Skip to main content
Log in

Potential New Approaches to Modifying Intestinal GLP-1 Secretion in Patients with Type 2 Diabetes Mellitus

Focus on Bile Acid Sequestrants

  • Review Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus is associated with a progressive decline in insulinproducing pancreatic β-cells, an increase in hepatic glucose production, and a decrease in insulin sensitivity. The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) stimulate glucose-induced insulin secretion; however, in patients with type 2 diabetes, the incretin system is impaired by loss of the insulinotropic effects of GIP as well as a possible reduction in secretion of GLP-1. Agents that modify GLP-1 secretion may have a role in the management of type 2 diabetes. The currently available incretin-based therapies, GLP-1 receptor agonists (incretin mimetics) and dipeptidyl peptidase-4 (DPP-4) inhibitors (CD26 antigen inhibitors) [incretin enhancers], are safe and effective in the treatment of type 2 diabetes. However, they may be unable to halt the progression of type 2 diabetes, perhaps because they do not increase secretion of endogenous GLP-1. Therapies that directly target intestinal L cells to stimulate secretion of endogenous GLP-1 could possibly prove more effective than treatment with GLP-1 receptor agonists and DPP-4 inhibitors. Potential new approaches to modifying intestinal GLP-1 secretion in patients with type 2 diabetes include G-protein-coupled receptor (GPCR) agonists, α-glucosidase inhibitors, peroxisome proliferator-activated receptor (PPAR) agonists, metformin, bile acid mimetics and bile acid sequestrants. Both the GPCR agonist AR231453 and the novel bile acid mimetic INT-777 have been shown to stimulate GLP-1 release, leading to increased insulin secretion and improved glucose tolerance in mice. Similarly, a study in insulin-resistant rats demonstrated that the bile acid sequestrant colesevelam increased GLP-1 secretion and improved glucose levels and insulin resistance. In addition, the bile acid sequestrant colestimide (colestilan) has been shown to increase GLP-1 secretion and decrease glucose levels in patients with type 2 diabetes; these results suggest that the glucose-lowering effects of bile acid sequestrants may be partly due to their ability to increase endogenous GLP-1 levels. Evidence suggests that GPCR agonists, α-glucosidase inhibitors, PPAR agonists, metformin, bile acid mimetics and bile acid sequestrants may represent a new approach to management of type 2 diabetes via modification of endogenous GLP-1 secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Table II

Similar content being viewed by others

References

  1. National Diabetes Information Clearinghouse. National Diabetes Statistics, 2007 [online]. Available from URL: http://www.diabetes.niddk.nih.gov/dm/pubs/statistics/#allages [Accessed 2010 Mar 22]

  2. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004 May; 27(5): 1047–53

    Article  PubMed  Google Scholar 

  3. Steffes MW, Sibley S, Jackson M, et al. Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care 2003 Mar; 26(3): 832–6

    Article  PubMed  Google Scholar 

  4. Panero F, Novelli G, Zucco C, et al. Fasting plasma C-peptide and micro- and macrovascular complications in a large clinic-based cohort of type 1 diabetic patients. Diabetes Care 2009 Feb; 32(2): 301–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008 Oct 9; 359(15): 1577–89

    Article  CAS  PubMed  Google Scholar 

  6. UK Prospective Diabetes Study Group. UK Prospective Diabetes Study 16. Overview of 6 years' therapy of type II diabetes: a progressive disease. Diabetes 1995 Nov; 44(11): 1249–58

    Article  Google Scholar 

  7. Rudenski AS, Hadden DR, Atkinson AB, et al. Natural history of pancreatic islet B-cell function in type 2 diabetes mellitus studied over six years by homeostasis model assessment. Diabet Med 1988 Jan; 5(1): 36–41

    Article  CAS  PubMed  Google Scholar 

  8. Prando R, Odetti P, Melga P, et al. Progressive deterioration of beta-cell function in nonobese type 2 diabetic subjects: postprandial plasma C-peptide level is an indication of insulin dependency. Diabetes Metab 1996 Jun; 22(3): 185–91

    CAS  PubMed  Google Scholar 

  9. Ostgren CJ, Lindblad U, Ranstam J, et al. Glycaemic control, disease duration and beta-cell function in patients with type 2 diabetes in a Swedish community. Skaraborg Hypertension and Diabetes Project. Diabet Med 2002 Feb; 19(2): 125–9

    Article  CAS  PubMed  Google Scholar 

  10. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 2007 Jul 11; 298(2): 194–206

    Article  CAS  PubMed  Google Scholar 

  11. Moretto TJ, Milton DR, Ridge TD, et al. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther 2008 Aug; 30(8): 1448–60

    Article  CAS  PubMed  Google Scholar 

  12. Zinman B, Hoogwerf BJ, Duran Garcia S, et al. The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2007 Apr 3; 146(7): 477–85

    Article  PubMed  Google Scholar 

  13. Aschner P, Kipnes MS, Lunceford JK, et al. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care 2006 Dec; 29(12): 2632–7

    Article  CAS  PubMed  Google Scholar 

  14. Rosenstock J, Sankoh S, List JF. Glucose-lowering activity of the dipeptidyl peptidase-4 inhibitor saxagliptin in drug-naive patients with type 2 diabetes. Diabetes Obes Metab 2008 May; 10(5): 376–86

    Article  CAS  PubMed  Google Scholar 

  15. DeFronzo RA, Fleck PR, Wilson CA, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study. Diabetes Care 2008 Dec; 31(12): 2315–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vilsboll T, Brock B, Perrild H, et al. Liraglutide, a once-daily human GLP-1 analogue, improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with type 2 diabetes mellitus. Diabet Med 2008 Feb; 25(2): 152–6

    Article  CAS  PubMed  Google Scholar 

  17. Nauck M, Schmidt WE, Ebert R, et al. Insulinotropic properties of synthetic human gastric inhibitory polypeptide in man: interactions with glucose, phenylalanine, and cholecystokinin-8. J Clin Endocrinol Metab 1989 Sep; 69(3): 654–62

    Article  CAS  PubMed  Google Scholar 

  18. Kreymann B, Williams G, Ghatei MA, et al. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 1987 Dec 5; 2(8571): 1300–4

    Article  CAS  PubMed  Google Scholar 

  19. McIntyre N, Holdsworth CD, Turner DS. New interpretation of oral glucose tolerance. Lancet 1964 Jul 4; 2(7349): 20–1

    Article  CAS  PubMed  Google Scholar 

  20. Elrick H, Stimmler L, Hlad Jr CJ, et al. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 1964 Oct; 24: 1076–82

    Article  CAS  PubMed  Google Scholar 

  21. Nauck M, Stockmann F, Ebert R, et al. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986 Jan; 29(1): 46–52

    Article  CAS  PubMed  Google Scholar 

  22. Vilsboll T, Krarup T, Deacon CF, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001 Mar; 50(3): 609–13

    Article  CAS  PubMed  Google Scholar 

  23. Vollmer K, Holst JJ, Baller B, et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 2008 Mar; 57(3): 678–87

    Article  CAS  PubMed  Google Scholar 

  24. Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993 Jan; 91(1): 301–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ross SA, Brown JC, Dupre J. Hypersecretion of gastric inhibitory polypeptide following oral glucose in diabetes mellitus. Diabetes 1977 Jun; 26(6): 525–9

    Article  CAS  PubMed  Google Scholar 

  26. Crockett SE, Mazzaferri EL, Cataland S. Gastric inhibitory polypeptide (GIP) in maturity-onset diabetes mellitus. Diabetes 1976 Oct; 25(10): 931–5

    Article  CAS  PubMed  Google Scholar 

  27. Ebert R, Creutzfeldt W. Hypo- and hypersecretion of GIP in maturity-onset diabetics [abstract]. Diabetologia 1980; 19: 271–2

    Article  Google Scholar 

  28. Meier JJ, Nauck MA. Is the diminished incretin effect in type 2 diabetes just an epi-phenomenon of impaired beta-cell function? Diabetes 2010 May; 59(5): 1117–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meier JJ, Nauck MA. Is secretion of glucagon-like peptide-1 reduced in type 2 diabetes mellitus? Nat Clin Pract Endocrinol Metab 2008 Nov; 4(11): 606–7

    Article  CAS  PubMed  Google Scholar 

  30. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001 Aug; 86(8): 3717–23

    Article  CAS  PubMed  Google Scholar 

  31. Mannucci E, Ognibene A, Cremasco F, et al. Glucagon-like peptide (GLP)-1 and leptin concentrations in obese patients with type 2 diabetes mellitus. Diabet Med 2000 Oct; 17(10): 713–9

    Article  CAS  PubMed  Google Scholar 

  32. Muscelli E, Mari A, Casolaro A, et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes 2008 May; 57(5): 1340–8

    Article  CAS  PubMed  Google Scholar 

  33. Vilsboll T, Krarup T, Sonne J, et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 2003 Jun; 88(6): 2706–13

    Article  CAS  PubMed  Google Scholar 

  34. Theodorakis MJ, Carlson O, Michopoulos S, et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 2006 Mar; 290(3): E550–9

    Article  CAS  PubMed  Google Scholar 

  35. Orskov C, Jeppesen J, Madsbad S, et al. Proglucagon products in plasma of noninsulin-dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine. J Clin Invest 1991 Feb; 87(2): 415–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ahren B, Larsson H, Holst JJ. Reduced gastric inhibitory polypeptide but normal glucagon-like peptide 1 response to oral glucose in postmenopausal women with impaired glucose tolerance. Eur J Endocrinol 1997 Aug; 137(2): 127–31

    Article  CAS  PubMed  Google Scholar 

  37. Nauck MA, Vardarli I, Deacon CF, et al. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 2011 Jan; 54(1): 10–8

    Article  CAS  PubMed  Google Scholar 

  38. Rask E, Olsson T, Soderberg S, et al. Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men. Diabetes Care 2001 Sep; 24(9): 1640–5

    Article  CAS  PubMed  Google Scholar 

  39. Vilsboll T, Krarup T, Madsbad S, et al. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients. Diabetologia 2002 Aug; 45(8): 1111–9

    Article  CAS  PubMed  Google Scholar 

  40. Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997 Nov;273 (5 Pt 1): E981–8

    CAS  PubMed  Google Scholar 

  41. Herrmann C, Goke R, Richter G, et al. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 1995; 56(2): 117–26

    Article  CAS  PubMed  Google Scholar 

  42. Crockett SE, Cataland S, Falko JM, et al. The insulinotropic effect of endogenous gastric inhibitory polypeptide in normal subjects. J Clin Endocrinol Metab 1976 Jun; 42(6): 1098–103

    Article  CAS  PubMed  Google Scholar 

  43. Eissele R, Goke R, Willemer S, et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest 1992 Apr; 22(4): 283–91

    Article  CAS  PubMed  Google Scholar 

  44. Mortensen K, Christensen LL, Holst JJ, et al. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 2003 Jul 15; 114(2-3): 189–96

    Article  CAS  PubMed  Google Scholar 

  45. Orskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol 1996 Jul; 31(7): 665–70

    Article  CAS  PubMed  Google Scholar 

  46. Hansen L, Deacon CF, Orskov C, et al. Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1-(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 1999 Nov; 140(11): 5356–63

    CAS  PubMed  Google Scholar 

  47. Mentlein R. Dipeptidyl-peptidase IV (CD26): role in the inactivation of regulatory peptides. Regul Pept 1999 Nov 30; 85(1): 9–24

    Article  CAS  PubMed  Google Scholar 

  48. Vilsboll T, Agerso H, Krarup T, et al. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab 2003 Jan; 88(1): 220–4

    Article  CAS  PubMed  Google Scholar 

  49. Deacon CF, Nauck MA, Meier J, et al. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 2000 Oct; 85(10): 3575–81

    CAS  PubMed  Google Scholar 

  50. Vilsboll T, Agerso H, Lauritsen T, et al. The elimination rates of intact GIP as well as its primary metabolite, GIP 3–42, are similar in type 2 diabetic patients and healthy subjects. Regul Pept 2006 Dec 10; 137(3): 168–72

    Article  CAS  PubMed  Google Scholar 

  51. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007 Oct; 87(4): 1409–39

    Article  CAS  PubMed  Google Scholar 

  52. Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 1999 Apr; 140(4): 1687–94

    CAS  PubMed  Google Scholar 

  53. Roberge JN, Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinotropic peptide in a novel enteroendocrine loop. Endocrinology 1993 Jul; 133(1): 233–40

    CAS  PubMed  Google Scholar 

  54. Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by intestinal regulatory peptides. Endocrinology 1991 Jun; 128(6): 3175–82

    Article  CAS  PubMed  Google Scholar 

  55. Hansen L, Holst JJ. The effects of duodenal peptides on glucagon-like peptide-1 secretion from the ileum: a duo-deno-ileal loop? Regul Pept 2002 Dec 31; 110(1): 39–45

    Article  CAS  PubMed  Google Scholar 

  56. Hansen L, Lampert S, Mineo H, et al. Neural regulation of glucagon-like peptide-1 secretion in pigs. Am J Physiol Endocrinol Metab 2004 Nov; 287(5): E939–47

    Article  CAS  PubMed  Google Scholar 

  57. Layer P, Holst JJ, Grandt D, et al. Ileal release of glucagon-like peptide-1 (GLP-1): association with inhibition of gastric acid secretion in humans. Dig Dis Sci 1995 May; 40(5): 1074–82

    Article  CAS  PubMed  Google Scholar 

  58. American Diabetes Association. Dyslipidemia management in adults with diabetes. Diabetes Care 2004 Jan; 27 Suppl. 1: S68–71

    Google Scholar 

  59. Lim GE, Brubaker PL. Glucagon-like peptide 1 secretion by the L-cell. Diabetes 2006; 55 Suppl. 2: S70–S7

    Article  CAS  Google Scholar 

  60. Anini Y, Brubaker PL. Muscarinic receptors control glu- cagon-like peptide 1 secretion by human endocrine L cells. Endocrinology 2003 Jul; 144(7): 3244–50

    Article  CAS  PubMed  Google Scholar 

  61. Anini Y, Hansotia T, Brubaker PL. Muscarinic receptors control postprandial release of glucagon-like peptide-1: in vivo and in vitro studies in rats. Endocrinology 2002 Jun; 143(6): 2420–6

    Article  CAS  PubMed  Google Scholar 

  62. Roberge JN, Gronau KA, Brubaker PL. Gastrin-releasing peptide is a novel mediator of proximal nutrient-induced proglucagon-derived peptide secretion from the distal gut. Endocrinology 1996 Jun; 137(6): 2383–8

    CAS  PubMed  Google Scholar 

  63. Lu M, Wheeler MB, Leng XH, et al. The role of the free cytosolic calcium level in beta-cell signal transduction by gastric inhibitory polypeptide and glucagon-like peptide I(7-37). Endocrinology 1993 Jan; 132(1): 94–100

    CAS  PubMed  Google Scholar 

  64. Ding WG, Gromada J. Protein kinase A-dependent stimulation of exocytosis in mouse pancreatic beta-cells by glucose-dependent insulinotropic polypeptide. Diabetes 1997 Apr; 46(4): 615–21

    Article  CAS  PubMed  Google Scholar 

  65. Lahlou H, Guillermet J, Hortala M, et al. Molecular signaling of somatostatin receptors. Ann N Y Acad Sci 2004 Apr; 1014: 121–31

    Article  CAS  PubMed  Google Scholar 

  66. Gameiro A, Reimann F, Habib AM, et al. The neurotransmitters glycine and GABA stimulate glucagon-like peptide-1 release from the GLUTag cell line. J Physiol 2005 Dec 15; 569 (Pt 3): 761–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reimann F, Habib AM, Tolhurst G, et al. Glucose sensing in L cells: a primary cell study. Cell Metab 2008 Dec; 8(6): 532–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hirasawa A, Tsumaya K, Awaji T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005 Jan; 11(1): 90–4

    Article  CAS  PubMed  Google Scholar 

  69. Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 1993 Jul; 138(1): 159–66

    Article  CAS  PubMed  Google Scholar 

  70. Holst JJ. On the physiology of GIP and GLP-1. Horm Metab Res 2004 Nov–Dec; 36(11-12): 747–54

    Article  CAS  PubMed  Google Scholar 

  71. Gautier JF, Choukem SP, Girard J. Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. Diabetes Metab 2008 Feb; 34 Suppl. 2: S65–72

    Article  Google Scholar 

  72. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008 Dec; 60(4): 470–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Holst JJ, Vilsboll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 2009 Jan 15; 297(1-2): 127–36

    Article  CAS  PubMed  Google Scholar 

  74. Pamir N, Lynn FC, Buchan AM, et al. Glucose-dependent insulinotropic polypeptide receptor null mice exhibit compensatory changes in the enteroinsular axis. Am J Physiol Endocrinol Metab 2003 May; 284(5): E931–9

    Article  CAS  PubMed  Google Scholar 

  75. Trumper A, Trumper K, Trusheim H, et al. Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 2001 Sep; 15(9): 1559–70

    CAS  PubMed  Google Scholar 

  76. Xu G, Kaneto H, Lopez-Avalos MD, et al. GLP-1/exendin-4 facilitates beta-cell neogenesis in rat and human pancreatic ducts. Diabetes Res Clin Pract 2006 Jul; 73(1): 107–10

    Article  CAS  PubMed  Google Scholar 

  77. Kim SJ, Winter K, Nian C, et al. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biologic Chem 2005 Jun 10; 280(23): 22297–307

    Article  CAS  Google Scholar 

  78. Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 2003 Dec; 144(12): 5149–58

    Article  CAS  PubMed  Google Scholar 

  79. Prigeon RL, Quddusi S, Paty B, et al. Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. Am J Physiol Endocrinol Metab 2003 Oct; 285(4): E701–7

    Article  CAS  PubMed  Google Scholar 

  80. Yamada C, Yamada Y, Tsukiyama K, et al. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 2008 Feb; 149(2): 574–9

    Article  CAS  PubMed  Google Scholar 

  81. Xie D, Zhong Q, Ding KH, et al. Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. Bone 2007 May; 40(5): 1352–60

    Article  CAS  PubMed  Google Scholar 

  82. Meier JJ, Gallwitz B, Siepmann N, et al. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 2003 Jun; 46(6): 798–801

    Article  CAS  PubMed  Google Scholar 

  83. Luque MA, Gonzalez N, Marquez L, et al. Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes. J Endocrinol 2002 Jun; 173(3): 465–73

    Article  CAS  PubMed  Google Scholar 

  84. Flint A, Raben A, Astrup A, et al. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998 Feb 1; 101(3): 515–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gutzwiller JP, Drewe J, Goke B, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999 May; 276 (5 Pt 2): R1541–4

    CAS  PubMed  Google Scholar 

  86. Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004 Mar 2; 109(8): 962–5

    Article  CAS  PubMed  Google Scholar 

  87. Meier JJ, Gethmann A, Gotze O, et al. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia 2006 Mar; 49(3): 452–8

    Article  CAS  PubMed  Google Scholar 

  88. Hsieh J, Longuet C, Baker CL, et al. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia 2010 Mar; 53(3): 552–61

    Article  CAS  PubMed  Google Scholar 

  89. Polonsky KS, Given BD, Hirsch LJ, et al. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med 1988 May 12; 318(19): 1231–9

    Article  CAS  PubMed  Google Scholar 

  90. DeFronzo RA, Simonson D, Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1982 Oct; 23(4): 313–9

    Article  CAS  PubMed  Google Scholar 

  91. Unger RH, Aguilar-Parada E, Muller WA, et al. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest 1970 Apr; 49(4): 837–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003 Jan; 52(1): 102–10

    Article  CAS  PubMed  Google Scholar 

  93. Nguyen NT, Nguyen XM, Lane J, et al. Relationship between obesity and diabetes in a US adult population: findings from the National Health and Nutrition Examination Survey, 1999–2006. Obes Surg 2011 Mar; 21(3): 351–5

    Article  PubMed  Google Scholar 

  94. Campbell RK, Miller S. New therapeutic horizons: mapping the future of glycemic control with incretin-based therapy. Diabetes Educ 2009 Sep–Oct; 35(5): 731–4, 8–40, 42-4 passim

    Article  PubMed  Google Scholar 

  95. Pratley RE, Kipnes MS, Fleck PR, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes inadequately controlled by glyburide monotherapy. Diabetes Obes Metab 2009 Feb; 11(2): 167–76

    Article  CAS  PubMed  Google Scholar 

  96. Knop FK. Bile-induced secretion of glucagon-like peptide-1: pathophysiological implications in type 2 diabetes? Am J Physiol Endocrinol Metab 2010 Jul; 299(1): E10–3

    Article  CAS  PubMed  Google Scholar 

  97. Chu ZL, Carroll C, Alfonso J, et al. A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release. Endocrinology 2008 May; 149(5): 2038–47

    Article  CAS  PubMed  Google Scholar 

  98. Turton MD, O'Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996 Jan 4; 379(6560): 69–72

    Article  CAS  PubMed  Google Scholar 

  99. Chu ZL, Jones RM, He H, et al. A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release [Published erratum appears in Endocrinology 2007 Oct; 148 (10): 4753]. Endocrinology 2007 Jun; 148(6): 2601–9

    Article  CAS  PubMed  Google Scholar 

  100. Scheen AJ. Is there a role for alpha-glucosidase inhibitors in the prevention of type 2 diabetes mellitus? Drugs 2003; 63(10): 933–51

    Article  CAS  PubMed  Google Scholar 

  101. Lee A, Patrick P, Wishart J, et al. The effects of miglitol on glucagon-like peptide-1 secretion and appetite sensations in obese type 2 diabetics. Diabetes Obes Metab 2002 Sep; 4(5): 329–35

    Article  CAS  PubMed  Google Scholar 

  102. Goke B, Fuder H, Wieckhorst G, et al. Voglibose (AO-128) is an efficient alpha-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion 1995; 56(6): 493–501

    Article  CAS  PubMed  Google Scholar 

  103. Qualmann C, Nauck MA, Holst JJ, et al. Glucagon-like peptide 1 (7–36 amide) secretion in response to luminal sucrose from the upper and lower gut: a study using alpha-glucosidase inhibition (acarbose). Scand J Gastroenterol 1995 Sep; 30(9): 892–6

    Article  CAS  PubMed  Google Scholar 

  104. Seifarth C, Bergmann J, Holst JJ, et al. Prolonged and enhanced secretion of glucagon-like peptide 1 (7–36 amide) after oral sucrose due to alpha-glucosidase inhibition (acarbose) in type 2 diabetic patients. Diabet Med 1998 Jun; 15(6): 485–91

    Article  CAS  PubMed  Google Scholar 

  105. Arakawa M, Ebato C, Mita T, et al. Miglitol suppresses the postprandial increase in interleukin 6 and enhances active glucagon-like peptide 1 secretion in viscerally obese subjects. Metabolism 2008 Sep; 57(9): 1299–306

    Article  CAS  PubMed  Google Scholar 

  106. Hucking K, Kostic Z, Pox C, et al. Alpha-glucosidase inhibition (acarbose) fails to enhance secretion of glucagon-like peptide 1 (7–36 amide) and to delay gastric emptying in type 2 diabetic patients. Diabet Med 2005 Apr; 22(4): 470–6

    Article  CAS  PubMed  Google Scholar 

  107. Moritoh Y, Takeuchi K, Hazama M. Chronic administration of voglibose, an alpha-glucosidase inhibitor, increases active glucagon-like peptide-1 levels by increasing its secretion and decreasing dipeptidyl peptidase-4 activity in ob/ob mice. J Pharmacol Exp Ther 2009 May; 329(2): 669–76

    Article  CAS  PubMed  Google Scholar 

  108. Daoudi M, Hennuyer N, Borland MG, et al. PPARbeta/ delta activation induces enteroendocrine L cell GLP-1 production. Gastroenterology 2011 May; 140(5): 1564–74

    Article  CAS  PubMed  Google Scholar 

  109. Wan J, Jiang L, Lu Q, et al. Activation of PPARdelta up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic beta-cells. Biochem Biophys Res Commun 2010 Jan 15; 391(3): 1567–72

    Article  CAS  PubMed  Google Scholar 

  110. Coll T, Rodriguez-Calvo R, Barroso E, et al. Peroxisome proliferator-activated receptor (PPAR) beta/delta: a new potential therapeutic target for the treatment of metabolic syndrome. Curr Mol Pharmacol 2009 Jan; 2(1): 46–55

    Article  CAS  PubMed  Google Scholar 

  111. Maida A, Lamont BJ, Cao X, et al. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor in mice. Diabetologia 2011 Feb; 54(2): 339–49

    Article  CAS  PubMed  Google Scholar 

  112. Cho YM, Kieffer TJ. New aspects of an old drug: metformin as a glucagon-like peptide 1 (GLP-1) enhancer and sensitiser. Diabetologia 2011 Feb; 54(2): 219–22

    Article  CAS  PubMed  Google Scholar 

  113. Lauffer LM, Grieco A, Iakoubov R, et al. Metformin activates the AMPK pathway and improves survival of murine and human L-cells but does not directly increase GLP-1 secretion [abstract 198]. Diabetologia 2009; 52 Suppl. 1: S87

    Google Scholar 

  114. Yao X, Chen L, McIntyre MS, et al. Biguanide antidiabetic agents increase fecal bile acids via inhibition of apical sodium-dependent bile acid transporter [abstract 611-P]. Diabetes 2010; (Suppl. 1): 59

  115. Migoya EM, Bergeron R, Miller JL, et al. Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1. Clin Pharmacol Ther Dec 2010; 88(6): 801–8

    Article  CAS  Google Scholar 

  116. Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Comm 2005 Apr 1; 329(1): 386–90

    Article  CAS  PubMed  Google Scholar 

  117. Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009 Sep; 10(3): 167–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Patti ME, Houten SM, Bianco AC, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity 2009 Sep; 17(9): 1671–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. {le} Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006 Jan; 243(1): 108–14

  120. Goldberg RB, Fonseca VA, Truitt KE, et al. Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin-based therapy. Arch Intern Med 2008 Jul 28; 168(14): 1531–40

    Article  CAS  PubMed  Google Scholar 

  121. Fonseca VA, Rosenstock J, Wang AC, et al. Colesevelam HCl improves glycemic control and reduces LDL cholesterol in patients with inadequately controlled type 2 diabetes on sulfonylurea-based therapy. Diabetes Care 2008 Aug; 31(8): 1479–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bays HE, Goldberg RB, Truitt KE, et al. Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: glucose and lipid effects. Arch Intern Med 2008 Oct 13; 168(18): 1975–83

    Article  CAS  PubMed  Google Scholar 

  123. Shang Q, Saumoy M, Holst JJ, et al. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1. Am J Physiol Gastrointest Liver Physiol 2010; 298(3): G419–24

    Article  CAS  PubMed  Google Scholar 

  124. Suzuki T, Oba K, Igari Y, et al. Colestimide lowers plasma glucose levels and increases plasma glucagon-like PEPTIDE- 1 (7–36) levels in patients with type 2 diabetes mellitus complicated by hypercholesterolemia. J Nippon Med Sch 2007 Oct; 74(5): 338–43

    Article  CAS  PubMed  Google Scholar 

  125. Bays HE, Cohen DE. Rationale and design of a prospective clinical trial program to evaluate the glucose-lowering effects of colesevelam HCl in patients with type 2 diabetes mellitus. Curr Med Res Opin 2007 Jul; 23(7): 1673–84

    Article  CAS  PubMed  Google Scholar 

  126. Staels B, Kuipers F. Bile acid sequestrants and the treatment of type 2 diabetes mellitus. Drugs 2007; 67(10): 1383–92

    Article  CAS  PubMed  Google Scholar 

  127. Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus: a short-term, double-blind, crossover trial. Ann Intern Med 1994 Sep 15; 121(6): 416–22

    Article  CAS  PubMed  Google Scholar 

  128. Guzelian P, Boyer JL. Glucose reabsorption from bile: evidence for a biliohepatic circulation. J Clin Invest 1974 Feb; 53(2): 526–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chiang JY, Kimmel R, Weinberger C, et al. Farnesoid X receptor responds to bile acids and represses cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Biol Chem 2000 Apr 14; 275(15): 10918–24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for medical writing services was provided by Daiichi Sankyo, Inc., Parsippany, NJ, USA. Dr Holst has received research grants from Merck and Novartis, served as a consultant for Merck and NovoNordisk, and served as a speaker for Amylin Pharmaceuticals, GlaxoSmithKline, Novartis and NovoNordisk. Maria McGill is a medical writer employed by inScience Communications, a Wolters Kluwer business.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Juul Holst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holst, J.J., McGill, M.A. Potential New Approaches to Modifying Intestinal GLP-1 Secretion in Patients with Type 2 Diabetes Mellitus. Clin Drug Investig 32, 1–14 (2012). https://doi.org/10.2165/11595370-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11595370-000000000-00000

Keywords

Navigation