Skip to main content
Log in

Anaesthetic-Related Neuroprotection

Intravenous or Inhalational Agents?

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

In designing the anaesthetic plan for patients undergoing surgery, the choice of anaesthetic agent may often appear irrelevant and the best results obtained by the use of a technique or a drug with which the anaesthesia care provider is familiar. Nevertheless, in those surgical procedures (cardiopulmonary bypass, carotid surgery and cerebral aneurysm surgery) and clinical situations (subarachnoid haemorrhage, stroke, brain trauma and post-cardiac arrest resuscitation) where protecting the CNS is a priority, the choice of anaesthetic drug assumes a fundamental role. Treating patients with a neuroprotective agent may be a consideration in improving overall neurological outcome. Therefore, a clear understanding of the relative degree of protection provided by various agents becomes essential in deciding on the most appropriate anaesthetic treatment geared to these objectives.

This article surveys the current literature on the effects of the most commonly used anaesthetic drugs (volatile and gaseous inhalation, and intravenous agents) with regard to their role in neuroprotection. A systematic search was performed in the MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINHAL®) and Cochrane Library databases using the following keywords: ‘brain’ (with the limits ‘newborn’ or ‘infant’ or ‘child’ or ‘neonate’ or ‘neonatal’ or ‘animals’) AND ‘neurodegeneration’ or ‘apoptosis’ or ‘toxicity’ or ‘neuroprotection’ in combination with individual drug names (‘halothane’, ‘isoflurane’, ‘desflurane’, ‘sevoflurane’, ‘nitrous oxide’, ‘xenon’, ‘barbiturates’, ‘thiopental’, ‘propofol’, ‘ketamine’). Over 600 abstracts for articles published from January 1980 to April 2010, including studies in animals, humans and in vitro, were examined, but just over 100 of them were considered and reviewed for quality.

Taken as a whole, the available data appear to indicate that anaesthetic drugs such as barbiturates, propofol, xenon and most volatile anaesthetics (halothane, isoflurane, desflurane, sevoflurane) show neuroprotective effects that protect cerebral tissue from adverse events — such as apoptosis, degeneration, inflammation and energy failure — caused by chronic neurodegenerative diseases, ischaemia, stroke or nervous system trauma. Nevertheless, in several studies, the administration of gaseous, volatile and intravenous anaesthetics (especially isoflurane and ketamine) was also associated with dose-dependent and exposure time-dependent neurodegenerative effects in the developing animal brain. At present, available experimental data do not support the selection of any one anaesthetic agent over the others. Furthermore, the relative benefit of one anaesthetic versus another, with regard to neuroprotective potential, is unlikely to form a rational basis for choice. Each drug has some undesirable adverse effects that, together with the patient’s medical and surgical history, appear to be decisive in choosing the most suitable anaesthetic agent for a specific situation. Moreover, it is important to highlight that many of the studies in the literature have been conducted in animals or in vitro; hence, results and conclusions of most of them may not be directly applied to the clinical setting. For these reasons, and given the serious implications for public health, we believe that further investigation — geared mainly to clarifying the complex interactions between anaesthetic drug actions and specific mechanisms involved in brain injury, within a setting as close as possible to the clinical situation — is imperative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sreedhar R, Gadhinglajkar SV. Pharmacological neuroprotection. Indian J Anaesth 2003; 47: 8–22

    Google Scholar 

  2. Mortier L, Struys M, Herregods L. Therapeutic coma or neuroprotection by anaesthetics. Acta Neurol Belg 2000; 100: 225–8

    PubMed  CAS  Google Scholar 

  3. Toner CC, Stanford LA. General anaesthetics as neuroprotective agents. Baillieres Clini Anesthesiol 1996; 10: 515–33

    Article  Google Scholar 

  4. Miura Y, Amagasa S. Perioperative cerebral ischemia and the possibility of neuroprotection by inhalational anesthetics [in Japanese]. Masui 2003; 52: 116–27

    PubMed  Google Scholar 

  5. Matchett GA, Allard MW, Martin RD, et al. Neuroprotective effect of volatile anesthetic agents: molecular mechanisms. Neurol Res 2009; 31: 128–34

    Article  PubMed  CAS  Google Scholar 

  6. Brasil LJ, San-Miguel B, Kretzmann NA, et al. Halothane induces oxidative stress and NF-κB activation in rat liver: protective effect of propofol. Toxicology 2006; 227: 53–61

    Article  PubMed  CAS  Google Scholar 

  7. Nakao S, Nagata A, Masuzawa M, et al. NMDA receptor antagonist neurotoxicity and psychotomimetic activity [in Japanese]. Masui 2003; 52: 594–602

    PubMed  Google Scholar 

  8. Haelewyn B, Yvon A, Hanouz JL, et al. Desflurane affords greater protection than halothane against focal cerebral ischaemia in the rat. Br J Anaesth 2003; 91: 390–6

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi M, Takeda Y, Taninishi H, et al. Quantitative evaluation of the neuroprotective effects of thiopental sodium, propofol, and halothane on brain ischemia in the gerbil: effects of the anesthetics on ischemic depolarization and extracellular glutamate concentration. J Neuro-surg Anesthesiol 2007; 19: 171–8

    Article  Google Scholar 

  10. Wang C, Jin Lee J, Jung HH, et al. Pretreatment with volatile anesthetics, but not with the nonimmobilizer 1,2-dichlorohexafluorocyclobutane, reduced cell injury in rat cerebellar slices after an in vitro simulated ischemia. Brain Res 2007; 1152: 201–8

    Article  PubMed  CAS  Google Scholar 

  11. Wise-Faberowski L, Raizada MK, Sumners C. Oxygen and glucose deprivation-induced neuronal apoptosis is attenuated by halothane and isoflurane. Anesth Analg 2001; 93: 1281–7

    Article  PubMed  CAS  Google Scholar 

  12. Istaphanous GK, Loepke AW. General anesthetics and the developing brain. Curr Opin Anaesthesiol 2009; 22: 368–73

    Article  PubMed  Google Scholar 

  13. Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg 2008; 106: 1681–707

    Article  PubMed  Google Scholar 

  14. Kain ZN, Caldwell-Andrews AA, Weinberg ME. Sevoflurane versus halothane: postoperative maladaptive behavioral changes: a randomized, controlled trial. Anesthesiology 2005; 102: 720–6

    Article  PubMed  CAS  Google Scholar 

  15. Keaney A, Diviney D, Harte S, et al. Postoperative behavioral changes following anesthesia with sevoflurane. Paediatric Anaesth 2004; 14: 866–70

    Article  Google Scholar 

  16. Kotiniemi LH, Ryhanen PT, Moilanen IK. Behavioural changes in children following day-case surgery: a 4-week follow-up of 551 children. Anaesthesia 1997; 52: 970–6

    Article  PubMed  CAS  Google Scholar 

  17. Modvig KM, Nielsen SF. Psychological changes in children after anaesthesia: a comparison between halothane and ketamine. Acta Anaesthesiol Scand 1977; 21: 541–4

    Article  PubMed  CAS  Google Scholar 

  18. Uemura E, Levin ED, Bowman RE. Effects of halothane on synaptogenesis and learning behavior in rats. Exp Neurol 1985; 89: 520–9

    Article  PubMed  CAS  Google Scholar 

  19. Smith RF, Bowman RE, Katz J. Behavioral effects of exposure to halothane during early development in the rat: sensitive period during pregnancy. Anesthesiology 1978; 49: 319–23

    Article  PubMed  CAS  Google Scholar 

  20. Zheng S, Zuo Z. Isoflurane preconditioning reduces purkinje cell death in an in vitro model of rat cerebellar ischemia. Neuroscience 2003; 118: 99–106

    Article  PubMed  CAS  Google Scholar 

  21. Zheng S, Zuo Z. Isoflurane preconditioning decreases glutamate receptor overactivation-induced Purkinje neuronal injury in rat cerebellar slices. Brain Res 2005; 1054: 143–51

    Article  PubMed  CAS  Google Scholar 

  22. Zhao P, Peng L, Li L, et al. Isoflurane preconditioning improves long-term neurologic outcome after hypoxicischemic brain injury in neonatal rats. Anesthesiology 2007; 107: 963–70

    Article  PubMed  CAS  Google Scholar 

  23. Wei H, Liang G, Yang H. Isoflurane preconditioning inhibited isoflurane-induced neurotoxicity. Neurosci Lett 2007; 425: 59–62

    Article  PubMed  CAS  Google Scholar 

  24. Li QF, Zhu YS, Jiang H. Isoflurane preconditioning activates HIF-1 alpha, iNOS and Erk1/2 and protects against oxygen-glucose deprivation neuronal injury. Brain Res 2008; 1245: 26–35

    Article  PubMed  CAS  Google Scholar 

  25. Xiong L, Zheng Y, Wu M, et al. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg 2003; 96: 233–7

    PubMed  CAS  Google Scholar 

  26. Lee JJ, Li L, Jung HH, et al. Postconditioning with isoflurane reduced ischemia-induced brain injury in rats. Anesthesiology 2008; 108: 1055–62

    Article  PubMed  CAS  Google Scholar 

  27. Engelhard K, Werner C, Reeker W, et al. Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. Br J Anaesth 1999; 83: 415–21

    Article  PubMed  CAS  Google Scholar 

  28. Inoue S, Davis DP, Drummond JC, et al. The combination of isoflurane and caspase 8 inhibition results in sustained neuroprotection in rats subject to focal cerebral ischemia. Anesth Analg 2006; 102: 1548–55

    Article  PubMed  CAS  Google Scholar 

  29. Wang L, Kitano H, Hurn PD, et al. Estradiol attenuates neuroprotective benefits of isoflurane preconditioning in ischemic mouse brain. J Cereb Blood Flow Metab 2008; 28: 1824–34

    Article  PubMed  CAS  Google Scholar 

  30. Sasaoka N, Kawaguchi M, Kawaraguchi Y, et al. Isoflurane exerts a short-term but not a long-term preconditioning effect in neonatal rats exposed to a hypoxic-ischaemic neuronal injury. Anaesthesiol Scand 2009; 53: 46–54

    Article  CAS  Google Scholar 

  31. Brambrink AM, Evers AS, Avidan MS, et al. Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology 2010; 112: 834–41

    Article  PubMed  CAS  Google Scholar 

  32. Ma D, Williamson P, Januszewski A, et al. Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology 2007; 106: 746–53

    Article  PubMed  CAS  Google Scholar 

  33. Lu LX, Yon JH, Carter LB, et al. General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis 2006; 11: 1603–15

    Article  PubMed  CAS  Google Scholar 

  34. Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing brain and persistent learning deficits. J Neurosci 2003; 23: 876–82

    PubMed  CAS  Google Scholar 

  35. Lunardi N, Ori C, Erisir A, et al. General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats. Neurotox Res 2010; 17: 179–88

    Article  PubMed  CAS  Google Scholar 

  36. Stratmann G, Sall JW, May LD, et al. Beyond anesthetic properties: the effects of isoflurane on brain cell death, neurogenesis, and long-term neurocognitive function. Anesth Analg 2010; 110: 431–7

    Article  CAS  Google Scholar 

  37. Stratmann G, Sall JW, May LD, et al. Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology 2009; 110: 834–48

    Article  PubMed  CAS  Google Scholar 

  38. Johnson SA, Young C, Olney JW. Isoflurane-induced neuroapoptosis in the developing brain of nonhypoglycemic mice. J Neurosurg Anesthesiol 2008; 20: 21–8

    Article  PubMed  Google Scholar 

  39. Bedforth NM, Girling KJ, Skinner HJ, et al. Effects of desflurane on cerebral autoregulation. Br J Anaesth 2007; 87: 193–7

    Article  Google Scholar 

  40. Boisson-Bertrand D, Laxenaire MC, Mertes PM. Recovery after prolonged anaesthesia for acoustic neuroma surgery: desflurane versus isoflurane. Anaesth Intensive Care 2006; 34: 338–42

    PubMed  CAS  Google Scholar 

  41. Wise-Faberowski L, Raizada MK, Sumners C. Desflurane and sevoflurane attenuate oxygen and glucose deprivation-induced neuronal cell death. J Neurosurg Anesthesiol 2003; 15: 193–9

    Article  PubMed  CAS  Google Scholar 

  42. Erdem AF, Cesur M, Alici HA, et al. Effects of sevoflurane and desflurane in CA1 after incomplete cerebral ischemia in rats. Saudi Med J 2005; 26: 1424–8

    PubMed  Google Scholar 

  43. Loepke AW, Priestley MA, Schultz SE, et al. Desflurane improves neurologic outcome after low-flow cardiopulmonary bypass in newborn pigs. Anesthesiology 2002; 97: 1521–7

    Article  PubMed  CAS  Google Scholar 

  44. Hoffman WE, Charbel FT, Edelman G, et al. Thiopental and desflurane treatment for brain protection. Neurosurgery 1998; 43: 1050–3

    Article  PubMed  CAS  Google Scholar 

  45. Wang ZP, Zhang ZH, Zeng YM, et al. Protective effect of sevoflurane preconditioning on oxygen-glucose deprivation injury in rat hippocampal slices: the role of mitochondrial K(ATP) channels. Sheng Li Xue Bao 2006; 58: 201–6

    PubMed  CAS  Google Scholar 

  46. Luo Y, Ma D, Ieong E, et al. Xenon and sevoflurane protect against brain injury in a neonatal asphyxia model. Anesthesiology 2008; 109: 782–9

    Article  PubMed  CAS  Google Scholar 

  47. Payne RS, Akca O, Roewer N, et al. Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res 2005; 1034: 147–52

    Article  PubMed  CAS  Google Scholar 

  48. Ye Z, Guo Q, Wang E, et al. Sevoflurane preconditioning induced delayed neuroprotection against focal cerebral ischemia in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2009; 34: 152–7

    PubMed  Google Scholar 

  49. Canas PT, Velly LJ, Labrande CN, et al. Sevoflurane protects rat mixed cerebrocortical neuronal-glial cell cultures against transient oxygen-glucose deprivation: involvement of glutamate uptake and reactive oxygen species. Anesthesiology 2006; 105: 990–8

    Article  PubMed  CAS  Google Scholar 

  50. Bercker S, Bert B, Bittigau P, et al. Neurodegeneration in newborn rats following propofol and sevoflurane anesthesia. Neurotox Res 2009; 16: 140–7

    Article  PubMed  CAS  Google Scholar 

  51. Berns M, Zacharias R, Seeberg L, et al. Effects of sevoflurane on primary neuronal cultures of embryonic rats. Eur J Anaesthesiol 2009; 26: 597–602

    Article  PubMed  CAS  Google Scholar 

  52. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature 1994; 367: 607–14

    Article  PubMed  CAS  Google Scholar 

  53. Sanders RD, Ma D, Maze M. Xenon: elemental anaesthesia in clinical practice. Br Med Bull 2005; 71: 115–35

    Article  PubMed  CAS  Google Scholar 

  54. Gruss M, Bushell TJ, Bright DP, et al. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 2004; 65: 443–52

    Article  PubMed  CAS  Google Scholar 

  55. Yamakura T, Harris RA. Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels: comparison with isoflurane and ethanol. Anesthesiology 2000; 93: 1095–101

    Article  PubMed  CAS  Google Scholar 

  56. David HN, Ansseau M, Lemaire M, et al. Nitrous oxide and xenon prevent amphetamine-induced carrier-mediated dopamine release in a memantine-like fashion and protect against behavioral sensitization. Biol Psychiatry 2006; 60: 49–57

    Article  PubMed  CAS  Google Scholar 

  57. Jevtovic-Todorovic V, Todorovic SM, Mennerick S, et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 1998; 4: 460–3

    Article  PubMed  CAS  Google Scholar 

  58. Haelewyn B, David HN, Rouillon C, et al. Neuroprotection by nitrous oxide: facts and evidence. Crit Care Med 2008; 36: 2651–9

    Article  PubMed  CAS  Google Scholar 

  59. Abraini JH, David HN, Lemaire M. Potentially neuroprotective and therapeutic properties of nitrous oxide and xenon. Ann NY Acad Sci 2005; 1053: 289–300

    Article  PubMed  CAS  Google Scholar 

  60. Abraini JH, David HN, Nicole O, et al. Neuroprotection by nitrous oxide and xenon and its relation to minimum alveolar concentration. Anesthesiology 2004; 101: 260–1

    Article  PubMed  Google Scholar 

  61. David HN, Leveille F, Chazalviel L, et al. Reduction of ischemic brain damage by nitrous oxide and xenon. J Cereb Blood Flow Metab 2003; 23: 1168–73

    Article  PubMed  CAS  Google Scholar 

  62. Abraini JH, David HN, MacKenzie ET, et al. Postischemic nitrous oxide alone versus intraischemic nitrous oxide in the presence of isoflurane: what it may change for neuroprotection against cerebral stroke in the rat [letter]. Anesth Analg 2005; 101: 614

    Article  PubMed  Google Scholar 

  63. Eishima K. The effects of obstetric conditions on neonatal behaviour in Japanese infants. Early Hum Dev 1992; 28: 253–63

    Article  PubMed  CAS  Google Scholar 

  64. Hollmen AI, Jouppila R, Koivisto M, et al. Neurologic activity of infants following anesthesia for cesarean section. Anesthesiology 1978; 48: 350–6

    Article  PubMed  CAS  Google Scholar 

  65. David HN, Haelewyn B, Risso JJ, et al. Xenon is an inhibitor of tissue-plasminogen activator: adverse and beneficial effects in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab 2010; 30: 718–28

    Article  PubMed  CAS  Google Scholar 

  66. Remsen LG, Pagel MA, McCormick CI, et al. The influence of anaesthetic choice, PaCO2, and other factors on osmotic blood-brain disruption in rats with brain tumor xenografts. Anesth Analg 1999; 88: 559–67

    PubMed  CAS  Google Scholar 

  67. Johansson BB, Linder LE. Cerebrovascular permeability to protein in the rat during nitrous oxide anaesthesia at various blood pressure levels. Acta Anaesthesiol Scand 1978; 22: 463–6

    Article  PubMed  CAS  Google Scholar 

  68. David HN, Haelewyn B, Rouillon C, et al. Neuroprotective effects of xenon: a therapeutic window of opportunity in rats subjected to transient cerebral ischemia. FASEB J 2008; 22: 1275–86

    Article  PubMed  Google Scholar 

  69. Ma D, Wilhelm S, Maze M, et al. Neuroprotective and neurotoxic properties of the ‘inert’ gas, xenon. Br J Anaesth 2002; 89: 739–46

    Article  PubMed  CAS  Google Scholar 

  70. Sanders RD, Maze M. Xenon: from stranger to guardian. Curr Opin Anaesthesiol 2005; 18: 405–11

    Article  PubMed  Google Scholar 

  71. Wilhelm S, Ma D, Maze M, et al. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology 2002; 96: 1485–91

    Article  PubMed  CAS  Google Scholar 

  72. Dinse A, Föhr KJ, Georgieff M, et al. Xenon reduces glutamate-, AMPA-, and kainate-induced membrane currents in cortical neurones. Br J Anaesth 2005; 94: 479–85

    Article  PubMed  CAS  Google Scholar 

  73. Ma D, Yang H, Lynch J, et al. Xenon attenuates cardiopulmonary bypass-induced neurologic and neurocognitive dysfunction in the rat. Anesthesiology 2003; 98: 690–8

    Article  PubMed  CAS  Google Scholar 

  74. Schmidt M, Marx T, Glöggl E, et al. Xenon attenuates cerebral damage after ischemia in pigs. Anesthesiology 2005; 102: 929–36

    Article  PubMed  CAS  Google Scholar 

  75. Clark JA, Ma D, Homi HM, et al. Xenon and the inflammatory response to cardiopulmonary bypass in the rat. J Cardiothorac Vasc Anesth 2005; 19: 488–93

    Article  PubMed  CAS  Google Scholar 

  76. Fries M, Nolte KW, Coburn M, et al. Xenon reduces neurohistopathological damage and improves the early neurological deficit after cardiac arrest in pigs. Crit Care Med 2008; 36: 2420–6

    Article  PubMed  Google Scholar 

  77. Homi HM, Yokoo N, Ma D, et al. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology 2003; 99: 876–81

    Article  PubMed  CAS  Google Scholar 

  78. Dingley J, Tooley J, Porter H, et al. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. Stroke 2006; 37: 501–6

    Article  PubMed  CAS  Google Scholar 

  79. Ma D, Hossain M, Pettet GK, et al. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. J Cereb Blood Flow Metab 2006; 26: 199–208

    Article  PubMed  CAS  Google Scholar 

  80. Coburn M, Maze M, Franks NP. The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury. Crit Care Med 2008; 36: 588–95

    Article  PubMed  CAS  Google Scholar 

  81. David HN, Haelewyn B, Chazalviel L, et al. Post-ischemic helium provides neuroprotection in rats subjected to middle cerebral artery occlusion-induced ischemia by producing hypothermia. J Cereb Blood Flow Metab 2009; 29: 1159–65

    Article  PubMed  Google Scholar 

  82. Ma D, Hossain M, Chow A, et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol 2005; 58: 182–93

    Article  PubMed  CAS  Google Scholar 

  83. Hobbs C, Thoresen M, Tucker A, et al. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 2008; 39: 1307–13

    Article  PubMed  Google Scholar 

  84. Thoresen M, Hobbs CE, Wood T, et al. Cooling combined with immediate or delayed xenon inhalation provides equivalent long-term neuroprotection after neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2009; 29: 707–14

    Article  PubMed  CAS  Google Scholar 

  85. Cattano D, Williamson P, Fukui K, et al. Potential of xenon to induce or to protect against neuroapoptosis in the developing mouse brain. Can J Anaesth 2008; 55: 429–36

    Article  PubMed  Google Scholar 

  86. Kawaguchi M, Furuya H, Patel PM. Neuroprotective effects of anesthetic agents. J Anesth 2005; 19: 150–6

    Article  PubMed  Google Scholar 

  87. Mantz J. Neuroprotective effects of anesthetics. Ann Fr Anesth Reanim 1999; 18: 588–92

    Article  PubMed  CAS  Google Scholar 

  88. Bleyaert A, Sands PA, Nemoto EM, et al. Experimental study of barbiturate application following anoxic encephalopathy. Ann Anesthesiol Fr 1978; 19: 827–31

    PubMed  CAS  Google Scholar 

  89. Brain Resuscitation Clinical Trial I Study Group. Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N Engl J Med 1986; 314: 397–403

    Article  Google Scholar 

  90. Safar P. Cerebral resuscitation after cardiac arrest: a review. Circulation 1986; 74: IV138–53

    PubMed  CAS  Google Scholar 

  91. Kirsch JR, Traystman RJ, Hurn PD. Anesthetics and cerebroprotection: experimental aspects. Int Anesthesiol Clin 1996; 34(4): 73–93

    Article  PubMed  CAS  Google Scholar 

  92. Schmid-Elsaesser R, Schröder M, Zausinger S, et al. EEG burst suppression is not necessary for maximum barbiturate protection in transient focal cerebral ischemia in the rat. J Neurol Sci 1999; 162: 14–9

    Article  PubMed  CAS  Google Scholar 

  93. Adachi N. Brain protection by anesthetics [in Japanese]. Masui 2006; 55: 542–51

    PubMed  Google Scholar 

  94. Narimatsu E, Niiya T, Kawamata M, et al. The mechanisms of depression by benzodiazepines, barbiturates and propofol of excitatory synaptic transmissions mediated by adenosine neuromodulation [in Japanese]. Masui 2006; 55: 684–91

    PubMed  Google Scholar 

  95. Ohtsuka T, Ishiwa D, Kamiya Y, et al. Effects of barbiturates on ATP-sensitive K channels in rat substantia nigra. Neuroscience 2006; 137: 573–81

    Article  PubMed  CAS  Google Scholar 

  96. Pérez-Bárcena J, Llompart-Pou JA, Homar J, et al. Pentobarbital versus thiopental in the treatment of refractory intracranial hypertension in patients with traumatic brain injury: a randomized controlled trial. Crit Care 2008; 12: R112

    Article  PubMed  Google Scholar 

  97. Brown-Croyts LM, Caton PW, Radecki DT, et al. Phenobarbital pre-treatment prevents kainic acid-induced impairments in acquisition learning. Life Sci 2000; 67: 643–50

    Article  PubMed  CAS  Google Scholar 

  98. Varathan S, Shibuta S, Shimizu T, et al. Hypothermia and thiopentone sodium: individual and combined neuroprotective effects on cortical cultures exposed to prolonged hypoxic episodes. J Neurosci Res 2002; 68: 352–62

    Article  PubMed  CAS  Google Scholar 

  99. Asimiadou S, Bittigau P, Felderhoff-Mueser U, et al. Protection with estradiol in developmental models of apoptotic neurodegeneration. Ann Neurol 2005; 58: 266–76

    Article  PubMed  CAS  Google Scholar 

  100. Bittigau P, Sifringer M, Genz K, et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci USA 2002; 99: 15089–94

    Article  PubMed  CAS  Google Scholar 

  101. Guo J, White JA, Batjer HH. The protective effects of thiopental on brain stem ischemia. Neurosurgery 1995; 37:490–5

    Article  PubMed  CAS  Google Scholar 

  102. Zarchin N, Guggenheimer-Furman E, Meilin S, et al. Thiopental induced cerebral protection during ischemia in gerbils. Brain Res 1998; 780: 230–6

    Article  PubMed  CAS  Google Scholar 

  103. Xue QS, Yu BW, Wang ZJ, et al. Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices. Acta Pharmacol Sin 2004; 25: 115–20

    PubMed  CAS  Google Scholar 

  104. Chen L, Gong Q, Xiao C. Effects of propofol, midazolam and thiopental sodium on outcome and amino acids accumulation in focal cerebral ischemia-reperfusion in rats. Chin Med J (Engl) 2003; 116: 292–6

    CAS  Google Scholar 

  105. Jevtovic-Todorovic V, Wozniak DF, Powell S, et al. Propofol and sodium thiopental protect against MK-801-induced neuronal necrosis in the posterior cingulate/retrosplenial cortex. Brain Res 2001; 913: 185–9

    Article  PubMed  CAS  Google Scholar 

  106. Dahmani S, Tesnière A, Rouelle D, et al. Thiopental and isoflurane attenuate the decrease in hippocampal phosphorylated focal adhesion kinase (pp125FAK) content induced by oxygen-glucose deprivation. Br J Anaesth 2004; 93: 270–4

    Article  PubMed  CAS  Google Scholar 

  107. Shibuta S, Varathan S, Mashimo T. Ketamine and thiopental sodium: individual and combined neuroprotective effects on cortical cultures exposed to NMDA or nitric oxide. Br J Anaesth 2006; 97: 517–24

    Article  PubMed  CAS  Google Scholar 

  108. Fredriksson A, Pontén E, Gordh T, et al. Neonatal exposure to a combination of N-methyl-D-aspartate and gammaaminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology 2007; 107: 427–36

    Article  PubMed  CAS  Google Scholar 

  109. Adombri C, Venturi L, Tani A, et al. Neuroprotective effects of propofol in models of cerebral ischemia: inhibition of mitochondrial swelling as a possible mechanism. Anesthesiology 2006; 104: 80–9

    Article  Google Scholar 

  110. Kotani Y, Shimazawa M, Yoshimura S, et al. The experimental and clinical pharmacology of propofol, an anesthetic agent with neuroprotective properties. CNS Neurosci Ther 2008; 14: 95–106

    Article  PubMed  CAS  Google Scholar 

  111. Ito H, Watanabe Y, Isshiki A, et al. Neuroprotective properties of propofol and midazolam, but not pentobarbital, on neuronal damage induced by forebrain ischemia, based on the GABAA receptors. Acta Anaesthesiol Scand 1999; 43: 153–62

    Article  PubMed  CAS  Google Scholar 

  112. Grasshoff C, Gillessen T. Effects of propofol on N-methyl-D-aspartate receptor-mediated calcium increase in cultured rat cerebrocortical neurons. Eur J Anaesthesiol 2005; 22: 467–70

    Article  PubMed  CAS  Google Scholar 

  113. Velly LJ, Guillet BA, Masmejean FM, et al. Neuroprotective effects of propofol in a model of ischemic cortical cell cultures: role of glutamate and its transporters. Anesthesiology 2003; 99: 368–75

    Article  PubMed  CAS  Google Scholar 

  114. Kotani Y, Nakajima Y, Hasegawa T, et al. Propofol exerts greater neuroprotection with disodium edetate than without it. J Cereb Blood Flow Metab 2008; 28: 354–66

    Article  PubMed  CAS  Google Scholar 

  115. Adombri C, Venturi L, Pellegrini-Giampietro DE. Neuroprotective effects of propofol in acute cerebral injury. CNS Drug Rev 2007; 13: 333–51

    Article  Google Scholar 

  116. Cattano D, Young C, Straiko MM, et al. Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth Analg 2008; 106: 1712–4

    Article  PubMed  CAS  Google Scholar 

  117. Pesić V, Milanović D, Tanić N, et al. Potential mechanism of cell death in the developing rat brain induced by propofol anesthesia. Int J Dev Neurosci 2009; 27: 279–87

    Article  PubMed  CAS  Google Scholar 

  118. Pfenninger E, Himmelseher S. Neuroprotection by ketamine at the cellular level. Anaesthesist 1997; 46 Suppl. 1: S47–54

    Article  PubMed  CAS  Google Scholar 

  119. Rovnaghi CR, Garg S, Hall RW, et al. Ketamine analgesia for inflammatory pain in neonatal rats: a factorial randomized trial examining long-term effects. Behav Brain Funct 2008; 4: 35

    Article  PubMed  CAS  Google Scholar 

  120. Sakai T, Ichiyama T, Whitten CW, et al. Ketamine suppresses endotoxin-induced NF-kappaB expression. Can J Anaesth 2000; 47: 1019–24

    Article  PubMed  CAS  Google Scholar 

  121. Wang L, Jing W, Hang YN. Glutamate-induced c-Jun expression in neuronal PC12 cells: the effects of ketamine and propofol. Neurosurg Anesthesiol 2008; 20: 124–30

    Article  Google Scholar 

  122. Lips J, de Haan P, Bodewits P, et al. Neuroprotective effects of riluzole and ketamine during transient spinal cord ischemia in the rabbit. Anesthesiology 2000; 93: 1303–11

    Article  PubMed  CAS  Google Scholar 

  123. Zou X, Patterson TA, Divine RL, et al. Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain. Int J Dev Neurosci 2009; 27: 727–31

    Article  PubMed  CAS  Google Scholar 

  124. Zou X, Patterson TA, Sadovova N, et al. Potential neurotoxicity of ketamine in the developing rat brain. Toxicol Sci 2009; 108: 149–58

    Article  PubMed  CAS  Google Scholar 

  125. Soriano SG, Liu Q, Li J, et al. Ketamine activates cell cycle signaling and apoptosis in the neonatal rat brain. Anesthesiology 2010; 112: 1155–63

    Article  PubMed  CAS  Google Scholar 

  126. Hans P, Bonhomme V. Why we still use intravenous drugs as the basic regimen for neurosurgical anaesthesia. Curr Opin Anaesthesiol 2006; 19: 498–503

    Article  PubMed  Google Scholar 

  127. Kanbak M, Saricaoglu F, Avci A, et al. Propofol offers no advantage over isoflurane anesthesia for cerebral protection during cardiopulmonary bypass: a preliminary study of S-100beta protein levels. Can J Anaesth 2004; 51: 712–7

    Article  PubMed  Google Scholar 

  128. Statler KD, Alexander H, Vagni V, et al. Comparison of seven anesthetic agents on outcome after experimental traumatic brain injury in adult, male rats. J Neurotrauma 2006; 23: 97–108

    Article  PubMed  Google Scholar 

  129. Engelhard K, Werner C. Inhalational or intravenous anesthetics for craniotomies? Pro inhalational. Curr Opin Anaesthesiol 2006; 19: 504–8

    Article  PubMed  Google Scholar 

  130. Koerner IP, Brambrink AM. Brain protection by anesthetic agents. Curr Opin Anaesthesiol 2006; 19: 481–6

    Article  PubMed  Google Scholar 

  131. Head BP, Patel P. Anesthetics and brain protection. Curr Opin Anaesthesiol 2007; 20: 395–9

    Article  PubMed  Google Scholar 

  132. Turner BK, Wakim JH, Secrest J, et al. Neuroprotective effects of thiopental, propofol, and etomidate. AANA J 2005; 73: 297–302

    PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the Italian Ministry for University and Research, Program for the Development of Research of National Interest (PRIN Grant N.2007H84XNH - Scientific coordinator: V. Fodale). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Fodale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schifilliti, D., Grasso, G., Conti, A. et al. Anaesthetic-Related Neuroprotection. CNS Drugs 24, 893–907 (2010). https://doi.org/10.2165/11584760-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11584760-000000000-00000

Keywords

Navigation