Internal Medicine
Online ISSN : 1349-7235
Print ISSN : 0918-2918
ISSN-L : 0918-2918
ORIGINAL ARTICLES
Improved Diagnostic Performance of New-generation 320-slice Computed Tomography with Forward-projected Model-based Iterative Reconstruction SoluTion for the Assessment of Late Enhancement in Left Ventricular Myocardium
Hiroyuki TakaokaMasae UeharaYuichi SaitoJoji OtaYasunori IidaManami TakahashiKoichi SanoIssei KomuroYoshio Kobayashi
Author information
JOURNAL OPEN ACCESS

2020 Volume 59 Issue 17 Pages 2095-2103

Details
Abstract

Objective Forward-projected Model-based Iterative Reconstruction SoluTion (FIRST) is a novel reconstruction method. We investigated the improvement in the diagnostic performance for the detection of abnormal late enhancement (LE) in left ventricular myocardium (LVM) using a new-generation 320-slice computed tomography (CT) device with FIRST.

Methods This is a retrospective study that included 100 adult patients who underwent cardiac CT including a late phase scan and magnetic resonance imaging (MRI) within 3 months. The first 50 consecutive patients (first-generation group) underwent first-generation 320-slice CT without FIRST, and the next 50 consecutive patients (second-generation group) underwent second-generation 320-slice CT with FIRST. We compared the diagnostic performance of the first- and second-generation 320-slice CT with FIRST with MRI as a reference standard to detect LE in LVM.

Results In the patient-based analysis, the sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy of detection of LE on CT were 79%, 90%, 92%, 76%, and 84%, respectively, in the first-generation group and 97%, 84%, 91%, 94%, and 92%, respectively, in the second-generation group. The sensitivity was significantly higher in the second-generation group than in the first-generation group (p=0.049). In the segment-based analysis, the sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy of detection of LE on CT were 69%, 96%, 83%, 92%, and 90%, respectively, in the first-generation group and 87%, 94%, 84%, 95%, and 92%, respectively, in the second-generation group. The sensitivity and negative predictive value were significantly higher in the second-generation group than in the first-generation group (p<0.001 and p=0.016). The contrast-noise ratio was significantly higher in the second-generation group than in the first-generation group (5.6±1.7 vs. 2.8±1.1, p<0.001), and the radiation dose for the assessment of LE on CT was significantly higher in the first-generation group than in the second-generation group (4.7±2.7 mSv vs. 2.3±0.1 mSv, p<0.001).

Conclusion The diagnostic performance for the detection of LE in LVM significantly improved with the use of second-generation 320-slice CT and FIRST.

Content from these authors
© 2020 by The Japanese Society of Internal Medicine
Previous article Next article
feedback
Top