Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

New Approaches and Advancements in Drug Development from Phenolic P-coumaric Acid

Author(s): Neelam Malik and Priyanka Dhiman*

Volume 22, Issue 18, 2022

Published on: 22 June, 2022

Page: [1515 - 1529] Pages: 15

DOI: 10.2174/0929866529666220426121324

Price: $65

Abstract

P-coumaric acid is a common dietary polyphenol present in fruits, vegetables, and cereals in conjugated and free form. The toxicity profile of the drug is very low, and it exhibits many pharmacological actions (antihypertensive, anti-inflammatory, anticancer, antimicrobial activity, antidiabetic, anticancer, and antioxidant effect). P-coumaric acid also acts as a free radical scavenger and inhibits various enzymes, which generate free radicals. It is also used as the raw material for the preparation of preservatives, vanillin, sports foods, skin defense agents, and as a cross-linker for the formation of edible films and food gels. The current study is based upon biological effectiveness, molecular docking, SAR, sources of p-coumaric acid, and related derivatives.

Keywords: Hydroxycinnamic acid, Phenolic acid, P-coumaric acid, Antioxidant, Anticancer, Antimicrobial, Anti-diabetic, Drug development.

Graphical Abstract
[1]
Yoo, S.; Kim, K.; Nam, H.; Lee, D. Discovering health benefits of phytochemicals with integrated analysis of the molecular network, chemical properties, and ethnopharmacological evidence. Nutrients, 2018, 10(8), 1042.
[http://dx.doi.org/10.3390/nu10081042 ] [PMID: 30096807]
[2]
Chang, S.K.; Alasalvar, C.; Shahidi, F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects - A comprehensive review. Crit. Rev. Food Sci. Nutr., 2019, 59(10), 1580-1604.
[http://dx.doi.org/10.1080/10408398.2017.1422111 ] [PMID: 29360387]
[3]
Dhiman, P.; Malik, N.; Khatkar, A. 3D-QSAR and in-silico studies of natural products and related derivatives as monoamine oxidase inhibitors. Curr. Neuropharmacol., 2018, 16(6), 881-900.
[http://dx.doi.org/10.2174/1570159X15666171128143650 ] [PMID: 29189167]
[4]
Zheng, J.; Meenu, M.; Xu, B. A systematic investigation on free phenolic acids and flavonoids profiles of commonly consumed edible flowers in China. J. Pharm. Biomed., 2019, 172, 268-277.
[http://dx.doi.org/10.1016/j.jpba.2019.05.007 ] [PMID: 31078063]
[5]
Lima, A.; Oliveira, C.; Santos, C.; Campos, F.M.; Couto, J.A. Phenolic composition of monovarietal red wines regarding volatile phenols and its precursors. Eur. Food Res. Technol., 2018, 244(11), 1985-1994.
[http://dx.doi.org/10.1007/s00217-018-3110-8]
[6]
Multari, S.; Pihlava, J.M.; Ollennu-Chuasam, P.; Hietaniemi, V.; Yang, B.; Suomela, J.P. Identification and quantification of avenan-thramides and free and bound phenolic acids in eight cultivars of husked oat (Avena sativa L.) from Finland. J. Agric. Food Chem., 2018, 66(11), 2900-2908.
[http://dx.doi.org/10.1021/acs.jafc.7b05726 ] [PMID: 29478323]
[7]
Zhang, R.; Khan, S.A.; Chi, J.; Wei, Z.; Zhang, Y.; Deng, Y.; Zhang, M. Different effects of extrusion on the phenolic profiles and antiox-idant activity in milled fractions of brown rice. Lebensm. Wiss. Technol., 2018, 88, 64-70.
[http://dx.doi.org/10.1016/j.lwt.2017.09.042]
[8]
Vuolo, M.M.; Lima, V.S.; Junior, M.R.M. Phenolic compounds: Structure, classification, and antioxidant power. Bioact. Compd., 2019, 2019, 33-50.
[9]
Ojha, D.; Patil, K.N. p-Coumaric acid inhibits the Listeria monocytogenes RecA protein functions and SOS response: An antimicrobial target. Biochem. Biophys. Res. Commun., 2019, 517(4), 655-661.
[http://dx.doi.org/10.1016/j.bbrc.2019.07.093 ] [PMID: 31416617]
[10]
Forero-Doria, O.; Araya-Maturana, R.; Barrientos-Retamal, A.; Morales-Quintana, L.; Guzmán, L. N-alkylimidazolium salts functional-ized with p-coumaric and cinnamic acid: A study of their antimicrobial and antibiofilm effects. Molecules, 2019, 24(19), 3484.
[http://dx.doi.org/10.3390/molecules24193484 ] [PMID: 31561437]
[11]
Mozaffari Godarzi, S.; Valizade Gorji, A.; Gholizadeh, B.; Mard, S.A.; Mansouri, E. Antioxidant effect of p-coumaric acid on interleukin 1-β and tumor necrosis factor-α in rats with renal ischemic reperfusion. Nefrologia, 2020, 40(3), 311-319.
[http://dx.doi.org/10.1016/j.nefroe.2020.06.017 ] [PMID: 31892486]
[12]
Jang, M.G.; Ko, H.C.; Kim, S.J. Effects of p-coumaric acid on microRNA expression profiles in SNU-16 human gastric cancer cells. Genes Genomics, 2020, 42(7), 817-825.
[http://dx.doi.org/10.1007/s13258-020-00944-6 ] [PMID: 32462517]
[13]
da Silva, E.C.O.; Dos Santos, F.M.; Ribeiro, A.R.B.; de Souza, S.T.; Barreto, E.; Fonseca, E.J.D.S. Drug-induced anti-inflammatory re-sponse in A549 cells, as detected by Raman spectroscopy: A comparative analysis of the actions of dexamethasone and p-coumaric ac-id. Analyst (Lond.), 2019, 144(5), 1622-1631.
[http://dx.doi.org/10.1039/C8AN01887A ] [PMID: 30633254]
[14]
Silva, F.A.; Borges, F.; Guimarães, C.; Lima, J.L.; Matos, C.; Reis, S. Phenolic acids and derivatives: Studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. J. Agric. Food Chem., 2000, 48(6), 2122-2126.
[http://dx.doi.org/10.1021/jf9913110 ] [PMID: 10888509]
[15]
Amalan, V.; Vijayakumar, N.; Indumathi, D.; Ramakrishnan, A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in dia-betic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother., 2016, 84, 230-236.
[http://dx.doi.org/10.1016/j.biopha.2016.09.039 ] [PMID: 27662473]
[16]
Widowati, W.; Fauziah, N.; Herdiman, H.; Afni, M.; Afifah, E.; Kusuma, H.S.W.; Rihibiha, D.D. Antioxidant and anti-aging assays of Oryza sativa extracts, vanillin and coumaric acid. J. Nat. Rem., 2016, 16(3), 88-99.
[http://dx.doi.org/10.18311/jnr/2016/7220]
[17]
Sharma, S.H.; Rajamanickam, V.; Nagarajan, S. Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem. Biol. Interact., 2018, 291, 16-28.
[http://dx.doi.org/10.1016/j.cbi.2018.06.001 ] [PMID: 29879413]
[18]
Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol., 2014, 2(7), 377-392.
[19]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[20]
Xu, M.; Rao, J.; Chen, B. Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic pro-cess. Crit. Rev. Food Sci. Nutr., 2020, 60(5), 740-759.
[http://dx.doi.org/10.1080/10408398.2018.1550051 ] [PMID: 30633553]
[21]
Meinhart, A.D.; Damin, F.M.; Caldeirao, L.; de Jesus Filho, M.; da Silva, L.C.; da Silva Constant, L.; Teixeira Filho, J.; Wagner, R.; Teixeira Godoy, H. Study of new sources of six chlorogenic acids and caffeic acid. J. Food Compos. Anal., 2019, 82, 103244.
[http://dx.doi.org/10.1016/j.jfca.2019.103244]
[22]
Pandi, A.; Kalappan, V.M. Pharmacological and therapeutic applications of Sinapic acid-an updated review. Mol. Biol. Rep., 2021, 48(4), 3733-3745.
[http://dx.doi.org/10.1007/s11033-021-06367-0 ] [PMID: 33988797]
[23]
Mancuso, A.; Cristiano, M.C.; Pandolfo, R.; Greco, M.; Fresta, M.; Paolino, D. Improvement of ferulic acid antioxidant activity by multi-ple emulsions: In vitro and in vivo evaluation. Nanomaterials (Basel), 2021, 11(2), 425.
[http://dx.doi.org/10.3390/nano11020425 ] [PMID: 33567523]
[24]
Singh, B.; Kumar, A.; Singh, H.; Kaur, S.; Arora, S.; Singh, B. Protective effect of vanillic acid against diabetes and diabetic nephropathy by attenuating oxidative stress and upregulation of NF‐κB, TNF‐α and COX‐2 proteins in rats Phytother. Res., 2022, ptr.7392.
[http://dx.doi.org/10.1002/ptr.7392]
[25]
Srinivasulu, C.; Ramgopal, M.; Ramanjaneyulu, G.; Anuradha, C.M.; Suresh Kumar, C. Syringic acid (SA)‒a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed. Pharmacother., 2018, 108, 547-557.
[http://dx.doi.org/10.1016/j.biopha.2018.09.069 ] [PMID: 30243088]
[26]
Pandey, S.; Wasewar, K.S.; Datta, D.; Kumar, S. Reactive extraction of gallic acid using trioctylamine and tributyl phosphate with natural oils. Chem. Eng. Technol., 2021, 2021, 00449.
[http://dx.doi.org/10.1002/ceat.202100449]
[27]
Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New progress in the pharmacology of protocate-chuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol. Res., 2020, 161, 105109.
[http://dx.doi.org/10.1016/j.phrs.2020.105109 ] [PMID: 32738494]
[28]
Rajendran, A.; Sagadevan, S.; Lett, J.A.; Kaliaraj, G.S.; Fatimah, I.; Mohammad Podder, J. Synthesis, growth, supramolecular and anti-bacterial efficacy of 3, 4-dimethoxybenzoic acid single crystals. Chem. Phys. Lett., 2021, 764, 138269.
[http://dx.doi.org/10.1016/j.cplett.2020.138269]
[29]
Schindler, M.; Solar, S.; Sontag, G. Phenolic compounds in tomatoes. Natural variations and effect of gamma-irradiation. Eur. Food Res. Technol., 2005, 221(3), 439-445.
[http://dx.doi.org/10.1007/s00217-005-1198-0]
[30]
Farah, A.; Monteiro, M.; Donangelo, C.M.; Lafay, S. Chlorogenic acids from green coffee extract are highly bioavailable in humans. J. Nutr., 2008, 138(12), 2309-2315.
[http://dx.doi.org/10.3945/jn.108.095554 ] [PMID: 19022950]
[31]
Bicudo, M.O.P.; Ribani, R.H.; Beta, T. Anthocyanins, phenolic acids and antioxidant properties of Juçara fruits (Euterpe edulis M.) along the on-tree ripening process. Plant Foods Hum. Nutr., 2014, 69(2), 142-147.
[http://dx.doi.org/10.1007/s11130-014-0406-0 ] [PMID: 24570272]
[32]
Krol, A.; Amarowicz, R.; Weidner, S. Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiol. Plant., 2014, 36(6), 1491-1499.
[http://dx.doi.org/10.1007/s11738-014-1526-8]
[33]
Huang, W.Y.; Zhang, H.C.; Liu, W.X.; Li, C.Y. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ. Sci. B, 2012, 13(2), 94-102.
[http://dx.doi.org/10.1631/jzus.B1100137 ] [PMID: 22302422]
[34]
Malik, N.; Dhiman, P.; Sobarzo-Sanchez, E.; Khatkar, A. Flavonoids and anthranquinones as xanthine oxidase and monoamine oxidase inhibitors: A new approach towards inflammation and oxidative stress. Curr. Top. Med. Chem., 2018, 18(25), 2154-2164.
[http://dx.doi.org/10.2174/1568026619666181120143050 ] [PMID: 30465507]
[35]
Win, M.M.; Abdul-Hamid, A.; Baharin, B.S.; Anwar, F.; Saari, N. Effects of roasting on phenolics composition and antioxidant activity of peanut (Arachis hypogaea L.) kernel flour. Eur. Food Res. Technol., 2011, 233(4), 599-608.
[http://dx.doi.org/10.1007/s00217-011-1544-3]
[36]
Lopez-Gresa, M.P.; Torres, C.; Campos, L.; Lisón, P.; Rodrigo, I.; Bellés, J.M.; Conejero, V. Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environ. Exp. Bot., 2011, 74, 216-228.
[http://dx.doi.org/10.1016/j.envexpbot.2011.06.003]
[37]
Ferreira, P.S.; Victorelli, F.D.; Fonseca-Santos, B.; Chorilli, M. A review of analytical methods for p-coumaric acid in plant-based prod-ucts, beverages, and biological matrices. Crit. Rev. Anal. Chem., 2019, 49(1), 21-31.
[http://dx.doi.org/10.1080/10408347.2018.1459173 ] [PMID: 29757687]
[38]
Deepa, M.; Sureshkumar, T.; Satheeshkumar, P.K.; Priya, S. Antioxidant rich Morus alba leaf extract induces apoptosis in human colon and breast cancer cells by the downregulation of nitric oxide produced by inducible nitric oxide synthase. Nutr. Cancer, 2013, 65(2), 305-310.
[http://dx.doi.org/10.1080/01635581.2013.748924 ] [PMID: 23441618]
[39]
Alvarado, I.E.; Navarro, D.; Record, E.; Asther, M.; Asther, M.; Lesage-Meessen, L. Fungal biotransformation of p-coumaric acid into caffeic acid by Pycnoporus cinnabarinus: An alternative for producing a strong natural antioxidant. World J. Microbiol. Biotechnol., 2003, 19(2), 157-160.
[http://dx.doi.org/10.1023/A:1023264200256]
[40]
Dhiman, P.; Malik, N.; Khatkar, A. Hybrid caffeic acid derivatives as monoamine oxidases inhibitors: Synthesis, radical scavenging activity, molecular docking studies and in silico ADMET analysis. Chem. Cent. J., 2018, 12(1), 112.
[http://dx.doi.org/10.1186/s13065-018-0481-7 ] [PMID: 30413989]
[41]
Bodini, S.F.; Manfredini, S.; Epp, M.; Valentini, S.; Santori, F. Quorum sensing inhibition activity of garlic extract and p-coumaric acid. Lett. Appl. Microbiol., 2009, 49(5), 551-555.
[http://dx.doi.org/10.1111/j.1472-765X.2009.02704.x ] [PMID: 19709367]
[42]
Czichi, U.; Kindl, H. Formation of p-coumaric acid and o-coumaric acid from L-phenylalanine by microsomal membrane fractions from potato: Evidence of membrane-bound enzyme complexes. Planta, 1975, 125(2), 115-125.
[PMID: 24435336]
[43]
Li, Y.; Li, J.; Qian, B.; Cheng, L.; Xu, S.; Wang, R. De novo biosynthesis of p-coumaric acid in E. coli with a trans-cinnamic acid 4-hydroxylase from the Amaryllidaceae plant Lycoris aurea. Molecules, 2018, 23(12), 3185.
[http://dx.doi.org/10.3390/molecules23123185 ] [PMID: 30513965]
[44]
Wang, K.; Zhang, J.; Ping, S.; Ma, Q.; Chen, X.; Xuan, H.; Shi, J.; Zhang, C.; Hu, F. Anti-inflammatory effects of ethanol extracts of Chi-nese propolis and buds from poplar (Populus×canadensis). J. Ethnopharmacol., 2014, 155(1), 300-311.
[http://dx.doi.org/10.1016/j.jep.2014.05.037 ] [PMID: 24882729]
[45]
Kheiry, M.; Dianat, M.; Badavi, M.; Mard, S.A.; Bayati, V. p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress. Iran. J. Basic Med. Sci., 2019, 22(8), 949-955.
[PMID: 31579452]
[46]
Shen, Y.; Song, X.; Li, L.; Sun, J.; Jaiswal, Y.; Huang, J.; Liu, C.; Yang, W.; Williams, L.; Zhang, H.; Guan, Y. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomed. Pharmacother., 2019, 111, 579-587.
[http://dx.doi.org/10.1016/j.biopha.2018.12.074 ] [PMID: 30599319]
[47]
Souza, T.N.; Santos, F.M.; Alves, P.R.; Ferro, J.N.; Correia, A.C.C.; Melo, T.S.; Soares, W.R.; Andrade, B.S.; Lagente, V.; Barreto, E. Local administration of p-coumaric acid decreases lipopolysaccharide-induced acute lung injury in mice: In vitro and in silico studies. Eur. J. Pharmacol., 2021, 897, 173929.
[http://dx.doi.org/10.1016/j.ejphar.2021.173929 ] [PMID: 33561444]
[48]
Oh, D.R.; Kim, M.J.; Choi, E.J.; Kim, Y.; Lee, H.S.; Bae, D.; Choi, C. Protective effects of p-coumaric acid isolated from Vaccinium brac-teatum thunb. Leaf extract on corticosterone-induced neurotoxicity in SH-SY5Y cells and primary rat cortical neurons. Processes (Basel), 2021, 9(5), 869.
[http://dx.doi.org/10.3390/pr9050869]
[49]
Reina, M.; Guzmán-López, E.G.; Romeo, I.; Marino, T.; Russo, N.; Galano, A. Computationally designed p-coumaric acid analogs: Searching for neuroprotective antioxidants. New J. Chem., 2021, 45(32), 14369-14380.
[http://dx.doi.org/10.1039/D1NJ01235E]
[50]
Daroi, P.A.; Dhage, S.N.; Juvekar, A.R. p-Coumaric acid mitigates lipopolysaccharide induced brain damage via alleviating oxidative stress, inflammation and apoptosis. J. Pharm. Pharmacol., 2021., rgab077.
[http://dx.doi.org/10.1093/jpp/rgab077 ] [PMID: 34190326]
[51]
Kannan, R.R.R.; Arumugam, R.; Thangaradjou, T.; Anantharaman, P. Phytochemical constituents, antioxidant properties and p-coumaric acid analysis in some seagrasses. Food Res. Int., 2013, 54(1), 1229-1236.
[http://dx.doi.org/10.1016/j.foodres.2013.01.027]
[52]
Boz, H. p‐Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol., 2015, 50(11), 2323-2328.
[http://dx.doi.org/10.1111/ijfs.12898]
[53]
Zang, L.Y.; Cosma, G.; Gardner, H.; Shi, X.; Castranova, V.; Vallyathan, V. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. Am. J. Physiol. Cell Physiol., 2000, 279(4), C954-C960.
[http://dx.doi.org/10.1152/ajpcell.2000.279.4.C954 ] [PMID: 11003575]
[54]
Li, N.; Guo, X.; Li, R.; Zhou, J.; Yu, F.; Yan, X. p-Coumaric acid regulates macrophage polarization in myocardial ischemia/reperfusion by promoting the expression of indoleamine 2, 3-dioxygenase. Bioengineered, 2021, 12(2), 10971-10981.
[http://dx.doi.org/10.1080/21655979.2021.2001924 ] [PMID: 34738873]
[55]
Zhao, Y.; Liu, J.; Liu, C.; Zeng, X.; Li, X.; Zhao, J. Anti-inflammatory effects of p-coumaric acid in LPS-stimulated RAW264. 7 cells: Involvement of NF-κB and MAPKs pathways. J. Med. Chem., 2016, 6, 327-330.
[56]
Vio-Michaelis, S.; Apablaza-Hidalgo, G.; Gómez, M.; Peña-Vera, R.; Montenegro, G. Antifungal activity of three Chilean plant extracts on Botrytis cinerea. Bot. Sci., 2012, 90(2), 179-183.
[http://dx.doi.org/10.17129/botsci.482]
[57]
Lee, M.; Rho, H.S.; Choi, K. Anti-inflammatory effects of a p-coumaric acid and Kojic acid derivative in LPS-stimulated RAW264. 7 macrophage cells. Biotechnol. Bioprocess Eng.; BBE, 2019, 24(4), 653-657.
[http://dx.doi.org/10.1007/s12257-018-0492-1]
[58]
Song, M.K.; Lee, S.J.; Kang, Y.Y.; Lee, Y.; Mok, H.; Ahn, J.H. Biological synthesis and anti-inflammatory activity of arylalkylamine. Appl. Biol. Chem., 2019, 60(6), 597-602.
[http://dx.doi.org/10.1007/s13765-017-0315-7]
[59]
Rathnayake, S.; Madushanka, A.; Wijegunawardana, N.D.; Mylvaganam, H.; Rathnayake, A.; Perera, E.G.; Bamunuarachchige, C. In silico study of 5, 7-dimethoxycoumarin and p-coumaric acid in Carica papaya leaves as dengue virus type 2 protease inhibitors. Multi-discip. Digital Publ. Inst. Proc., 2020, 83(1), 11-12.
[60]
Kwon, M.J.; Shin, H.M.; Perumalsamy, H.; Wang, X.; Ahn, Y.J. Antiviral effects and possible mechanisms of action of constituents from Brazilian propolis and related compounds. J. Apic. Res., 2020, 59(4), 413-425.
[http://dx.doi.org/10.1080/00218839.2019.1695715]
[61]
El Hassni, M.; Laadouzaa, H.; El Hadrami, A.; Dihazi, A.; Rakibi, Y.; Lemjiber, N.; Naamani, K. An in vitro evaluation of the effect of hydroxycinnamic acids on the growth and hydrolytic enzyme production in Fusarium oxysporum f. sp. albedinis. Arch. Phytopathol. Pflanzenschutz, 2021, 54(17), 1553-1567.
[http://dx.doi.org/10.1080/03235408.2021.1920311]
[62]
Zhu, H.; Liang, Q.H.; Xiong, X.G.; Wang, Y.; Zhang, Z.H.; Sun, M.J.; Lu, X.; Wu, D. Anti-inflammatory effects of p-coumaric acid, a natural compound of Oldenlandia diffusa, on arthritis model rats. Evid. Based Complement. Alternat. Med., 2018, 2018, 5198594.
[http://dx.doi.org/10.1155/2018/5198594 ] [PMID: 29681976]
[63]
Kianmehr, Z.; Khorsandi, K.; Mohammadi, M.; Hosseinzadeh, R. Low-level laser irradiation potentiates anticancer activity of p-coumaric acid against human malignant melanoma cells. Melanoma Res., 2020, 30(2), 136-146.
[http://dx.doi.org/10.1097/CMR.0000000000000603 ] [PMID: 30855528]
[64]
Ortega, T.; De La Hera, E.; Carretero, M.E.; Gomez-Serranillos, P.; Naval, M.V.; Villar, A.M.; Estrella, I. Influence of grape variety and their phenolic composition on vasorelaxing activity of young red wines. Eur. Food Res. Technol., 2008, 227(6), 1641-1650.
[http://dx.doi.org/10.1007/s00217-008-0888-9]
[65]
Veeramani, C.; Al-Numair, K.S.; Chandramohan, G.; Alsaif, M.A.; Alhamdan, A.A.; Pugalendi, K.V. Antihypertensive effect of Melo-thria maderaspatana leaf fractions on DOCA-salt-induced hypertensive rats and identification of compounds by GC-MS analysis. J. Nat. Med., 2012, 66(2), 302-310.
[http://dx.doi.org/10.1007/s11418-011-0590-2 ] [PMID: 21964566]
[66]
Liu, L.; Liu, L.; Lu, B.; Xia, D.; Zhang, Y. Evaluation of antihypertensive and antihyperlipidemic effects of bamboo shoot angiotensin converting enzyme inhibitory peptide in vivo. J. Agric. Food Chem., 2012, 60(45), 11351-11358.
[http://dx.doi.org/10.1021/jf303471f ] [PMID: 23046038]
[67]
Ani, V.; Naidu, K.A. Antihyperglycemic activity of polyphenolic components of black/bitter cumin Centratherum anthelminticum (L.) Kuntze seeds. Eur. Food Res. Technol., 2008, 226(4), 897-903.
[http://dx.doi.org/10.1007/s00217-007-0612-1]
[68]
Yao, Y.; Cheng, X.Z.; Wang, L.X.; Wang, S.H.; Ren, G. Major phenolic compounds, antioxidant capacity and antidiabetic potential of rice bean (Vigna umbellata L.) in China. Int. J. Mol. Sci., 2012, 13(3), 2707-2716.
[http://dx.doi.org/10.3390/ijms13032707 ] [PMID: 22489119]
[69]
Gutierréz-Hernández, A.; Galván-Ciprés, Y.; Domínguez-Mendoza, E.A.; Aguirre-Vidal, Y.; Estrada-Soto, S.; Almanza-Pérez, J.C.; Na-varrete-Vázquez, G. Design, synthesis, antihyperglycemic studies, and docking simulations of benzimidazole-thiazolidinedione hybrids. J. Chem., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/1650145]
[70]
Hussain, M.; Ahmed, Z.; Khan, S.N.; Shah, S.A.; Razi, R.; Imran, S.; Chaudhry, M.I. α-Glucosidase inhibition and docking studies of 5-deoxyflavonols and dihydroflavonols isolated from abutilon pakistanicum. Curr. Org. Chem., 2019, 23(17), 1857-1866.
[http://dx.doi.org/10.2174/1385272823666191001224741]
[71]
Abdel-Moneim, A.; Yousef, A.I.; Abd El-Twab, S.M.; Abdel Reheim, E.S.; Ashour, M.B. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Eur. Food Res. Technol., 2017, 32(4), 1279-1286.
[http://dx.doi.org/10.1007/s11011-017-0039-8 ] [PMID: 28573601]
[72]
Asif, M.; Saleem, M.; Yousaf, S.; Saadullah, M.; Zafar, M.; Khan, R.U.; Yuchi, A. Antidiabetic activity of aqueous extract of Sigesbeckia orientalis (St. Paul’s Wort) in alloxan-induced diabetes model. Braz. J. Pharm. Sci., 2019, 55, 55.
[http://dx.doi.org/10.1590/s2175-97902019000218408]
[73]
Panda, V.; Suresh, S. Gastro-protective effects of the phenolic acids of Macrotyloma uniflorum (horse gram) on experimental gastric ulcer models in rats. Food Biosci., 2015, 12, 34-46.
[http://dx.doi.org/10.1016/j.fbio.2015.07.004]
[74]
Barros, M.P.; Lemos, M.; Maistro, E.L.; Leite, M.F.; Sousa, J.P.B.; Bastos, J.K.; Andrade, S.F. Evaluation of antiulcer activity of the main phenolic acids found in Brazilian Green Propolis. J. Ethnopharmacol., 2008, 120(3), 372-377.
[http://dx.doi.org/10.1016/j.jep.2008.09.015 ] [PMID: 18930797]
[75]
An, S.M.; Koh, J.S.; Boo, Y.C. p-coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells ex-posed to UVB. Phytother. Res., 2010, 24(8), 1175-1180.
[http://dx.doi.org/10.1002/ptr.3095 ] [PMID: 20077437]
[76]
Song, K.; An, S.M.; Kim, M.; Koh, J.S.; Boo, Y.C. Comparison of the antimelanogenic effects of p-coumaric acid and its methyl ester and their skin permeabilities. Journal. J. Dermatol. Sci., 2011, 63(1), 17-22.
[http://dx.doi.org/10.1016/j.jdermsci.2011.03.012 ] [PMID: 21530181]
[77]
Jun, H.J.; Lee, J.H.; Cho, B.R.; Seo, W.D.; Kim, D.W.; Cho, K.J.; Lee, S.J. p-Coumaric acid inhibition of CREB phosphorylation reduces cellular melanogenesis. Eur. Food Res. Technol., 2012, 235(6), 1207-1211.
[http://dx.doi.org/10.1007/s00217-012-1830-8]
[78]
Chen, Y.H.; Huang, L.; Wen, Z.H.; Zhang, C.; Liang, C.H.; Lai, S.T.; Luo, L.Z.; Wang, Y.Y.; Wang, G.H. Skin whitening capability of shikimic acid pathway compound. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(6), 1214-1220.
[PMID: 27049279]
[79]
Ali, S.A.; Naaz, I. Biochemical aspects of mammalian melanocytes and the emerging role of melanocyte stem cells in dermatological therapies. Int. J. Health Sci. (Qassim), 2018, 12(1), 69-76.
[PMID: 29623021]
[80]
Lee, R.; Ko, H.J.; Kim, K.; Sohn, Y.; Min, S.Y.; Kim, J.A.; Na, D.; Yeon, J.H. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J. Extracell. Vesicles, 2019, 9(1), 1703480.
[http://dx.doi.org/10.1080/20013078.2019.1703480 ] [PMID: 32002169]
[81]
Seo, Y.K.; Kim, S.J.; Boo, Y.C.; Baek, J.H.; Lee, S.H.; Koh, J.S. Clinical and Experimental Dermatology. Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin. Exp. Dermatol., 2011, 36(3), 260-266.
[http://dx.doi.org/10.1111/j.1365-2230.2010.03983.x ] [PMID: 21198798]
[82]
Rafiee, Z.; Moaiedi, M.Z.; Gorji, A.V.; Mansouri, E. p-Coumaric acid mitigates doxorubicin-induced nephrotoxicity through suppression of oxidative stress, inflammation and apoptosis. Arch. Med. Res., 2020, 51(1), 32-40.
[http://dx.doi.org/10.1016/j.arcmed.2019.12.004 ] [PMID: 32086107]
[83]
Pollini, L.; Riccio, A.; Juan, C.; Tringaniello, C.; Ianni, F.; Blasi, F.; Mañes, J.; Macchiarulo, A.; Cossignani, L. Phenolic acids from Lyci-um barbarum leaves: In vitro and in silico studies of the inhibitory activity against porcine pancreatic α-amylase. Processes (Basel), 2020, 8(11), 1388.
[http://dx.doi.org/10.3390/pr8111388]
[84]
Pragasam, S.J.; Murunikkara, V.; Sabina, E.P.; Rasool, M. Ameliorative effect of p-coumaric acid, a common dietary phenol, on adju-vant-induced arthritis in rats. Rheumatol. Int., 2013, 33(2), 325-334.
[http://dx.doi.org/10.1007/s00296-012-2394-4 ] [PMID: 22447332]
[85]
Lee, J.O.; Jeong, D.; Kim, M.Y.; Cho, J.Y. ATP-binding pocket-targeted suppression of Src and Syk by luteolin contributes to its anti-inflammatory action. Mediators Inflamm., 2015, 2015(5), 967053.
[http://dx.doi.org/10.1155/2015/967053 ] [PMID: 26236111]
[86]
Sheng, K.; Li, Y.; Wang, Z.; Hang, K.; Ye, Z. p-Coumaric acid suppresses reactive oxygen species-induced senescence in nucleus pulpo-sus cells. Exp. Ther. Med., 2022, 23(2), 183.
[http://dx.doi.org/10.3892/etm.2021.11106 ] [PMID: 35069864]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy