Skip to main content
Log in

Novel Antiretroviral Combinations in Treatment-Experienced Patients with HIV Infection

Rationale and Results

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Novel antiretroviral drugs offer different degrees of improvement in activity against drug-resistant HIV, short- and long-term tolerability, and dosing convenience compared with earlier drugs. Those drugs approved more recently and commonly used in treatment-experienced patients include the entry inhibitor enfuvirtide, protease inhibitors (PIs) [darunavir and tipranavir], a C-C chemokine receptor (CCR) type 5 antagonist (maraviroc), an integrase inhibitor (raltegravir) and etravirine, a non-nucleoside reverse transcriptase inhibitor (NNRTI). Novel agents in earlier stages of development include a CCR5 monoclonal antibody (PRO 140) administered subcutaneously once weekly, once-daily integrase inhibitors (elvitegravir and S/GSK1349572), and several nucleoside (nucleotide) reverse transcriptase inhibitors and NNRTIs. Bevirimat, a maturation inhibitor, has compromised activity in the presence of relatively common Gag polymorphisms.

Viral suppression is necessary to control the evolution of drug resistance, reduce chronic immune activation that probably underlies the excess morbidity and mortality in HIV-infected patients, and reduce viral transmission, including transmitted drug resistance. In general, the proportion of viraemic patients who achieve suppression increases with the number of active pharmacokinetically compatible antiretroviral drugs in the regimen. In the ANRS139-TRIO trial, 86% of highly treatment-experienced patients treated with darunavir-ritonavir, etravirine and raltegravir had HIV RNA <50 copies/mL at 48 weeks.

In patients who had received at least 12 weeks of a stable regimen and had no darunavir resistance-associated mutations, once-daily darunavir boosted with ritonavir 100 mg was virologically noninferior with better lipid effects than with the twice-daily dosing, which requires a 200 mg total daily dose of ritonavir. Raltegravir plus a boosted PI is being investigated for second-line therapy in patients not responding to NNRTI-based first-line treatment in resource-limited settings (RLS). However, concerns about this potential strategy include the low barrier against resistance of raltegravir, limited penetration of some PIs into the CNS and the unknown impact of integrase polymorphisms seen more commonly in non-B subtype HIV-1.

In patients who have already achieved viral suppression, novel agents may be used to simplify the dosing schedule, lower costs (such as by switching to boosted PI monotherapy), reduce adverse events or preserve antiretroviral drug options, especially since the absence of an HIV eradication strategy implies the need for life-long combination antiretroviral therapy. Switching enfuvirtide to raltegravir eliminated painful injection-site reactions without compromising virological suppression. Two studies found different virological outcomes when patients were switched from lopinavir/ritonavir to raltegravir, but there was an improvement in the lipid profile. Simplifying to darunavir-ritonavir monotherapy after suppression of plasma HIV RNA to <50 copies/mL has been found to be safe with no emergence of resistance in cases of viral rebound, but longer-term data are needed. The initial suggestion that maraviroc may possess unique CD4+ T-cell boosting effects was not confirmed in several clinical trials.

Improved understanding of HIV pathogenesis has opened new frontiers for research such as identifying the sources, consequences and optimal management of residual viraemia in those with plasma HIV RNA <50 copies/mL. Globally, however, one of the most urgent priorities is providing the increasing number of treatment-experienced virologically failing patients in RLS with access to optimal treatment, including those treatments based on novel antiretroviral agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Collier AC, Coombs RW, Schoenfeld DA, et al. Combination therapy with zidovudine, didanosine and saquinavir. Antiviral Res 1996; 29(1): 99

    Article  PubMed  CAS  Google Scholar 

  2. Jacobsen H, Haenggi M, Ott M, et al. Reduced sensitivity to saquinavir: an update on genotyping from phase I/II trials. Antiviral Res 1996; 29(1): 95–7

    Article  PubMed  CAS  Google Scholar 

  3. Rutherford GW, Sangani PR, Kennedy GE. Three- or four-versus two-drug antiretroviral regimens for HIV infection. Cochrane Database Syst Rev 2003; (4): CD002037

  4. Casau NC, Glesby MJ, Paul S, et al. Brief report: efficacy and treatment-limiting toxicity with the concurrent use of lopinavir/ritonavir and a third protease inhibitor in treatment-experienced HIV-infected patients. J Acquir Immune Defic Syndr 2003; 32(5): 494–8

    Article  PubMed  CAS  Google Scholar 

  5. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. Department of Health and Human Services, 2009 Dec 1 [online]. Available from URL: http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf [Accessed 2010 Feb 28]

  6. Jacobson J, Saag MS, Thompson MA, et al. Antiviral activity of single-dose PRO 140, a CCR5 monoclonal antibody, in HIV-infected adults. J Infect Dis 2008; 198: 1345–52

    Article  PubMed  Google Scholar 

  7. Lalezari J, Sloan L, Dejesus E, et al. Potent antiviral activity of S/GSK1349572, a next generation integrase inhibitor (INI), in INI-naive HIV-1-infected patients [abstract no. TUAB105]. 5th International AIDS Society Conference on HIV Pathogenesis, and Prevention; 2009 Jul 19–22; Cape Town

  8. Sato A, Kobayashi M, Yoshinaga T, et al. S/GSK1349572 is a potent next generation HIV integrase inhibitor [abstract no. WEPEA097]. 5th International AIDS Society Conference on HIV Pathogenesis, and Prevention; 2009 Jul 19–22; Cape Town

  9. Underwood M, Johns B, Sato A, et al. S/GSK1349572: a next generation integrase inhibitor with activity against integrase inhibitor resistant clinical isolates from patients experiencing virologic failure while on raltegravir therapy [abstract no. WEPEA098]. 5th International AIDS Society Conference on HIV Pathogenesis, and Prevention; 2009 Jul 19–22; Cape Town

  10. Li F, Goila-Gaur R, Salzwedel K, et al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci U S A 2003; 100(23): 13555–6

    Article  PubMed  CAS  Google Scholar 

  11. Li F, Zoumplis D, Matallana C, et al. Determinants of activity of the HIV-1 maturation inhibitor PA-457. Virology 2006; 356(1–2): 217–24

    Article  PubMed  CAS  Google Scholar 

  12. McCallister S, Lalezari J, Richmond G, et al. HIV-1 Gag polymorphisms determine treatment response to bevirimat (PA-457) [abstract no. 8]. 17th International HIV Drug Resistance Workshop; 2008 Jun 10–14; Sitges, Spain

  13. Verheyen J, Verhofstede C, Knops E, et al. High prevalence of bevirimat resistance mutations in protease inhibitor-resistant HIV isolates. AIDS 2010; 24(5): 669–73

    Article  PubMed  CAS  Google Scholar 

  14. Seclen E, Gonzalez Mdel M, Corral A, et al. High prevalence of natural polymorphisms in Gag (CASP1) associated with reduced response to bevirimat, an HIV-1 maturation inhibitor. AIDS 2010; 24(3): 467–9

    Article  PubMed  CAS  Google Scholar 

  15. Raney A, Hamatake R, Xu W, et al. RDEA427 and RDEA 640 are novel NNRTI with potent activity against NNRTI resistant viruses [abstract no. 730]. 15th Conference on Retroviruses and Opportunistic Infections; 2008 Feb 3–6; Boston (MA)

  16. Zala C, Murphy R, Zhou XJ, et al. IDX899, a novel HIV-1 NNRTI with high barrier to resistance provides suppression of HIV RNA in treatment-naïve HIV-1-infected subjects. [abstract no. THAB0402]. 15th International AIDS Conference; 2008 Aug 3-8; Mexico City

  17. Fätkenheuer G, Staszewski S, Plettenburg A, et al. Activity, pharmacokinetics and safety of lersivirine (UK-453,061), a next-generation nonnucleoside reverse transcriptase inhibitor, during 7-day monotherapy in HIV-1-infected patients. AIDS 2009; 23: 2115–22

    Article  PubMed  Google Scholar 

  18. Pozniak A. Investigational agents for salvage. Curr Opin HIV AIDS 2009; 4(6): 524–30

    Article  PubMed  Google Scholar 

  19. Deeks SG, Gange SJ, Kitahata MM, et al. Trends in multidrug treatment failure and subsequent mortality among antiretroviral therapy-experienced patients with HIV infection in North America. Clin Infect Dis 2009; 48: 1582–90

    Article  Google Scholar 

  20. Kitahata MM, Gange SJ, Abraham AG, et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med 2009; 360: 1815–26

    Article  PubMed  CAS  Google Scholar 

  21. Hull M, Loutfy M, Zhang W, et al. Persistent low-level viremia is associated with increased risk of virologic failure and mortality [abstract no. 504]. 17th Conference on Retroviruses and Opportunistic Infections; 2010 Feb 16–19; San Francisco (CA)

  22. Napravnik S, Edwards D, Stewart P, et al. HIV-1 drug resistance evolution among patients on potent combination therapy with detectable viremia. J Acquir Immune Defic Syndr 2005; 40(1): 34–40

    Article  PubMed  CAS  Google Scholar 

  23. Richman DD, Morton SC, Wrin T, et al. The prevalence of antiretroviral drug resistance in the United States. AIDS 2004; 18(10): 1393–401

    Article  PubMed  Google Scholar 

  24. Donnell D, Kiarie J, Thomas K, et al. ART and risk of heterosexual HIV-1 transmission in HIV-1 serodiscordant African couples: a multinational prospective study [abstract no. 136]. 17th Conference on Retroviruses and Opportunistic Infections; 2010 Feb 16–19; San Francisco (CA)

  25. de Mendoza C, Rodriguez C, Eiros JM, et al. Antiretroviral recommendations may influence the rate of transmission of drug-resistant HIV type 1. Clin Infect Dis 2005; 41(2): 227–32

    Article  PubMed  Google Scholar 

  26. Lalezari J, Henry K, O’Hearn M, et al. Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 2003; 348: 2175–85

    Article  PubMed  CAS  Google Scholar 

  27. Lazzarin A, Clotet B, Cooper D, et al., TORO 2 Study Group. Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N Engl J Med 2003; 348: 2186–95

    Article  PubMed  CAS  Google Scholar 

  28. Nelson M, Arasteh K, Clotet B, et al. Durable efficacy of enfuvirtide over 48 weeks in heavily treatment-experienced HIV-1 infected patients in the T-20 versus optimized background regimen only 1 and 2 clinical trials. J Acquir Immune Defic Syndr 2005; 40(4): 404–12

    Article  PubMed  CAS  Google Scholar 

  29. Reynes J, Arasteh K, Clotet B, et al. TORO: ninety-six week virologic and immunologic response and safety evaluation of enfuvirtide with an optimized background of antiretrovirals. AIDS Patient Care STDS 2007; 21: 533–43

    Article  PubMed  Google Scholar 

  30. Trottier B, Walmsley S, Reynes J, et al. Safety of enfuvirtide in combination with an optimized background of antiretrovirals in treatment-experienced HIV-1-infected adults over 48 weeks. J Acquir Immune Defic Syndr 2005; 40(4): 413–21

    Article  PubMed  CAS  Google Scholar 

  31. Hicks CB, Cahn P, Cooper DA, et al. Durable efficacy of tipranavir-ritonavir in combination with an optimized background regimen of antiretroviral drugs for treatment-experienced HIV-1 infected patients at 48 weeks in the Randomized Evaluation of Strategic Intervention in multi-drug resistant patients with Tipranavir (RESIST) studies: an analysis of combined data from two randomized open-label trials. Lancet 2006; 368: 466–75

    Article  PubMed  CAS  Google Scholar 

  32. Walmsley SL, Squires K, Weiss L, et al. Multidrug-experienced HIV-1-infected women demonstrated similar virological and immunological responses to tipranavir/ritonavir compared to men. AIDS 2009; 23(3): 429–31

    Article  PubMed  CAS  Google Scholar 

  33. Shen L, Peterson S, Sedaghat AR, et al. Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat Med 2008; 14: 762–6

    Article  PubMed  CAS  Google Scholar 

  34. Dierynck I, De Wit M, Gustin E, et al. Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the antiviral activity and high genetic barrier. J Virol 2007; 81(24): 13845–51

    Article  PubMed  CAS  Google Scholar 

  35. Haubrich R, Berger D, Chiliade P, et al. Week 24 efficacy and safety of TMC 114/ritonavir in treatment-experienced HIV patients. AIDS 2007; 21(6): F11–8

    Article  PubMed  Google Scholar 

  36. Katlama C, Esposito R, Gatell JM, et al. Efficacy and safety of TMC 114/ritonavir in treatment-experienced HIV patients: 24-week results of POWER 1. AIDS 2007; 21(4): 395–402

    Article  PubMed  CAS  Google Scholar 

  37. Clotet B, Bellos N, Molina JM, et al. Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomized trials. Lancet 2007; 369(9568): 1169–78

    Article  PubMed  CAS  Google Scholar 

  38. Arasteh K, Yeni P, Pozniak A, et al. Efficacy and safety of darunavir/ritonavir in treatment-experienced HIV type-1 patients in the POWER 1, 2 and 3 trials at week 96. Antivir Ther 2009; 14(6): 859–64

    Article  PubMed  CAS  Google Scholar 

  39. Madruga JV, Berger D, McMurchie M, et al. Efficacy and safety of darunavir-ritonavir compared with that of lopinavir-ritonavir at 48 weeks in treatment-experienced HIV-infected patients in TITAN: a randomized controlled phase III trial. Lancet 2007; 370(9581): 49–58

    Article  PubMed  CAS  Google Scholar 

  40. De Meyer S, Hill A, Picchio G, et al. Influence of baseline protease inhibitor resistance on the efficacy of darunavir/ritonavir or lopinavir/ritonavir in the TITAN trial. J Acquir Immune Defic Syndr 2008; 49(5): 563–4

    Article  PubMed  Google Scholar 

  41. Cahn P, Fourie J, Grinsztejn B, et al. Efficacy and safety of 48 weeks of once-daily vs twice-daily DRV/r in treatment-experienced HIV-1+ patients with no DRV resistance-associated mutations: the ODIN trial [abstract no. 57 plus oral presentation]. 17th Conference on Retroviruses and Opportunistic Infections; 2010 Feb 16–19; San Francisco (CA)

  42. De Meyer SM, Spinos-Guzman S, Vangeneugden TJ, et al. Efficacy of once-daily darunavir/ritonavir 800/100 mg in HIV-infected treatment-experienced patients with no baseline resistance-associated mutations to darunavir. J Acquir Immune Defic Syndr 2008; 49(2): 179–82

    Article  PubMed  Google Scholar 

  43. Pozniak A, Opravil M, Beatty G, et al. Effect of baseline viral susceptibility on response to darunavir/ritonavir versus control protease inhibitors in treatment-experienced HIV-1 type 1-infected patients: POWER 1 and 2. AIDS Res Human Retroviruses 2008; 24(10): 1275–80

    Article  CAS  Google Scholar 

  44. Mitsuya Y, Liu TF, Rhee SY, et al. Prevalence of darunavir resistance-associated mutations: patterns of occurrence and association with past treatment. J Infect Dis 2007; 196(8): 1177–9

    Article  PubMed  CAS  Google Scholar 

  45. Chaix ML, Sahali S, Pallier C, et al. Switching to darunavir/ritonavir achieves viral suppression in patients with persistently low replication on first-line lopinavir/ritonavir. AIDS 2008; 22(17): 2405–7

    Article  PubMed  Google Scholar 

  46. Whitcomb JM, Huang W, Fransen S, et al. Development and characterization of a novel single-cycle recombinant-virus assay to determine human immunodeficiency virus type 1 coreceptor tropism. Antimicrob Agents Chemother 2007; 51: 566–75

    Article  PubMed  CAS  Google Scholar 

  47. Trinh L, Han D, Huang T, et al. Technical validation of an enhanced sensitivity Trofile HIV-1 co-receptor tropism assay [abstract no. H-1219]. 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 2008 Oct 25–28; Washington, DC

  48. McGovern R, Dong W, Zhong X, et al. Population-based sequencing of the V3-loop is comparable to the enhanced sensitivity Trofile assay in predicting virologic response to maraviroc of treatment-naïve patients in the MERIT trial [abstract no. 92]. 17th Conference on Retroviruses and Opportunistic Infections; 2010 Feb 16–19; San Francisco (CA)

  49. Harrigan PR, McGovern R, Dong W, et al. Screening for HIV tropism using population-based V3 genotypic analysis: a retrospective virological outcome analysis using stored plasma screening samples from MOTIVATE-1 [abstract no. WeLBA101]. 5th International AIDS Society Conference on HIV Pathogenesis, Treatment, and Prevention; 2009 Jul 19–22; Cape Town

  50. Fätkenheuer G, Nelson M, Lazarrin A, et al. Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection. N Engl J Med 2008; 359: 1442–55

    Article  PubMed  Google Scholar 

  51. Gulick RM, Lalezari J, Goodrich J, et al. Maraviroc for previously treated patients with R5 HIV-1 infection. N Engl J Med 2008; 359: 1429–41

    Article  PubMed  CAS  Google Scholar 

  52. Westby M, Smith-Burchnell C, Mori J, et al. Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol 2007; 81(5): 2359–71

    Article  PubMed  CAS  Google Scholar 

  53. Vingerhoets J, Azijn H, Fransen E, et al. TMC125 displays a high genetic barrier to the development of resistance: evidence from in vitro selection experiments. J Virol 2005; 79(20): 12773–82

    Article  PubMed  CAS  Google Scholar 

  54. Das K, Clark AD, Lewi Jr PJ, et al. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J Med Chem 2004; 47: 2550–60

    Article  PubMed  CAS  Google Scholar 

  55. Lazzarin A, Campbell T, Clotet B, et al. Efficacy and safety of TMC 125 (etravirine) in treatment-experienced HIV-infected patients in DUET-2: 24 week results from a randomized, double-blind, placebo-controlled trial. Lancet 2007; 370(9581): 39–48

    Article  PubMed  CAS  Google Scholar 

  56. Madruga JV, Cahn P, Grinsztejn B, et al. Efficacy and safety of TMC 125 (etravirine) in treatment-experienced HIV-infected patients in DUET-1: 24 week results from a randomized, double-blind, placebo-controlled trial. Lancet 2007; 370(9581): 29–38

    Article  PubMed  CAS  Google Scholar 

  57. Katlama C, Haubrich R, Lalezari J, et al. Efficacy and safety of etravirine in treatment-experienced, HIV-1 patients: pooled 48 week analysis of two randomized, controlled trials. AIDS 2009; 23(17): 2289–300

    Article  PubMed  CAS  Google Scholar 

  58. Mills A, Cahn P, Molina JM, et al. Etravirine demonstrates durable efficacy in treatment-experienced patients in the DUET trials: pooled 96-week results [abstract no. MOPEB036]. 5th IAS Conference on HIV Pathogenesis, Treatment and Prevention; 2009 Jul 19–22; Cape Town

  59. Ruxrungtham K, Pedro RJ, Latiff GH, et al. Impact of reverse transcriptase resistance on the efficacy of TMC125 (etravirine) with two nucleoside reverse transcriptase inhibitors in protease inhibitor-naïve, nonnucleoside reverse transcriptase inhibitor-experienced patients: study TMC 125-C 227. HIV Med 2008; 9(10): 883–96

    PubMed  CAS  Google Scholar 

  60. Vingerhoets J, Tambuyzer L, Azijn H, et al. Resistance profile of etravirine: combined analysis of baseline genotypic and phenotypic data from the randomized, controlled phase III clinical studies. AIDS 2010; 24(4): 503–14

    Article  PubMed  CAS  Google Scholar 

  61. Benhamida J, Chappey C, Coakley E, et al. HIV-1 genotype algorithms for prediction of etravirine susceptibility: novel mutations and weighting factors identified through correlations to phenotype [abstract no. 130]. 17th International HIV Drug Resistance Workshop; 2008 Jun 10–14; Sitges, Spain

  62. Varghese V, Shahriar R, Rhee S, et al. Minority variants associated with transmitted and acquired HIV-1 nonnucleoside reverse transcriptase inhibitor resistance: implications for the use of second-generation nonnucleoside reverse transcriptase inhibitors. J Acquir Immune Defic Syndr 2009; 52: 309–15

    Article  PubMed  CAS  Google Scholar 

  63. Lennox JL, DeJesus E, Lazzarin A, et al. Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naïve patients with HIV-1 infection: a multicentre, double-blind randomized controlled trial. Lancet 2009; 374(9692): 796–806

    Article  PubMed  CAS  Google Scholar 

  64. Steigbigel RT, Cooper DA, Teppler H, et al. Long-term efficacy and safety of raltegravir combined with optimized background therapy in treatment-experienced patients with drug-resistant HIV infection: week 96 results of the BENCHMRK 1 and 2 phase III trials. Clin Infect Dis 2010; 50: 605–12

    Article  PubMed  CAS  Google Scholar 

  65. Steigbigel RT, Cooper DA, Kumar PN, et al. Raltegravir with optimized background therapy for resistant HIV-1 infection. N Engl J Med 2008; 359: 339–54

    Article  PubMed  Google Scholar 

  66. Cooper DA, Steigbigel RT, Gatell JM, et al. Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med 2008; 359: 355–65

    Article  PubMed  CAS  Google Scholar 

  67. Wittkop L, Breilh D, Da Silva D, et al. Virological and immunological response in HIV-1 infected patients with multiple treatment failures receiving raltegravir and optimized background therapy, ANRS C03 Aquitaine Cohort. J Antimicrob Chemother 2009; 63(6): 1251–55

    Article  PubMed  CAS  Google Scholar 

  68. Wirden M, Simon A, Schneider L, et al. Raltegravir has no residual antiviral activity in vivo against HIV-1 with resistance-associated mutations to this drug. J Antimicrob Chemother 2009; 64(5): 1087–90

    Article  PubMed  CAS  Google Scholar 

  69. Hazuda DJ, Miller MD, Nguyen BY, et al. Resistance to the HIV-integrase inhibitor raltegravir: analysis of protocol 005, a phase II study in patients with triple-class resistant HIV-1 infection [abstract]. Antivir Ther 2007; 12 Suppl. 1: S10

    Google Scholar 

  70. Garrido C, Geretti AM, Zahonero N, et al. Integrase variability and susceptibility to HIV integrase inhibitors: impact of subtypes, antiretroviral experience and duration of HIV infection. J Antimicrob Chemother 2010; 65(2): 320–6

    Article  PubMed  CAS  Google Scholar 

  71. Charpentier C, Laureillard D, Piketty C, et al. High frequency of integrase Q148R minority variants in HIV-infected patients naïve of integrase inhibitors. AIDS 2010; 24(6): 867–73

    Article  PubMed  CAS  Google Scholar 

  72. Low A, Prada N, Topper M, et al. Natural polymorphisms of human immunodeficiency virus type 1 integrase and inherent susceptibility to a panel of integrase inhibitors. Antimicrob Agents Chemother 2009; 53(10): 4275–82

    Article  PubMed  CAS  Google Scholar 

  73. Arruda LB, Fonseca LA, Duarte AJ, et al. Genetic diversity on the integrase region of the pol gene among HIV-type 1-infected patients naïve for integrase inhibitors in Sao Paolo city, Brazil. AIDS Res Hum Retroviruses 2010; 26(1): 105–7

    Article  PubMed  CAS  Google Scholar 

  74. Passaes CB, Guimaraes ML, Fernandez SL, et al. Lack of primary mutations associated with integrase inhibitors among HIV-1 subtypes B, C and F circulating in Brazil. J Acquir Immune Defic Synd 2009; 51(1): 7–12

    Article  CAS  Google Scholar 

  75. Yazdanpanah Y, Fagard C, Descamps D, et al. High rate of virologic suppression with raltegravir plus etravirine and darunavir/ritonavir among treatment-experienced patients infected with multidrug-resistant HIV: results of the ANRS 139 TRIO trial. Clin Infect Dis 2009; 49: 1444–9

    Article  Google Scholar 

  76. Imaz A, del Saz SV, Ribas MA, et al. Raltegravir, etravirine and ritonavir-boosted darunavir: a safe and successful rescue for multidrug-resistant HIV-infection. J Acquir Immune Defic Syndr 2009; 52(3): 382–6

    Article  PubMed  CAS  Google Scholar 

  77. Thuret I, Chaix M, Tamalet C, et al. Raltegravir, etravirine and r-darunavir combination in adolescents with multidrug-resistant virus. AIDS 2009; 23(17): 2364–6

    Article  PubMed  CAS  Google Scholar 

  78. Nozza S, Galli L, Visco F, et al. Raltegravir, maraviroc, etravirine: an effective protease inhibitor and nucleoside reverse transcriptase inhibitor-sparing regimen for salvage therapy in HIV-infected patients with triple-class experience. AIDS 2010; 24(6): 924–8

    Article  PubMed  CAS  Google Scholar 

  79. Zolopa AR, Berger DS, Lampiris H, et al. Activity of elvitegravir, a once-daily integrase inhibitor, against resistant HIV type 1: results of a phase 2, randomized, controlled, dose-ranging clinical trial. J Infect Dis 2010; 201(6): 814–22

    Article  PubMed  CAS  Google Scholar 

  80. Marinello J, Marchand C, Mott BT, et al. Comparison of raltegravir and elvitegravir on HIV-1 integrase catalytic reactions and on a series of drug-resistant integrase mutants. Biochemistry 2008; 47(36): 9345–54

    Article  PubMed  CAS  Google Scholar 

  81. Goethals O, Clayton R, Van Ginderen M, et al. Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J Virol 2008; 82(21): 10366–74

    Article  PubMed  CAS  Google Scholar 

  82. Su Z, Gulick RM, Krambrink A, et al. Response to vicriviroc in treatment-experienced subjects as determined by an enhanced sensitivity tropism assay: reanalysis of AIDS clinical trials group A 5211. J Infect Dis 2009; 200(11): 1724–8

    Article  PubMed  CAS  Google Scholar 

  83. Gulick RM, Su Z, Flexner C, et al. Phase 2 study of the safety and efficacy of vicriviroc, a CCR5 inhibitor, in HIV-1-infected, treatment-experienced patients: AIDS Clinical Trials Group 5211. J Infect Dis 2007; 196: 304–12

    Article  PubMed  CAS  Google Scholar 

  84. Suleiman J, Zingman BS, Diaz RS, et al. Vicriviroc in combination therapy with an optimized regimen for treatment-experienced subjects: 48-week results of the VICTOR-E1 phase 2 trial. J Infect Dis 2010; 201: 590–9

    Article  PubMed  CAS  Google Scholar 

  85. Gathe J, Diaz R, Fatkenheuer G, et al. Phase 3 trials of vicriviroc in treatment-experienced subjects demonstrate safety but not significantly superior efficacy over potent background regimens alone [abstract no. 54 plus oral presentation]. 17th Conference on Retroviruses and Opportunistic Infections; 2010 Feb 16–19; San Francisco (CA)

  86. Tsibris AM, Sagar M, Gulick RM, et al. In vivo emergence of vicriviroc resistance in a human immunodeficiency virus type 1 subtype C-infected subject. J Virol 2008; 82(16): 8210–4

    Article  PubMed  CAS  Google Scholar 

  87. Eron JJ, Young B, Cooper DA, et al. Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicenter, double-blind, randomized controlled trials. Lancet 2010; 375(9712): 396–407

    Article  PubMed  CAS  Google Scholar 

  88. Martinez E, Larrousse M, Llibre JM, et al. Substitution of raltegravir for ritonavir-boosted protease inhibitors in HIV-infected patients: the SPIRAL study. AIDS 2010 Jul 17; 24(11): 1697–707

    Article  PubMed  CAS  Google Scholar 

  89. De Castro N, Braun J, Charreau I, et al., EASIER ANRS 138 study group. Switch from enfuvirtide to raltegravir in virologically suppressed multidrug-resistant HIV-1 infected patients: a randomized open-label trial. Clin Infect Dis 2009; 49: 1259–67

    Article  PubMed  Google Scholar 

  90. Santos JR, Llibre JM, Ferrer E, et al. Efficacy and safety of switching from enfuvirtide to raltegravir in patients with virological suppression. HIV Clin Trials 2009; 10(6): 432–8

    Article  PubMed  Google Scholar 

  91. Iwamoto M, Wenning LA, Mistry GC, et al. Atazanavir modestly increases plasma levels of raltegravir in healthy subjects. Clin Infect Dis 2008; 47: 137–40

    Article  PubMed  CAS  Google Scholar 

  92. Gupta S, Lataillade M, Farber S, et al. Raltegravir with unboosted atazanavir 300 mg twice daily in antiretroviral treatment-experienced participants. J Int Assoc Physicians AIDS Care 2009; 8(2): 87–92

    Article  Google Scholar 

  93. Zhu L, Mahnke L, Butterton J, et al. Pharmacokinetics and safety of twice-daily atazanavir (300 mg) and raltegravir (400 mg) in healthy subjects [abstract no. 696]. 16th Conference on Retroviruses and Opportunistic Infections; 2009 Feb 8–11; Montreal (QC)

  94. Ruane PJ, Alas B, Wolf PR. Dual maintenance therapy with raltegravir BID with atazanavir qD (RAL/ATV) in patients with no prior PI resistance and intolerance to other ARV regimens: preliminary report [abstract no. H-914]. 49th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2009 Sep 12–15; San Francisco (CA)

  95. Arribas JR, Delgado R, Arranz A, et al. Lopinavir-ritonavir monotherapy versus lopinavir-ritonavir and 2 nucleosides for maintenance therapy of HIV: 96-week analysis. J Acquir Immune Defic Syndr 2009; 51(2): 147–52

    Article  PubMed  CAS  Google Scholar 

  96. Arribas JR, Pulido F, Delgado R, et al. Lopinavir/ritonavir as single-drug therapy for maintenance of HIV-1 viral suppression: 48-week results of a randomized, controlled, open-label, proof-of-concept pilot clinical trial (OK Study). J Acquir Immune Defic Syndr 2005; 40: 280–7

    Article  PubMed  CAS  Google Scholar 

  97. Swindells S, DiRienzo AG, Wilkin T, et al. Regimen simplification to atazanavir-ritonavir alone as maintenance antiretroviral therapy after sustained virologic suppression. JAMA 2006; 296: 806–14

    Article  PubMed  CAS  Google Scholar 

  98. Arribas J, Horban A, Gerstoft J, et al. The MONET trial: darunavir/ritonavir with or without nucleoside analogues, for patients with HIV RNA below 50 copies/mL. AIDS 2010; 24(2): 223–30

    Article  PubMed  CAS  Google Scholar 

  99. Katlama C, Valentin M, Algarte-Genin M, et al. Efficacy of darunavir/ritonavir as single-drug maintenance therapy in patients with HIV-1 viral suppression: a randomized open-label non-inferiority trial, MONOI-ANRS 136 C [abstract no. WeLBB102]. 5th International AIDS Society Conference on HIV Pathogenesis, Treatment and Prevention; 2009 Jul 19–22; Cape Town

  100. Loutfy M, Ribera E, Florence E, et al. Sustained HIV RNA suppression after switching from enfuvirtide to etravirine in the early access programme. J Antimicrob Chemother 2009; 64(6): 1341–4

    Article  PubMed  CAS  Google Scholar 

  101. Cooper DA, Heera J, Goodrich J, et al. Maraviroc versus efavirenz both in combination with zidovudine-lamivudine, for the treatment of antiretroviral-naïve subjects with CCR5-tropic HIV-1 infection. J Infect Dis 2010; 20(6): 803–13

    Article  Google Scholar 

  102. Asmuth DM, Goodrich J, Cooper DA, et al. CD4+ T-cell restoration after 48 weeks in the maraviroc treatment-experienced trials MOTIVATE 1 and 2. J Acquir Immune Defic Syndr 2010 Aug 1; 54(4): 394–7

    PubMed  Google Scholar 

  103. Stepanyuk O, Chiang T, Dever L, et al. Impact of adding maraviroc to antiretroviral regimens in patients with full viral suppression but impaired CD4 recovery. AIDS 2009; 23: 1911–3

    Article  PubMed  Google Scholar 

  104. Wilkin T, Lalama C, Tenorio A, et al. Maraviroc intensification for suboptimal CD4+ cell response despite sustained virologic suppression: ACTG 5256 [abstract no. 285]. 17th Conference on Retroviruses and Opportunistic Infections; 2010 Feb 16–19; San Francisco (CA)

  105. Sauzullo I, Lichtner M, Mengoni F, et al. Effect in vitro of CCR5 antagonists on innate immune system: maraviroc inhibits the migration of neutrophils, macrophages, and DC [abstract no. 512]. 17th Conference on Retroviruses and Opportunistic Infections; 2010 Feb 16–19; San Francisco (CA)

  106. Bonora S, Calcagno A, Cometto C, et al. A long-term immunological advantage associated with a short-term additional therapy with enfuvirtide in the treatment of HIV very late presenters [abstract no. H-924]. 49th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2009 Sep 11–15; San Francisco (CA)

  107. Joly V, Fagard C, Descamps D, et al. Intensification of HAART through the addition of enfuvirtide in naïve HIV-infected patients with severe immunosuppression does not improve immunological response: results of a prospective randomized trial (APOLLO-ANRS 130) [abstract no. 282]. 17th Conference on Retroviruses and Opportunistic Infections; 2010 Feb 16–19; San Francisco (CA)

  108. Hosseinipour MC, van Oosterhout JJ, Weigel R, et al. The public health approach to identify antiretroviral therapy failure: high-level nucleoside reverse transcriptase inhibitor resistance among Malawians failing first-line antiretroviral therapy. AIDS 2009; 23(9): 1127–34

    Article  PubMed  CAS  Google Scholar 

  109. Kumarasamy N, Madhavan V, Venkatesh K, et al. High frequency of clinically significant mutations after first-line generic highly active antiretroviral therapy failure: implications for second-line options in resource-limited settings. Clin Infect Dis 2009; 49: 306–9

    Article  PubMed  CAS  Google Scholar 

  110. Sungkanuparph S, Manosuthi W, Kiertiburanakul S, et al. Options for a second line antiretroviral regimen for HIV type 1-infected subjects whose initial regimen of a fixed-dose combination of stavudine, lamivudine, and nevirapine fails. Clin Infect Dis 2007; 44(3): 447–52

    Article  PubMed  CAS  Google Scholar 

  111. Grinsztejn B, Nguyen BY, Katlama C, et al. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrugresistant virus: a phase II randomised controlled trial. Lancet 2007; 369: 1261–9

    Article  PubMed  CAS  Google Scholar 

  112. Podsadecki T, Tian M, Fredrick L, et al. Lopinavir/ritonavir (LPV/r) combined with raltegravir (RAL) provides more rapid viral decline than LPV/r combined with tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) in treatment-naïve HIV-1 infected subjects [poster no. P31]. 15th Annual Conference of the British HIV Association (BHIVA); 2009 Apr 1–3; Liverpool

  113. Capetti AF, Piconi S, Landonio S, et al. Is dual therapy with raltegravir and protease inhibitors a feasible option in rescue strategy in HIV-1 infection? J Acquir Immune Defic Syndr 2009; 50(2): 233–4

    Article  PubMed  Google Scholar 

  114. Letendre SL, Rossi S, Best B, et al. Darunavir concentrations in CSF exceed the median inhibitory concentration [abstract no. 1312]. 49th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2009 Sep 11–15; San Francisco (CA)

  115. Letendre S, Best B, Breidinger S, et al. Raltegravir concentrations in CSF exceed the median inhibitory concentration [abstract no. A1311]. 49th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2009 Sep 11–15; San Francisco (CA)

  116. Pozniak AL, Morales-Ramirez J, Katabira E, et al. Efficacy and safety of TMC278 in antiretroviral-naïve HIV-1 patients: week 96 results of a phase IIb randomized trial. AIDS 2010; 24(1): 55–65

    Article  PubMed  CAS  Google Scholar 

  117. Azijn H, Tirry I, Vingerhoets J, et al. TMC 278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTI-resistant HIV-1. Antimicrob Agents Chemother 2010; 54: 718–27

    Article  PubMed  CAS  Google Scholar 

  118. Desmidt M, Willems B, Dom P, et al. Absence of a teratogenic potential from a novel next-generation NNRTI, TMC 278 [poster no. PE7.1/4]. 12th European AIDS Conference; 2009 Nov 11–14; Cologne

  119. Crauwels HM, van Heeswijk RPG, Cornelis L, et al. Pharmacokinetic interaction study between TMC 278, an NNRTI, and the contraceptives norethindrone plus ethinylestradiol [poster no. OE4.3/3]. 12th European AIDS Conference; 2009 Nov 11–14; Cologne

  120. Vanveggel S, Buelens A, Crauwels HM, et al. TMC278 25 mg qd has no effect on corrected QT interval in a study in HIV-negative volunteers [poster no. PE7.1/2]. 12th European AIDS Conference; 2009 Nov 11–14; Cologne

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Dr Taiwo has received honoraria and research funding from, and served on the Advisory Boards of Pfizer and Tibotec. Professors Murphy and Katlama have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Katlama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taiwo, B., Murphy, R.L. & Katlama, C. Novel Antiretroviral Combinations in Treatment-Experienced Patients with HIV Infection. Drugs 70, 1629–1642 (2010). https://doi.org/10.2165/11538020-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11538020-000000000-00000

Keywords

Navigation