Skip to main content
Log in

Stem Cell Therapies to Treat Muscular Dystrophy

Progress to Date

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Muscular dystrophies are heritable, heterogeneous neuromuscular disorders and include Duchenne and Becker muscular dystrophies (DMD and BMD, respectively). DMD patients exhibit progressive muscle weakness and atrophy followed by exhaustion of muscular regenerative capacity, fibrosis, and eventually disruption of the muscle tissue architecture. In-frame mutations in the dystrophin gene lead to expression of a partially functional protein, resulting in the milder BMD. No effective therapies are available at present. Cell-based therapies have been attempted in an effort to promote muscle regeneration, with the hope that the host cells would repopulate the muscle and improve muscle function and pathology. Injection of adult myoblasts has led to the development of new muscle fibers, but several limitations have been identified, such as poor cell survival and limited migratory ability. As an alternative to myoblasts, stem cells were considered preferable for therapeutic applications because of their capacity for self-renewal and differentiation potential. In recent years, encouraging results have been obtained with adult stem cells to treat human diseases such as leukemia, Parkinson's disease, stroke, and muscular dystrophies. Embryonic stem cells (ESCs) can be derived from mammalian embryos in the blastocyst stage, and because they can differentiate into a wide range of specialized cells, they hold potential for use in treating almost all human diseases. Several ongoing studies focus on this possibility, evaluating differentiation of specific cell lines from human ESCs (hESCs) as well as the potential tumorigenicity of hESCs. The most important limitation with using hESCs is that it requires destruction of human blastocysts or embryos. Conversely, adult stem cells have been identified in various tissues, where they serve to maintain, generate, and replace terminally differentiated cells within their specific tissue as the need arises for cell turnover or from tissue injury. Moreover, these cells can participate in regeneration of more than just their specific tissue type. Here we describe multiple types of muscle- and fetal-derived myogenic stem cells, their characterization, and their possible use in treating muscular dystrophies such as DMD and BMD. We also emphasize that the most promising possibility for the management and therapy of DMD and BMD is a combination of different approaches, such as gene and stem cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emery AE. The muscular dystrophies. Lancet 2002; 359: 687–95

    Article  PubMed  CAS  Google Scholar 

  2. Manzur AY, Muntoni F. Diagnosis and new treatments in muscular dystrophies. J Neurol Neurosurg Psychiatry 2009; 80: 706–14

    PubMed  CAS  Google Scholar 

  3. Nigro G, Politano L, Passamano L, et al. Cardiac treatment in neuromuscular diseases. Acta Myol 2006; 25(3): 119–23

    PubMed  CAS  Google Scholar 

  4. Brussee V, Tardif F, Roy B, et al. Successful myoblast transplantation in fibrotic muscles: no increased impairment by the connective tissue. Transplantation 2002; 67: 1618–22

    Article  Google Scholar 

  5. Gussoni E, Blau HM, Kunkel LM. The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 1997; 3: 970–7

    Article  PubMed  CAS  Google Scholar 

  6. Qu Z, Balkir L, van Deutekom JC, et al. Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 1998; 142: 1267

    Google Scholar 

  7. Partridge T, Lu QL, Morris G, et al. Is myoblast transplantation effective? Nat Med 1998; 4: 1208–9

    Article  PubMed  CAS  Google Scholar 

  8. Tremblay JP, Malouin F, Roy R, et al. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant 1993; 2: 99–112

    PubMed  CAS  Google Scholar 

  9. Owonikoko T, Agha M, Balassanian R, et al. Gemtuzumab therapy for isolated extramedullary AML relapse following allogeneic stem-cell transplant. Nat Clin Pract Oncol 2007; 4: 491–5

    Article  PubMed  CAS  Google Scholar 

  10. Singh N, Pillay V, Choonara YE. Advances in the treatment of Parkinson's disease. Prog Neurobiol 2007; 81: 29–44

    Article  PubMed  CAS  Google Scholar 

  11. Gilman S. Time course and outcome of recovery from stroke: relevance to stem cell treatment. Exp Neurol 2006; 199: 37–41

    Article  PubMed  Google Scholar 

  12. Nowak KJ, Davies KE. Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 2004; 5: 872–6

    Article  PubMed  CAS  Google Scholar 

  13. Endo T. Stem cells and plasticity of skeletal muscle cell differentiation: potential application to cell therapy for degenerative muscular diseases. Regen Med 2007; 2: 243–56

    Article  PubMed  CAS  Google Scholar 

  14. Chen S, Borowiak M, Fox JL. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 2009; 5(4): 258–65

    Article  PubMed  CAS  Google Scholar 

  15. Jung KW. Perspectives on human stem cell research. J Cell Physiol 2009; 220(3): 535–7

    Article  PubMed  CAS  Google Scholar 

  16. Jiang Y, Vaessen B, Lenvik T, et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 2002; 30: 896–904

    Article  PubMed  CAS  Google Scholar 

  17. Mitchell KE, Weiss ML, Mitchell BM, et al. Matrix cells from Wharton's jelly form neurons and glia. Stem Cells 2003; 21: 50–60

    Article  PubMed  CAS  Google Scholar 

  18. Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001; 3: 778–84

    Article  PubMed  CAS  Google Scholar 

  19. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7: 211–28

    Article  PubMed  CAS  Google Scholar 

  20. Bischoff R. The satellite cell and muscle regeneration. In: Engel AG, Franszini-Armstrong C. Myogenesis. New York: McGraw-Hill, 2007: 97–118

    Google Scholar 

  21. Grounds MD, White JD, Rosenthal N, et al. The role of stem cells in skeletal and cardiac muscle repair. J Histochem Cytochem 2002; 50(5): 589–610

    Article  PubMed  CAS  Google Scholar 

  22. Kataoka K, Medina RJ, Kageyama T, et al. Participation of adult mouse bone marrow cells in reconstitution of skin. Am J Pathol 2003; 163(4): 1227–31

    Article  PubMed  Google Scholar 

  23. Evans M, Kaufman M. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154–156

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663–76

    Article  PubMed  CAS  Google Scholar 

  25. Park IH, Zhao R, West JA. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451(7175): 141–6

    Article  PubMed  CAS  Google Scholar 

  26. Keller G, Snodgrass HR. Human embryonic stem cells: the future is now. Nat Med 1999; 5(2): 151–2

    Article  PubMed  CAS  Google Scholar 

  27. de Wert G, Mummery C. Human embryonic stem cells: research, ethics and policy. Hum Reprod 2003; 18(4): 672–82

    Article  PubMed  Google Scholar 

  28. Barberi T, Bradbury M, Dincer Z, et al. Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 2007; 13(5): 642–8

    Article  PubMed  CAS  Google Scholar 

  29. Sakurai H, Inami Y, Tamamura Y, et al. Bidirectional induction toward paraxial mesodermal derivatives from mouse ES cells in chemically defined medium. Stem Cell Res 2009; 3: 157–69

    Article  PubMed  CAS  Google Scholar 

  30. Bhagavati S, Xu W. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice. Biochem Biophys Res Commun 2005; 333(2): 644–9

    Article  PubMed  CAS  Google Scholar 

  31. Kamochi H, Kurokawa MS, Yoshikawa H, et al. Transplantation of myocyte precursors derived from embryonic stem cells transfected with IGFII gene in a mouse model of muscle injury. Transplantation 2006; 82(4): 516–26

    Article  PubMed  CAS  Google Scholar 

  32. Darabi R, Gehlbach K, Bachoo RM, et al. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 2008; 14(2): 134–43

    Article  PubMed  CAS  Google Scholar 

  33. Chargé SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev 2004; 84(1): 209–38

    Article  PubMed  Google Scholar 

  34. Teramura T, Takehara T, Kishi N, et al. A mouse and embryonic stem cell derived from a single embryo. Cloning Stem Cells 2007; 9(4): 485–94

    Article  PubMed  CAS  Google Scholar 

  35. Campbell KH, McWhir J, Ritchie WA, et al. Sheep cloned by nuclear transfer from a cultured cell line. Nature 1996; 380(6569): 64–6

    Article  PubMed  CAS  Google Scholar 

  36. Wilmut I, Beaujean N, de Sousa PA, et al. Somatic cell nuclear transfer. Nature 2002; 419(6907): 583–6

    Article  PubMed  CAS  Google Scholar 

  37. Byrne JA, Pedersen DA, Clepper LL, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 2007; 450(7169): 497–502

    Article  PubMed  CAS  Google Scholar 

  38. Rideout 3rd WM, Hochedlinger K, Kyba M, et al. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 2002; 109(1): 17–27

    Article  PubMed  CAS  Google Scholar 

  39. Kim JB, Zaehres H, Araúzo-Bravo MJ, et al. Generation of induced pluripotent stem cells from neural stem cells. Nat Protoc 2009; 4(10): 1464–70

    Article  PubMed  CAS  Google Scholar 

  40. Chang CW, Lai YS, Pawlik KM, et al. Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 2009; 27(5): 1042–9

    Article  PubMed  CAS  Google Scholar 

  41. Liu SV. iPS cells: a more critical review. Stem Cells Dev 2008; 17(3): 391–7

    Article  PubMed  Google Scholar 

  42. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008; 26(1): 101–6

    Article  PubMed  CAS  Google Scholar 

  43. Chuang CK, Sung LY, Hwang SM, et al. Baculovirus as a new gene delivery vector for stem cell engineering and bone tissue engineering. Gene Ther 2007; 14(19): 1417–24

    Article  PubMed  CAS  Google Scholar 

  44. Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 2009; 15(2): 59–68

    Article  PubMed  CAS  Google Scholar 

  45. Rolletschek A, Wobus AM. Induced human pluripotent stem cells: promises and open questions. Biol Chem 2009; 390: 845–9

    Article  PubMed  CAS  Google Scholar 

  46. Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008; 322: 949–53

    Article  PubMed  CAS  Google Scholar 

  47. Shi Y, Desponts C, Do JT, et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct-4 and Klf4 with small-molecule compounds. Cell Stem Cell 2008; 3: 568–74

    Article  PubMed  CAS  Google Scholar 

  48. Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotec 2008; 26: 1269–75

    Article  CAS  Google Scholar 

  49. Carey BW, Markoulaki S, Hanna J, et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. PNAS 2009; 106: 157–62

    Article  PubMed  CAS  Google Scholar 

  50. Woltjen K, Micheal IP, Mohseni P, et al. Piggyback transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458: 266–70

    Article  CAS  Google Scholar 

  51. Soldner F, Hockemeyer D, Beard C, et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009; 964-77

  52. Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009; 4(5): 381–4

    Article  PubMed  CAS  Google Scholar 

  53. Cossu G, Sampaolesi M. New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol Med 2007; 13(12): 520–6

    Article  PubMed  CAS  Google Scholar 

  54. Asakura A, Rudnicki MA. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol 2002; 30: 1339–45

    Article  PubMed  Google Scholar 

  55. Dezawa M, Ishikawa H, Itokazu Y, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 2005; 309: 314–7

    Article  PubMed  CAS  Google Scholar 

  56. Qu-Petersen Z, Deasy B, Jankowski R, et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 2002; 157: 851–64

    Article  PubMed  CAS  Google Scholar 

  57. Palumbo R, Sampaolesi M, De Marchis F, et al. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblasts migration and proliferation. J Cell Biol 2004; 164(3): 441–9

    Article  PubMed  CAS  Google Scholar 

  58. Gavina M, Belicchi M, Rossi B, et al. VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation. Blood 2006; 108: 2857–66

    PubMed  CAS  Google Scholar 

  59. Benchaouir R, Meregalli M, Farini A, et al. Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 2007; 13: 646–57

    Article  CAS  Google Scholar 

  60. Doherty MJ, Ashton BA, Walsh S, et al. Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res 1998; 13: 28–38

    Article  Google Scholar 

  61. Galvez BG, Sampaolesi M, Brunelli S, et al. Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. J Cell Biol 2006; 174(2): 231–43

    Article  PubMed  CAS  Google Scholar 

  62. Torrente Y, El Fahime E, Caron NJ, et al. Tumor necrosis factor-alpha. [TNF-alpha] stimulates chemotactic response in mouse myogenic cells. Cell Transplant 2003; 12: 91–100

    Article  PubMed  CAS  Google Scholar 

  63. Lafreniere JF, Mills P, Bouchentouf M, et al. Interlukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo. Exp Cell Res 2006; 312(7): 1127–41

    Article  PubMed  CAS  Google Scholar 

  64. Sampaolesi M, Blot S, D'Antona G, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006; 444(7119): 574–9

    Article  PubMed  CAS  Google Scholar 

  65. Torrente Y, Belicchi M, Marchesi C, et al. Autologous transplantation of muscle-derived CD 133+ stem cells in Duchenne muscle patients. Cell Transplant 2007; 16(6): 563–77

    PubMed  CAS  Google Scholar 

  66. Cossu G, Bianco P. Mesoangioblasts-vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev 2003; 13(5): 537–42

    Article  PubMed  CAS  Google Scholar 

  67. Tagliafico E, Brunelli S, Bergamaschi A. TGFbeta/BMP activate the smooth muscle/bone differentiation programs in mesoangioblasts. J Cell Sci 2004; 117 (Pt 19): 4377–88

    Article  PubMed  CAS  Google Scholar 

  68. Sampaolesi M, Torrente Y, Innocenzi A, et al. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 2003; 301(5632): 487–92

    Article  PubMed  CAS  Google Scholar 

  69. Davies KE, Grounds MD. Treating muscular dystrophy with stem cells? Cell 2006 29; 127(7): 1304–6

    Article  PubMed  CAS  Google Scholar 

  70. Zambidis ET, Oberlin E, Tavian M, et al. Blood-forming endothelium in human ontogeny: lessons from in utero development and embryonic stem cell culture. Trends Cardiovasc Med 2006; 16: 95–101

    Article  PubMed  CAS  Google Scholar 

  71. Andreeva ER, Pugach IM, Gordon D, et al. Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell 1998; 30: 127–35

    Article  PubMed  CAS  Google Scholar 

  72. DeAngelis L, Berghella L, Coletta M, et al. Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 1999; 147: 869–78

    Article  CAS  Google Scholar 

  73. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9: 641–50

    Article  PubMed  CAS  Google Scholar 

  74. Pittenger MF, MacKay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–7

    Article  PubMed  CAS  Google Scholar 

  75. Dellavalle A, Sampaolesi M, Tonlorenzi R, et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 2007; 9: 255–67

    Article  PubMed  CAS  Google Scholar 

  76. Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3: 301–13

    Article  PubMed  CAS  Google Scholar 

  77. Torrente Y, Belicchi M, Sampaolesi M, et al. Human circulating AC133[+] stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 2004; 114(2): 182–95

    PubMed  CAS  Google Scholar 

  78. Stamm C, Friehs I, Choi YH, et al. Cytosolic calcium in the ischemic rabbit heart: assessment by pH- and temperature-adjusted rhod-2 spectro-fluorometry. Cardiovasc Res 2003; 59(3): 695–704

    Article  PubMed  CAS  Google Scholar 

  79. Goyenvalle A, Vulin A, Fougerousse F, et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 2004; 306(5702): 1796–9

    Article  PubMed  CAS  Google Scholar 

  80. Lepper C, Conway SJ, Fan CM. Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 2009; 460: 627–31

    Article  PubMed  CAS  Google Scholar 

  81. Montarras D, Morgan J, Collins C, et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 2005; 309: 2064–7

    Article  PubMed  CAS  Google Scholar 

  82. Morgan JE, Fletcher RM, Partridge TA. Yields of muscle from myogenic cells implanted into young and old mdx hosts. Muscle Nerve 1996; 19: 132–9

    Article  PubMed  CAS  Google Scholar 

  83. Cerletti M, Jurga S, Witczak CA, et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 2008; 134: 37–47

    Article  PubMed  CAS  Google Scholar 

  84. Price FD, Kuroda K, Rudnicki MA. Stem cell based therapies to treat muscular dystrophy. Biochim Biophys Acta 2007; 1772(2): 272–83

    Article  PubMed  CAS  Google Scholar 

  85. Seale P, Ishibashi J, Scime R, et al. Pax7 is necessary and sufficient for the myogenic specification of CD45+: Sca1+ stem cells from injured muscle. PLoS Biol 2003; 2: E130

    Article  Google Scholar 

  86. Péault B, Rudnicki M, Torrente Y, et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 2007; 15(5): 867–77

    Article  PubMed  CAS  Google Scholar 

  87. Horsley V, Jansen KM, Mills ST, et al. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 2003; 113: 483–94

    Article  PubMed  CAS  Google Scholar 

  88. Conway SJ, Henderson DJ, Copp AJ. Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 1997; 124: 505–14

    PubMed  CAS  Google Scholar 

  89. Tremblay P, Dietrich S, Mericskay M, et al. A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors. Dev Biol 1998; 203: 49–61

    Article  PubMed  CAS  Google Scholar 

  90. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008; 132(4): 567–82

    Article  PubMed  CAS  Google Scholar 

  91. Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318(5858): 1920–3

    Article  PubMed  CAS  Google Scholar 

  92. Wernig M, Lengner CJ, Hanna J, et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol 2008; 26(8): 916–24

    Article  PubMed  CAS  Google Scholar 

  93. Aasen T, Raya A, Barrero MJ, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008; 26(11): 1276–84

    Article  PubMed  CAS  Google Scholar 

  94. Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008; 321(5889): 699–702. Erratum in: Science 2008; 321 (5889): 641

    Article  PubMed  CAS  Google Scholar 

  95. Check E. Gene regulation: RNA to the rescue? Nature 2003; 425(6953): 10–2

    Article  PubMed  CAS  Google Scholar 

  96. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279(5356): 1528–30. Erratum in: Science 1998; 281 (5379): 923

    Article  PubMed  CAS  Google Scholar 

  97. Ferrari G, Stornaiuolo A, Mavilio F. Failure to correct murine muscular dystrophy. Nature 2001; 411(6841): 1014–5

    Article  PubMed  CAS  Google Scholar 

  98. Gussoni E, Pavlath GK, Lanctot AM, et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 1992; 356: 435–8

    Article  PubMed  CAS  Google Scholar 

  99. Jackson KA, Snyder DS, Goodell MA. Skeletal muscle fiber-specific green autofluorescence: potential for stem cell engraftment artefacts. Stem Cells 2004; 22(2): 180–7

    Article  PubMed  Google Scholar 

  100. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893): 41–9

    Article  PubMed  CAS  Google Scholar 

  101. Niwa H, Masui S, Chambers I, et al. Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Mol Cell Biol 2002; 22(5): 1526–36

    Article  PubMed  CAS  Google Scholar 

  102. Law PK, Goodwin TG, Li HJ. Histoincompatible myoblast injection improves muscle structure and function of dystrophic mice. Transplant Proc 1998; 20: 1114–9

    Google Scholar 

  103. Law PK, Goodwin TG, Wang MG. Normal myoblast injections provide genetic treatment for murine dystrophy. Muscle Nerve 1988; 11: 525–33

    Article  PubMed  CAS  Google Scholar 

  104. Skuk D, Goulet M, Roy B, et al. Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 2006; 65(4): 371–86

    Article  PubMed  CAS  Google Scholar 

  105. Skuk D, Roy B, Goulet M, et al. Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 2004; 9(3): 475–82

    Article  PubMed  CAS  Google Scholar 

  106. Takahashi K, Okita K, Nakagawa M, et al. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2007; 2(12): 3081–9

    Article  PubMed  CAS  Google Scholar 

  107. Darabi R, Santos FN, Perlingeiro RC. The therapeutic potential of embryonic and adult stem cells for skeletal muscle regeneration. Stem Cell Rev 2008; 4(3): 217–25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. Meregalli and A. Farini contributed equally to this paper. This work has been supported by the Association Monégasque contre les Myopathies, Association Française contre les Myopathies, Duchenne Parent Project de France, Associazione La Nostra Famiglia Fondo DMD Gli Amici di Emanuele, Fondazione Cariplo and Associazione Amici del Centro Dino Ferrari. The authors have no conflicts of interest to declare that are relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Torrente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meregalli, M., Farini, A., Parolini, D. et al. Stem Cell Therapies to Treat Muscular Dystrophy. BioDrugs 24, 237–247 (2010). https://doi.org/10.2165/11534300-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11534300-000000000-00000

Keywords

Navigation