skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of selected chemical processes for production of low-cost silocon. (Phases I and II. ) Final report, October 9, 1975--July 9, 1978. Silicon Material Task, Low-Cost Solar Array Project

Technical Report ·
DOI:https://doi.org/10.2172/6051388· OSTI ID:6051388

The zinc reduction of silicon tetrachloride in a fluidized bed of seed particles to yield a granular product was studied along with several modifications of the thermal decomposition or hydrogen reduction of silicon tetraiodide. Although all contenders were believed to be capable of meeting the quality requirements of the LSA Project, it was concluded that only the zinc reduction of the chloride could be made economically feasible at a cost below $10/kg silicon (1975 dollars). Accordingly, subsequent effort was limited to evaluating that process. A miniplant, consisting of a 5-cm-diameter fluidized-bed reactor and associated equipment was used to study the deposition parameters, temperature, reactant composition, seed particle size, bed depth, reactant throughput, and methods of reactant introduction. It was confirmed that the permissible range of fluidized-bed temperature was limited at the lower end by zinc condensation (918 C) and at higher temperatures by rapidly decreasing conversion efficiency (by 0.1 percent per degree C from 72 percent (thermodynamic) at 927 for a stoichiometric mixture). Use of a graded bed temperature was shown to increase the conversion efficiency over that obtained in an isothermal bed. Other aspects of the process such as the condensation and fused-salt electrolysis of the ZnCl/sub 2/ by-product for recycle of zinc and chlorine were studied to provide information required for design of a 50 MT/year experimental facility, visualized as the next stage in the development. Projected silicon costs of $7.35 and $8.71 per kg (1975 dollars) for a 1000 MT/year facilitywere obtained, depending upon the number and size of the fluidized-bed reactors and ZnCl/sub 2/ electrolytic cells used. An energy payback time of 5.9 months was calculated for the product silicon.

Research Organization:
Battelle Columbus Labs., OH (United States)
DOE Contract Number:
NAS-7-100-954339
OSTI ID:
6051388
Report Number(s):
DOE/JPL/954339-11
Country of Publication:
United States
Language:
English