skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The anticyclone: A device for nonimpact particle separation

Technical Report ·
DOI:https://doi.org/10.2172/212572· OSTI ID:212572
;  [1]
  1. Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center

It is often desirable to separate particles from a particle-laden fluid stream. This is typically accomplished by passing the stream through a filter, an impactor, or a cyclone. In each of these devices, particles encounter obstacles in the flow path (i.e. filter material, the impaction surface, the cyclone side wall). However, in some applications, it is desirable to prevent particles from impinging on solid surfaces. For example, particle interaction with a solid surface may contaminate the surface, modify the particles via mechanical or chemical processes, or adversely affect the surface via material modification or heat transfer. In such situations, it is still possible to separate particles from the particle-laden flow stream by transferring them to another adjacent flow stream. This transfer of particles from one flow stream to another is termed nonimpact particle separation. One type of device that separates particles from a flow stream by nonimpact particle separation is the anticyclone. In contradistinction to a cyclone, the particle-laden flow is deflected from its original direction by a wall that curves away from the original flow direction, rather than into it. The computational fluid dynamics code FIDAP (Fluid Dynamics International) is used to perform two-dimensional fluid-flow and particle-motion calculations for a representative device geometry. These calculations indicate that the anticyclone geometry examined accomplishes nonimpact particle separation, as expected. Flow patterns and overall particle-separation characteristics are found to be fairly insensitive to Reynolds number for values above 100 regardless of whether the flow is laminar or turbulent. An approximate analytical relation describing anticyclone nonimpact particle separation is developed and validated by comparison to the numerical simulations. The additional information required to design useful devices employing nonimpact particle separation is outlined.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
212572
Report Number(s):
SAND-96-0728; ON: DE96008727; TRN: AHC29608%%117
Resource Relation:
Other Information: PBD: Mar 1996
Country of Publication:
United States
Language:
English