skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution within Carbonate Oil Reservoirs

Technical Report ·
DOI:https://doi.org/10.2172/946424· OSTI ID:946424

Crosswell seismic surveys were conducted at two fields in northern Michigan. One of these, Springdale, included two monitor wells that are located external to the reef, and the other, Coldspring, employed two production wells within the reef. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. The resulting seismic images provide the best views of pinnacle Niagaran reefs obtained to date. The tops of the reservoirs can be clearly distinguished, and their lateral extent or dipping edges can be observed along the profile. Reflecting events internal to the reef are evident; some of them are fairly continuous across the reef and others are discontinuous. Inversion of the seismic data indicates which events represent zones of higher porosity and which are lower porosity or even anhydrite plugged. The full stacked image includes angles that are beyond critical for many of the interfaces, and some reflections are visible only for a small range of angles, presumably near their critical angle. Stacking these angles in provides an opportunity for these events to be seen on the stacked image, where otherwise they would have been unrecognized. For inversion, however, the complexity associated with phase changes beyond critical can lead to poor results, and elastic inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Strong apparent attenuation of signals occurs when seismic ray paths pass through the upper part of the Springdale reservoir; this may be due to intrinsic attenuation and/or scattering of events due to the locally strongly varying gas saturation and extremely low fluid pressures. Signal-to-noise limitations become evident far from the source well in the Coldspring study, probably because the raw data were strongly affected by tube-wave noise generated by flow through the perforation of the receiver well. The seismic images obtained, and interpretations of them, as assisted by Amplitude-versus-Angle studies and accompanying inversion, provide additional insight into the internal geometry of these two reefs and provide data that should be useful for reservoir management.

Research Organization:
Michigan Technological Univ., Houghton, MI (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
FC26-04NT15508
OSTI ID:
946424
Country of Publication:
United States
Language:
English