; Spyroudis, S.; Tsanakopoulou, M.; Hadjipavlou-Litina, D. A convenient approach to fused indeno-1,4-diazepinones through hypervalent iodine chemistry. J. Org. Chem., 2009, 74(19), 7315-7321.
[http://dx.doi.org/10.1021/jo9013063] [PMID: 19731924]
[144]
Shang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Intramolecular metal-free oxidative aryl-aryl coupling: an unusual hypervalent-iodine-mediated rearrangement of 2-substituted N-phenylbenzamides. Angew. Chem. Int. Ed. Engl., 2014, 53(24), 6216-6219.
[http://dx.doi.org/10.1002/anie.201402925] [PMID: 24764255]
[145]
Li, X.; Yang, L.; Zhang, X.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Construction of 1,4-benzodiazepine skeleton from 2-(arylamino)benzamides through PhI(OAc)2-mediated oxidative C–N bond formation. J. Org. Chem., 2014, 79(3), 955-962.
[http://dx.doi.org/10.1021/jo402413g] [PMID: 24428407]
[146]
Guo, X-L.; Zhang-Negrerie, D.; Du, Y-F. Iodine(III)-mediated construction of the dibenzoxazepinone skeleton from 2-(aryloxy)benzamides through oxidative C–N formation. RSC Advances, 2015, 5, 94732-94736.
[http://dx.doi.org/10.1039/C5RA20258B]
[147]
Murai, K.; Kobayashi, T.; Miyoshi, M.; Fujioka, H. Oxidative rearrangement of secondary amines using hypervalent iodine(III) reagent. Org. Lett., 2018, 20(8), 2333-2337.
[http://dx.doi.org/10.1021/acs.orglett.8b00675] [PMID: 29582653]
[148]
Moriarty, R.M.; Tyagi, S. Metal-free intramolecular aziridination of alkenes using hypervalent iodine based sulfonyliminoiodanes. Org. Lett., 2010, 12(2), 364-366.
[http://dx.doi.org/10.1021/ol9026655] [PMID: 20000588]
[149]
Deng, Q-H.; Wang, J-C.; Xu, Z-J.; Zhou, C-Y.; Che, C-M. Metal-free intramolecular aziridination of allylic carbamates mediated by hypervalent iodine compounds. Synthesis, 2011, 2011, 2959-2967.
[http://dx.doi.org/10.1055/s-0030-1260150]
[150]
Cochran, B.M.; Michael, F.E. Metal-free oxidative cyclization of urea-tethered alkenes with hypervalent iodine. Org. Lett., 2008, 10(21), 5039-5042.
[http://dx.doi.org/10.1021/ol8022165] [PMID: 18841990]
[151]
Kim, H.J.; Cho, S.H.; Chang, S. Intramolecular oxidative diamination and aminohydroxylation of olefins under metal-free conditions. Org. Lett., 2012, 14(6), 1424-1427.
[http://dx.doi.org/10.1021/ol300166q] [PMID: 22364422]
[152]
Mizar, P.; Laverny, A.; El-Sherbini, M.; Farid, U.; Brown, M.; Malmedy, F.; Wirth, T. Enantioselective diamination with novel chiral hypervalent iodine catalysts. Chemistry, 2014, 20(32), 9910-9913.
[http://dx.doi.org/10.1002/chem.201403891] [PMID: 25042733]
[153]
Li, M.; Wang, J.H.; Li, W.; Lin, C.D.; Zhang, L.B.; Wen, L.R. LiM. N-Phenoxyamides as multitasking reagents: base-controlled selective construction of benzofurans or dihydrobenzofuro[2,3- d]oxazoles. J. Org. Chem., 2019, 84(13), 8523-8530.
[http://dx.doi.org/10.1021/acs.joc.9b00858] [PMID: 31190539]
[154]
Li, M.; Li, W.; Lin, C-D.; Wang, J-H.; Wen, L-R. One base for two shots: metal-free substituent-controlled synthesis of two kinds of oxadiazine derivatives from alkynylbenziodoxolones and amidoximes. J. Org. Chem., 2019, 84(11), 6904-6915.
[http://dx.doi.org/10.1021/acs.joc.9b00659] [PMID: 31084019]
[155]
Yuan, J-W.; Deng, B-C.; Liang, Y-J.; Rao, B.C.; Zhang, R.; Zhao, Y-N.; Dong, D-W. PIFA/TEMPO-mediated oxidative cascade cyclization of α-[(β-amino)-propenoyl]-alkylamides: access to polysubstituted 3,7-dihydrooxazolo[4,5-c]pyridine-2,4,6(5H)-triones. Adv. Synth. Catal., 2019, 361, 4324-4333.
[http://dx.doi.org/10.1002/adsc.201900741]
[156]
Feng, Y.; Yang, C.; Deng, Q.; Xiong, R.; Zhang, X.; Xiong, Y. Synthesis of antitricyclic morpholine derivatives through iodine(III)-mediated intramolecular umpolung cycloaddition of olefins. J. Org. Chem., 2020, 85(6), 4500-4506.
[http://dx.doi.org/10.1021/acs.joc.0c00286] [PMID: 32098469]
[157]
Pardo, M.L.; Tellitu, I.; Dominguez, E. A versatile PIFA-mediated approach to structurally diverse pyrrolo(benzo)diazepines from linear alkynylamides. Tetrahedron, 2010, 66, 5811-5818.
[http://dx.doi.org/10.1016/j.tet.2010.05.080]
[158]
Mao, L.; Li, Y.; Xiong, T.; Sun, K.; Zhang, Q. Synthesis of tetramic acid derivatives via intramolecular sp3 C-H amination mediated by hypervalent iodine(III) reagents/Brønsted acids. J. Org. Chem., 2013, 78(2), 733-737.
[http://dx.doi.org/10.1021/jo302144w] [PMID: 23237025]
[159]
Zhang, Z-G.; Zhang, Y-C.; Huang, G-Q.; Zhang, G-S. Organoiodine reagent-promoted intermolecular oxidative amination: synthesis of cyclopropyl spirooxindoles. Org. Chem. Front., 2017, 4, 1372-1375.
[http://dx.doi.org/10.1039/C7QO00156H]
[160]
Dohi, T.; Nakae, T.; Ishikado, Y.; Kato, D.; Kita, Y. New synthesis of spirocycles by utilizing in situ forming hypervalent iodine species. Org. Biomol. Chem., 2011, 9(20), 6899-6902.
[http://dx.doi.org/10.1039/c1ob06199b] [PMID: 21892505]
[161]
Wardrop, J.D.; Burge, S.M.; Zhang, W-M.; Ortiz, A.J. π-Face Selective Azaspirocyclization of ω-(Methoxyphenyl)-N-methoxyalkylamides. Tetrahedron Lett., 2003, 44, 2587.
[http://dx.doi.org/10.1016/S0040-4039(03)00227-2]
[162]
Miyazawa, E.; Sakamoto, T.; Kikugawa, Y. Synthesis of spirodienones by intramolecular ipso-cyclization of N-methoxy-(4-halogenophenyl)amides using [hydroxy(tosyloxy)iodo]benzene in trifluoroethanol. J. Org. Chem., 2003, 68(13), 5429-5432.
[http://dx.doi.org/10.1021/jo034318w] [PMID: 12816516]
[163]
Wardrop, D.J.; Burge, M.S. Nitrenium ion azaspirocyclization-spirodienone cleavage: a new synthetic strategy for the stereocontrolled preparation of highly substituted lactams and N-hydroxy lactams. J. Org. Chem., 2005, 70(25), 10271-10284.
[http://dx.doi.org/10.1021/jo051252r] [PMID: 16323835]
[164]
Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. First hypervalent iodine(III)-catalyzed C-N bond forming reaction: catalytic spirocyclization of amides to N-fused spirolactams. Chem. Commun. (Camb.), 2007, 2007(12), 1224-1226.
[http://dx.doi.org/10.1039/B616510A] [PMID: 17356763]
[165]
Dohi, T.; Takenaga, N.; Fukushima, K.; Uchiyama, T.; Kato, D.; Motoo, S.; Fujioka, H.; Kita, Y. Designer μ-oxo-bridged hypervalent iodine(III) organocatalysts for greener oxidations. Chem. Commun. (Camb.), 2010, 46(41), 7697-7699.
[http://dx.doi.org/10.1039/c0cc03213a] [PMID: 20877828]
[166]
Kita, Y.; Dohi, T.; Mochizuki, E.; Yamashita, D.; Miyazaki, K. Efficient oxidative spirolactamization by μ-oxo bridged heterocyclic hypervalent iodine compound. Heterocycles, 2014, 88, 245-260.
[http://dx.doi.org/10.3987/COM-13-S(S)11]
[167]
Liang, H.; Ciufolini, M.A. Oxidative spirocyclization of phenolic sulfonamides: scope and applications. Chemistry, 2010, 16(44), 13262-13270.
[http://dx.doi.org/10.1002/chem.201001402] [PMID: 20931573]
[168]
Miyazawa, E.; Sakamoto, T.; Kikugawa, Y. Synthesis of spiro-fused nitrogen heterocyclic compounds via N-methoxy-N-acylnitrenium ions using phenyliodine(III) bis(trifluoroacetate) in trifluoroethanol. Heterocycles, 2003, 59, 149-160.
[http://dx.doi.org/10.3987/COM-02-S7]
[169]
Chen, Z-W.; Zhu, Y-Z.; Ou, J-W.; Wang, Y-P.; Zheng, J-Y. Metal-free iodine(III)-promoted synthesis of isoquinolones. J. Org. Chem., 2014, 79(22), 10988-10998.
[http://dx.doi.org/10.1021/jo5020307] [PMID: 25343572]
[170]
Canesi, S.; Belmont, P.; Bouchu, D.; Rousset, L.; Ciufolini, A.M. Efficient oxidative spirocyclization of phenolic sulfonamides. Tetrahedron Lett., 2020, 43, 5193-5195.
[http://dx.doi.org/10.1016/S0040-4039(02)00949-8]
[171]
Canesi, S.; Bouchu, D.; Ciufolini, M.A. Fully stereocontrolled total syntheses of (-)-cylindricine C and (-)-2-epicylindricine C: a departure in sulfonamide chemistry. Angew. Chem. Int. Ed. Engl., 2004, 43(33), 4336-4338.
[http://dx.doi.org/10.1002/anie.200460178] [PMID: 15368386]
[172]
Jain, N.; Ciufolini, A.M. Oxidative Amidation in the Naphthalene Series. Synlett, 2015, 26, 631-634.
[http://dx.doi.org/10.1055/s-0034-1379960]
[173]
Jain, N.; Hein, E.J.; Ciufolini, A.M. Oxidative cyclization of naphtholic sulfonamides mediated by a chiral hypervalent iodine reagent: asymmetric synthesis versus resolution. Synlett, 2019, 30, 1222-1227.
[http://dx.doi.org/10.1055/s-0037-1611831]
[174]
Sun, Y.; Gan, J-H.; Fan, R-H. Facile construction of oxa-aza spirobicycles via a tandem carbon-hydrogen bond oxidation. Adv. Synth. Catal., 2011, 353, 1735-1740.
[http://dx.doi.org/10.1002/adsc.201100196]
[175]
Zhang, X.; Yang, C.; Zhang-Negrerie, D.; Du, Y. Hypervalent-iodine-mediated cascade annulation of diarylalkynes forming spiro heterocycles under metal-free conditions. Chemistry, 2015, 21(13), 5193-5198.
[http://dx.doi.org/10.1002/chem.201406393] [PMID: 25677351]
[176]
Sun, J-Y.; Li, G-C.; Zhang, G-T. Cong Y, An X-C, Zhang-Negrerie D, Du Y-F. Cascade formation of C3-unsymmetric spirooxindoles via PhI(OAc)2-mediated oxidative C-C/C-N bond formation. Adv. Synth. Catal., 2018, 360, 2476-2481.
[http://dx.doi.org/10.1002/adsc.201800314]
[177]
Mizutani, H.; Takayama, J.; Soeda, Y.; Honda, T. Facile synthesis of enantiopure (−)-TAN1251A. Tetrahedron Lett., 2002, 43, 2411-2414.
[http://dx.doi.org/10.1016/S0040-4039(02)00296-4]
[178]
Saito, E.; Matsumoto, Y.; Nakamura, A.; Namera, Y.; Nakada, M. Synthesis and reaction of ortho-benzoquinone monohemiaminals. Org. Lett., 2018, 20(3), 692-695.
[http://dx.doi.org/10.1021/acs.orglett.7b03824] [PMID: 29338244]
[179]
Habert, L.; Cariou, K. Photoinduced aerobic iodoarene-catalyzed spirocyclization of N-oxy-amides to N-fused spirolactams. Angew. Chem. Int. Ed. Engl., 2020, 2020, 1.
[http://dx.doi.org/10.1002/ange.202009175] [PMID: 32956546]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy