Skip to main content

Advertisement

Log in

Gene Therapy for Rheumatoid Arthritis

Current Status and Future Prospects

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) was one of the earliest targets for gene therapy. Since the first clinical trial involving gene therapy in RA was initiated in 1996, eight clinical trials have been conducted assessing gene therapy in RA. Gene therapy has benefited from advances in biologics in terms of the increasing choice of novel, efficient targets to treat RA and also from the optimization of the delivery systems. Several strategies are possible; one of particular interest is local gene therapy directed to rheumatic joints, which avoids systemic vector diffusion. In this review, we discuss (i) gene therapeutic approaches that have been attempted for patients with RA, and (ii) novel strategies that are in development for delivery into patients. We analyze the advantages and disadvantages of the various approaches and how best to optimize them with regard to choosing the most promising vectors and strategies to allow for efficient, long-term, safe delivery of gene therapy in RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Evans CH, Robbins PD, Ghivizzani SC, et al. Clinical trial to assess the safety, feasibility, and efficacy of transferring a potentially anti-arthritic cytokine gene to human joints with rheumatoid arthritis. Hum Gene Ther 1996 Jun; 7 (10): 1261–80

    Article  PubMed  CAS  Google Scholar 

  2. Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003 Sep–Oct; 80 (1–2): 148–58

    Article  PubMed  CAS  Google Scholar 

  3. Williams DA. RAC reviews serious adverse event associated with AAV therapy trial. Mol Ther 2007 Dec; 15 (12): 2053–4

    Article  PubMed  CAS  Google Scholar 

  4. Wilson JM. Gendicine: the first commercial gene therapy product. Hum Gene Ther 2005 Sep; 16 (9): 1014–5

    Article  PubMed  CAS  Google Scholar 

  5. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000 Apr; 288 (5466): 669–72

    Article  PubMed  CAS  Google Scholar 

  6. Wehling P, Reinecke J, Baltzer AW, et al. Clinical responses to gene therapy in joints of two subjects with rheumatoid arthritis. Hum Gene Ther 2009 Feb; 20 (2): 97–101

    Article  PubMed  CAS  Google Scholar 

  7. Evans CH, Ghivizzani SC, Robbins PD. Gene therapy for arthritis: what next? Arthritis Rheum 2006 Jun; 54 (6): 1714–29

    Article  PubMed  CAS  Google Scholar 

  8. Evans CH, Ghivizzani SC, Robbins PD. Gene therapy of the rheumatic diseases: 1998 to 2008. Arthritis Res Ther 2009; 11 (1): 209

    Article  PubMed  Google Scholar 

  9. Sewell KL, Geary RS, Baker BF, et al. Phase I trial of ISIS 104838, a 2′-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-alpha. J Pharmacol Exp Ther 2002 Dec; 303 (3): 1334–43

    Article  PubMed  CAS  Google Scholar 

  10. Kennewell P. Technology evaluation: ISIS-104838, OraSense. Curr Opin Mol Ther 2003 Feb; 5 (1): 76–80

    PubMed  CAS  Google Scholar 

  11. ISIS 104838, an inhibitor of tumor necrosis factor, for active rheumatoid arthritis [ClinicalTrials.gov identifier: NCT00048321]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov [Accessed 2011 Oct 4]

  12. Mease PJ, Hobbs K, Chalmers A, et al. Local delivery of a recombinant adenoassociated vector containing a tumour necrosis factor alpha antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study. Ann Rheum Dis 2009 Aug; 68 (8): 1247–54

    Article  PubMed  CAS  Google Scholar 

  13. Mease PJ, Wei N, Fudman EJ, et al. Safety, tolerability, and clinical outcomes after intraarticular injection of a recombinant adeno-associated vector containing a tumor necrosis factor antagonist gene: results of a phase 1/2 Study. J Rheumatol 2010 Apr; 37 (4): 692–703

    Article  PubMed  CAS  Google Scholar 

  14. Evans CH, Robbins PD, Ghivizzani SC, et al. Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc Natl Acad Sci U S A 2005; 102: 8698–703

    Article  PubMed  CAS  Google Scholar 

  15. Lefèvre S, Knedla A, Tennie C, et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med. 2009 Dec; 15 (12): 1414–20

    Article  PubMed  Google Scholar 

  16. Evans CH, Ghivizzani SC, Robbins PD. Getting arthritis gene therapy into the clinic. Nat Rev Rheumatol 2011 Apr; 7 (4): 244–9

    Article  PubMed  CAS  Google Scholar 

  17. Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008 Sep; 118 (9): 3132–42

    Article  PubMed  CAS  Google Scholar 

  18. Ghivizzani SC, Lechman ER, Kang R, et al. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor alpha soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects. Proc Natl Acad Sci U S A 1998 Apr; 95 (8): 4613–8

    Article  PubMed  CAS  Google Scholar 

  19. Kim SH, Lechman ER, Kim S, et al. Ex vivo gene delivery of IL-1Ra and soluble TNF receptor confers a distal synergistic therapeutic effect in antigen-induced arthritis. Mol Ther 2002 Nov; 6 (5): 591–600

    Article  PubMed  CAS  Google Scholar 

  20. Lechman ER, Keravala A, Nash J, et al. The contralateral effect conferred by intra-articular adenovirus-mediated gene transfer of viral IL-10 is specific to the immunizing antigen. Gene Ther 2003 Nov; 10 (24): 2029–35

    Article  PubMed  CAS  Google Scholar 

  21. Agha-Mohammadi S, Lotze MT. Regulatable systems: applications in gene therapy and replicating viruses. J Clin Invest 2000 May; 105 (9): 1177–83

    Article  PubMed  CAS  Google Scholar 

  22. Apparailly F, Millet V, Noël D, et al. Tetracycline-inducible interleukin-10 gene transfer mediated by an adeno-associated virus: application to experimental arthritis. Hum Gene Ther 2002 Jul; 13 (10): 1179–88

    Article  PubMed  CAS  Google Scholar 

  23. Zhang HG, Hyde K, Page GP, et al. Novel tumor necrosis factor alpha-regulated genes in rheumatoid arthritis. Arthritis Rheum 2004 Feb; 50 (2): 420–31

    Article  PubMed  CAS  Google Scholar 

  24. Gould DJ, Berenstein M, Dreja H, et al. A novel doxycycline inducible autoregulatory plasmid which displays “on”/“Voff” regulation suited to gene therapy applications. Gene Ther 2000 Dec; 7 (24): 2061–70

    Article  PubMed  CAS  Google Scholar 

  25. Graham LD. Ecdysone-controlled expression of transgenes. Expert Opin Biol Ther 2002 Jun; 2 (5): 525–35

    Article  PubMed  CAS  Google Scholar 

  26. Ngan ES, Schillinger K, DeMayo F, et al. The mifepristone-inducible gene regulatory system in mouse models of disease and gene therapy. Semin Cell Dev Biol. 2002 Apr; 13 (2): 143–9

    Article  PubMed  CAS  Google Scholar 

  27. Brown BD, Naldini L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 2009 Aug; 10 (8): 578–85

    Article  PubMed  CAS  Google Scholar 

  28. Annoni A, Brown BD, Cantore A, et al. In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. Blood 2009 Dec; 114 (25): 5152–61

    Article  PubMed  CAS  Google Scholar 

  29. Sant SM, Suarez TM, Moalli MR, et al. Molecular lysis of synovial lining cells by in vivo herpes simplex virus-thymidine kinase gene transfer. Hum Gene Ther 1998 Dec; 9 (18): 2735–43

    Article  PubMed  CAS  Google Scholar 

  30. Deyle DR, Russell DW. Adeno-associated virus vector integration. Curr Opin Mol Ther 2009 Aug; 11 (4): 442–7

    PubMed  CAS  Google Scholar 

  31. Mease P, Wei N, Fudman E, et al. Local treatment for inflammatory arthritis: a phase 1/2 clinical study of intra-articular administration of a recombinant adeno-associated vector containing a TNF-alpha antagonist gene [platform presentation 2084]. Annual Meeting of the ACR/ARHP; 2007 Nov 10; Boston (MA), S793

  32. Smolen JS, Redlich K, Zwerina J, et al. Pro-inflammatory cytokines in rheumatoid arthritis: pathogenetic and therapeutic aspects. Clin Rev Allergy Immunol 2005 Jun; 28 (3): 239–48

    Article  PubMed  CAS  Google Scholar 

  33. van Vollenhoven RF. New and future agents in the treatment of rheumatoid arthritis. Discov Med 2010 Apr; 9 (47): 319–27

    PubMed  Google Scholar 

  34. Smolen JS, Aletaha D. Interleukin-6 receptor inhibition with tocilizumab and attainment of disease remission in rheumatoid arthritis: the role of acute-phase reactants. Arthritis Rheum 2011 Jan; 63 (1): 43–52

    Article  PubMed  CAS  Google Scholar 

  35. Burmester GR, Feist E, Kellner H, et al. Effectiveness and safety of the interleukin 6-receptor antagonist tocilizumab after 4 and 24 weeks in patients with active rheumatoid arthritis: the first phase IIIb real-life study (TAMARA). Ann Rheum Dis 2011 May; 70 (5): 755–9

    Article  PubMed  CAS  Google Scholar 

  36. Emery P, Fleischmann R, Filipowicz-Sosnowska A, et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum 2006 May; 54 (5): 1390–400

    Article  PubMed  CAS  Google Scholar 

  37. Emery P, Keystone E, Tony HP, et al. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis 2008 Nov; 67 (11): 1516–23

    Article  PubMed  CAS  Google Scholar 

  38. Emery P, Deodhar A, Rigby WF, et al. Efficacy and safety of different doses and retreatment of rituximab: a randomised, placebo-controlled trial in patients who are biological naive with active rheumatoid arthritis and an inadequate response to methotrexate (Study Evaluating Rituximab’s Efficacy in MTX iNadequate rEsponders (SERENE)). Ann Rheum Dis 2010 Sep; 69 (9): 1629–35

    Article  PubMed  CAS  Google Scholar 

  39. Rubbert-Roth A, Tak PP, Zerbini C, et al. Efficacy and safety of various repeat treatment dosing regimens of rituximab in patients with active rheumatoid arthritis: results of a phase III randomized study (MIRROR). Rheumatology (Oxford) 2010 Sep; 49 (9): 1683–93

    Article  CAS  Google Scholar 

  40. Cohen SB, Emery P, Greenwald MW, et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum 2006 Sep; 54 (9): 2793–806

    Article  PubMed  CAS  Google Scholar 

  41. Schiff M, Pritchard C, Huffstutter JE, et al. The 6-month safety and efficacy of abatacept in patients with rheumatoid arthritis who underwent a washout after anti-tumour necrosis factor therapy or were directly switched to abatacept: the ARRIVE trial. Ann Rheum Dis 2009 Nov; 68 (11): 1708–14

    Article  PubMed  CAS  Google Scholar 

  42. Kremer JM, Westhovens R, Leon M, et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 2003 Nov; 349 (20): 1907–15

    Article  PubMed  CAS  Google Scholar 

  43. Genovese MC, Becker JC, Schiff M, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 2005 Sep; 353 (11): 1114–23

    Article  PubMed  CAS  Google Scholar 

  44. Buchschacher GL, Wong-Staal F. Development of lentiviral vectors for gene therapy for human diseases. Blood 2000 Apr; 95 (8): 2499–504

    PubMed  CAS  Google Scholar 

  45. Gouze E, Pawliuk R, Gouze JN, et al. Lentiviral-mediated gene delivery to synovium: potent intra-articular expression with amplification by inflammation. Mol Ther 2003 Apr; 7 (4): 460–6

    Article  PubMed  CAS  Google Scholar 

  46. Lin YL, Noël D, Mettling C, et al. Feline immunodeficiency virus vectors for efficient transduction of primary human synoviocytes: application to an original model of rheumatoid arthritis. Hum Gene Ther 2004 Jun; 15 (6): 588–96

    Article  PubMed  CAS  Google Scholar 

  47. Pauwels K, Gijsbers R, Toelen J, et al. State-of-the-art lentiviral vectors for research use: risk assessment and biosafety recommendations. Curr Gene Ther 2009 Dec; 9 (6): 459–74

    Article  PubMed  CAS  Google Scholar 

  48. Kremer EJ, Boutin S, Chillon M, et al. Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 2000 Jan; 74 (1): 505–12

    Article  PubMed  CAS  Google Scholar 

  49. Seshidhar Reddy P, Ganesh S, Limbach MP, et al. Development of adenovirus serotype 35 as a gene transfer vector. Virology 2003 Jul 5; 311 (2): 384–93

    Article  Google Scholar 

  50. Coura RoS, Nardi NB. The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J 2007; 4: 99

    Article  Google Scholar 

  51. Mueller C, Flotte TR. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 2008 Jun; 15 (11): 858–63

    Article  PubMed  CAS  Google Scholar 

  52. Wang J, Xie J, Lu H, et al. Existence of transient functional double-stranded DNA intermediates during recombinant AAV transduction. Proc Natl Acad Sci U S A 2007 Aug; 104 (32): 13104–9

    Article  PubMed  CAS  Google Scholar 

  53. Arai Y, Kubo T, Fushiki S, et al. Gene delivery to human chondrocytes by an adeno associated virus vector. J Rheumatol 2000 Apr; 27 (4): 979–82

    PubMed  CAS  Google Scholar 

  54. Goater J, Müller R, Kollias G, et al. Empirical advantages of adeno associated viral vectors in vivo gene therapy for arthritis. J Rheumatol 2000 Apr; 27 (4): 983–9

    PubMed  CAS  Google Scholar 

  55. Madry H, Cucchiarini M, Terwilliger EF, et al. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum Gene Ther 2003 Mar; 14 (4): 393–402

    Article  PubMed  CAS  Google Scholar 

  56. Veron P, Allo V, Rivière C, et al. Major subsets of human dendritic cells are efficiently transduced by self-complementary adeno-associated virus vectors 1 and 2. J Virol 2007 May; 81 (10): 5385–94

    Article  PubMed  CAS  Google Scholar 

  57. Apparailly F, Bouquet C, Millet V, et al. Adenovirus-mediated gene transfer of urokinase plasminogen inhibitor inhibits angiogenesis in experimental arthritis. Gene Ther 2002 Feb; 9 (3): 192–200

    Article  PubMed  CAS  Google Scholar 

  58. Chan JM, Villarreal G, Jin WW, et al. Intraarticular gene transfer of TNFR:Fc suppresses experimental arthritis with reduced systemic distribution of the gene product. Mol Ther 2002 Dec; 6 (6): 727–36

    Article  PubMed  CAS  Google Scholar 

  59. Cottard V, Mulleman D, Bouille P, et al. Adeno-associated virus-mediated delivery of IL-4 prevents collagen-induced arthritis. Gene Ther 2000 Nov; 7 (22): 1930–9

    Article  PubMed  CAS  Google Scholar 

  60. Pan RY, Chen SL, Xiao X, et al. Therapy and prevention of arthritis by recombinant adeno-associated virus vector with delivery of interleukin-1 receptor antagonist. Arthritis Rheum 2000 Feb; 43 (2): 289–97

    Article  PubMed  CAS  Google Scholar 

  61. Watanabe S, Imagawa T, Boivin GP, et al. Adeno-associated virus mediates long-term gene transfer and delivery of chondroprotective IL-4 to murine synovium. Mol Ther 2000 Aug; 2 (2): 147–52

    Article  PubMed  CAS  Google Scholar 

  62. Zhang HG, Xie J, Yang P, et al. Adeno-associated virus production of soluble tumor necrosis factor receptor neutralizes tumor necrosis factor alpha and reduces arthritis. Hum Gene Ther 2000 Nov; 11 (17): 2431–42

    Article  PubMed  CAS  Google Scholar 

  63. Adriaansen J, Tas SW, Klarenbeek PL, et al. Enhanced gene transfer to arthritic joints using adeno-associated virus type 5: implications for intraarticular gene therapy. Ann Rheum Dis 2005 Dec; 64 (12): 1677–84

    Article  PubMed  CAS  Google Scholar 

  64. Apparailly F, Khoury M, Vervoordeldonk MJ, et al. Adeno-associated virus pseudotype 5 vector improves gene transfer in arthritic joints. Hum Gene Ther 2005 Apr; 16 (4): 426–34

    Article  PubMed  CAS  Google Scholar 

  65. DiPrimio N, McPhee SW, Samulski RJ. Adeno-associated virus for the treatment of muscle diseases: toward clinical trials. Curr Opin Mol Ther 2010 Oct; 12 (5): 553–60

    PubMed  CAS  Google Scholar 

  66. Young SM, Samulski RJ. Adeno-associated virus (AAV) site-specific recombination does not require a Rep-dependent origin of replication within the AAV terminal repeat. Proc Natl Acad Sci U S A 2001 Nov; 98 (24): 13525–30

    Article  PubMed  CAS  Google Scholar 

  67. Khoury M, Adriaansen J, Vervoordeldonk MJ, et al. Inflammation-inducible anti-TNF gene expression mediated by intra-articular injection of serotype 5 adeno-associated virus reduces arthritis. J Gene Med 2007 Jul; 9 (7): 596–604

    Article  PubMed  CAS  Google Scholar 

  68. Adriaansen J, Khoury M, de Cortie CJ, et al. Reduction of arthritis following intra-articular administration of an adeno-associated virus serotype 5 expressing a disease-inducible TNF-blocking agent. Ann Rheum Dis 2007 Sep; 66 (9): 1143–50

    Article  PubMed  CAS  Google Scholar 

  69. Brown BD, Gentner B, Cantore A, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007 Dec; 25 (12): 1457–67

    Article  PubMed  CAS  Google Scholar 

  70. Wright JF. Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther 2008 Jun; 15 (11): 840–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. Florence Apparailly has received grants and patents from Arthrogen BV. Sylvie Fabre has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Fabre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabre, S., Apparailly, F. Gene Therapy for Rheumatoid Arthritis. BioDrugs 25, 381–391 (2011). https://doi.org/10.2165/11595490-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11595490-000000000-00000

Keywords

Navigation