skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using Hydrous Crystalline Silicotitanate Material

Technical Report ·
DOI:https://doi.org/10.2172/827202· OSTI ID:827202

For the current pretreatment facility design of the River Protection Project (RPP) Waste Treatment Plant (WTP), the removal of cesium from low activity waste (LAW) is achieved by ion-exchange technology based on SuperLig(R) 644 resin. Due to recent concerns over potential radiological and chemical degradation of SuperLig(R) 644 resin and increased pressure drops observed during pilot-scale column studies, an increased interest in developing a potential backup ion-exchanger material has resulted. Ideally, a backup ion-exchanger material would replace the SuperLig(R) 644 resin and have no other major impacts on the pretreatment facility flowsheet. Such an ideal exchanger has not been identified to date. However, Crystalline Silicotitanate (CST) ion-exchanger materials have been studied for the removal of cesium from a variety of DOE wastes over the last decade. CST ion-exchanger materials demonstrate a high affinity for cesium under high alkalinity conditions and have been under investigation for cesium removal specifically at Hanford and SRS during the last six years. Since CST is an inorganic based material (with excellent properties in regard to chemical, radiological, and thermal stability) that is considered to be practically non-elutable (while SuperLig(R) 644 is an organic based elutable resin), the overall pretreatment facility flowsheet would be impacted in various ways. However, the CST material is still being considered as a potential backup ion-exchanger material. The performance of a proposed backup ion-exchange column using IONSIV IE-911 (CST in its engineered-form) material for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report focuses attention on the ion-exchange aspects and addresses the loading phase of the process cycle.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC09-96SR18500
OSTI ID:
827202
Report Number(s):
WSRC-TR-2001-00400; SRT-RPP-2001-00134; TRN: US200717%%56
Resource Relation:
Other Information: PBD: 27 Jul 2004
Country of Publication:
United States
Language:
English