skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aliphatic components of coal. Quarterly report, March-June 1980

Technical Report ·
DOI:https://doi.org/10.2172/5235716· OSTI ID:5235716

Liquefaction of coal involves thermolysis of benzyl-oxygen and/or benzyl-benzyl bonds as the first step in the depolymerization. This view derives from NMR studies, studies with model compounds, and oxidative degradations with Na/sub 2/Cr/sub 2/O/sub 7/ and CF/sub 3/CO/sub 3/H/sub 2/. The best method for determining the amount of arylmethyl groups in coals is from the yield of acetic acid formed in oxidative degradation with CF/sub 3/CO/sub 3/H-H/sub 2/SO/sub 4/. The following observations and interpretations are made: a sharp increase in arylmethyl accompanies liquefaction in all five coals and in two coals studied earlier. This increase is the result of thermal cleavage to benzyl radicals and abstraction of hydrogen atoms by the benzyl radicals to form arylmethyl. All five coals give about the same percentage increase in arylmethyl after 90 mins of solvent refining, but not after 3 mins. This indicates that benzyl radicals form from more than one type of structure. Based on studies of model compounds, it is attractive to ascribe arylmethyl formation in 3 mins to cleavage of benzyl ethers and slower cleavage to bibenzyl structures. It might have been expected that the more arylmethyl, the more cleavage, and the more SRC. In fact the opposite is found. The conflict would be resolved if coal liquefaction depended more on certain critical cleavages and the conversion of a 3-dimensional polymer to a 1-dimensional polymer than on the total amount of cleavage and the extent of depolymerization. The amount of arylmethyl in the residue (3 min) is about the same as in the original coal. This indicates that arylmethyls do not play any role in liquefaction as expected. No higher homologs of acetic acid were observed indicating the absence of arylalkyls above methyl.

Research Organization:
Pennsylvania State Univ., University Park (USA). Dept. of Chemistry
DOE Contract Number:
AS01-78ET13381
OSTI ID:
5235716
Report Number(s):
DOE/ET/13381-T2
Country of Publication:
United States
Language:
English