Skip to main content
Log in

A Proposal for a Pharmacokinetic Interaction Significance Classification System (PISCS) Based on Predicted Drug Exposure Changes and Its Potential Application to Alert Classifications in Product Labelling

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Pharmacokinetic drug-drug interactions (DDIs) are one of the major causes of adverse events in pharmacotherapy, and systematic prediction of the clinical relevance of DDIs is an issue of significant clinical importance. In a previous study, total exposure changes of many substrate drugs of cytochrome P450 (CYP) 3A4 caused by coadministration of inhibitor drugs were successfully predicted by using in vivo information. In order to exploit these predictions in daily pharmacotherapy, the clinical significance of the pharmacokinetic changes needs to be carefully evaluated. The aim of the present study was to construct a pharmacokinetic interaction significance classification system (PISCS) in which the clinical significance of DDIs was considered with pharmacokinetic changes in a systematic manner. Furthermore, the classifications proposed by PISCS were compared in a detailed manner with current alert classifications in the product labelling or the summary of product characteristics used in Japan, the US and the UK.

Methods

A matrix table was composed by stratifying two basic parameters of the prediction: the contribution ratio of CYP3A4 to the oral clearance of substrates (CR), and the inhibition ratio of inhibitors (IR). The total exposure increase was estimated for each cell in the table by associating CR and IR values, and the cells were categorized into nine zones according to the magnitude of the exposure increase. Then, correspondences between the DDI significance and the zones were determined for each drug group considering the observed exposure changes and the current classification in the product labelling. Substrate drugs of CYP3A4 selected from three therapeutic groups, i.e. HMG-CoA reductase inhibitors (statins), calcium-channel antagonists/blockers (CCBs) and benzodiazepines (BZPs), were analysed as representative examples. The product labelling descriptions of drugs in Japan, US and UK were obtained from the websites of each regulatory body.

Results

Among 220 combinations of drugs investigated, estimated exposure changes were more than 5-fold for 41 combinations in which ten combinations were not alerted in the product labelling at least in one country; these involved buspirone, nisoldipine and felodipine as substrates, and ketoconazole, voriconazole, telithromycin, clarithromycin and nefazodone as inhibitors. For those drug combinations, the alert classifications were anticipated as potentially inappropriate. In the current product labelling, many intercountry differences were also noted. Considering the relationships between previously observed exposure changes and the current alert classifications, the boundaries between ‘contraindication’ and ‘warning/caution’ were determined as a 7-fold exposure increase for statins and CCBs, and as a 4-fold increase for BZPs. PISCS clearly discriminated these drug combinations in accordance with the determined boundaries. Classifications by PISCS were expected to be valid even for future drugs because the classifications were made by zones, not by designating individual drugs.

Conclusion

The present analysis suggested that many current alert classifications were potentially inappropriate especially for drug combinations where pharmacokinetics had not been evaluated. It is expected that PISCS would contribute to constructing a leak-less alerting system for a broad range of pharmacokinetic DDIs. Further validation of PISCS is required in clinical studies with key drug combinations, and its extension to other CYP and metabolizing enzymes remains to be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1
Fig. 2
Fig. 3
Table III
Table IV
Fig. 4
Table V

Similar content being viewed by others

References

  1. Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 2004 Jul 3; 329(7456): 15–9

    Article  PubMed  Google Scholar 

  2. Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 2005 Oct; 4(10): 825–33

    Article  PubMed  CAS  Google Scholar 

  3. Furberg CD, Pitt B. Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med 2001; 2(5): 205–7

    Article  PubMed  Google Scholar 

  4. Estelle F, Simons R. H1-receptor antagonists: safety issues. Ann Allergy Asthma Immunol 1999 Nov; 83(5): 481–8

    Article  PubMed  CAS  Google Scholar 

  5. Huang SM GF, Rahman A, Frueh F, et al. Application of pharmacogenomics in clinical pharmacology. Toxicol Mech Methods 2006; 16(2): 89–99

    Article  PubMed  CAS  Google Scholar 

  6. Obach RS, Walsky RL, Venkatakrishnan K, et al. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions. J Pharmacol Exp Ther 2006 Jan; 316(1): 336–48

    Article  PubMed  CAS  Google Scholar 

  7. Brown HS, Galetin A, Hallifax D, et al. Prediction of in vivo drug-drug interactions from in vitro data: factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin Pharmacokinet 2006; 45(10): 1035–50

    Article  PubMed  CAS  Google Scholar 

  8. Brown HS, Ito K, Galetin A, et al. Prediction of in vivo drug-drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Br J Clin Pharmacol 2005 Nov; 60(5): 508–18

    Article  PubMed  CAS  Google Scholar 

  9. Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol 2004 Apr; 57(4): 473–86

    Article  PubMed  CAS  Google Scholar 

  10. Ito K, Hallifax D, Obach RS, et al. Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug-drug interactions: CYP2D6 paradigm. Drug Metab Dispos 2005 Jun; 33(6): 837–44

    Article  PubMed  CAS  Google Scholar 

  11. Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet 2007; 46(8): 681–96

    Article  PubMed  CAS  Google Scholar 

  12. Ohno Y, Hisaka A, Ueno M, et al. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet 2008; 47(10): 669–80

    Article  PubMed  CAS  Google Scholar 

  13. Fujita K. Food-drug interactions via human cytochrome P450 3A (CYP3A). Drug Metab Drug Interact 2004; 20(4): 195–217

    Article  CAS  Google Scholar 

  14. Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Ann Rev Pharmacol Toxicol 1999; 39: 1–17

    Article  CAS  Google Scholar 

  15. Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992; 22(1): 1–21

    Article  PubMed  CAS  Google Scholar 

  16. Liu YT, Hao HP, Liu CX, et al. Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 2007; 39(4): 699–721

    Article  PubMed  CAS  Google Scholar 

  17. Williams JA, Cook J, Hurst SI. A significant drug-metabolizing role for CYP3A5? Drug Metab Dispos 2003 Dec; 31(12): 1526–30

    Article  PubMed  CAS  Google Scholar 

  18. Daly AK. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 2006; 45(1): 13–31

    Article  PubMed  CAS  Google Scholar 

  19. McConn 2nd DJ, Lin YS, Allen K, et al. Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab Dispos 2004 Oct; 32(10): 1083–91

    PubMed  CAS  Google Scholar 

  20. Patki KC, Von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of CYP3A4 and CYP3A5. Drug Metab Dispos 2003 Jul; 31(7): 938–44

    Article  PubMed  CAS  Google Scholar 

  21. Pearson JT, Wahlstrom JL, Dickmann LJ, et al. Differential time-dependent inactivation of P450 3A4 and P450 3A5 by raloxifene: a key role for C239 in quenching reactive intermediates. Chem Res Toxicol 2007 Dec; 20(12): 1778–86

    Article  PubMed  CAS  Google Scholar 

  22. Isoherranen N, Ludington SR, Givens RC, et al. The influence of CYP3A5 expression on the extent of hepatic CYP3A inhibition is substrate-dependent: an in vitro-in vivo evaluation. Drug Metab Dispos 2008 Jan; 36(1): 146–54

    Article  PubMed  CAS  Google Scholar 

  23. US FDA Center for Drug Evaluation and Research [CDER]. Draft guidance for industry: drug interaction studies — study design, data analysis, and implications for dosing and labelling. Rockville (MD): CDER, 2006 Sep [online]. Available from URL: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM072101.pdf [Accessed 2009 Aug 4]

  24. Mikus G, Schowel V, Drzewinska M, et al. Potent cytochrome P450 2C19 genotype-related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir. Clin Pharmacol Ther 2006 Aug; 80(2): 126–35

    Article  PubMed  CAS  Google Scholar 

  25. Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997 Dec; 283(3): 1552–62

    PubMed  CAS  Google Scholar 

  26. Liu P, Foster G, Gandelman K, et al. Steady-state pharmacokinetic and safety profiles of voriconazole and ritonavir in healthy male subjects. Antimicrob Agents Chemother 2007 Oct; 51(10): 3617–26

    Article  PubMed  CAS  Google Scholar 

  27. Youdim KA, Zayed A, Dickins M, et al. Application of CYP3A4 in vitro data to predict clinical drug-drug interactions: predictions of compounds as objects of interaction. Br J Clin Pharmacol 2008 May; 65(5): 680–92

    Article  PubMed  CAS  Google Scholar 

  28. Houston JB, Galetin A. Methods for predicting in vivo pharmacokinetics using data from in vitro assays. Curr Drug Metab 2008 Nov; 9(9): 940–51

    Article  PubMed  CAS  Google Scholar 

  29. Gibbs JP, Hyland R, Youdim K. Minimizing polymorphic metabolism in drug discovery: evaluation of the utility of in vitro methods for predicting pharmacokinetic consequences associated with CYP2D6 metabolism. Drug Metab Dispos 2006 Sep; 34(9): 1516–22

    Article  PubMed  CAS  Google Scholar 

  30. Venkatakrishnan K, Obach RS, Rostami-Hodjegan A. Mechanism-based inactivation of human cytochrome P450 enzymes: strategies for diagnosis and drug-drug interaction risk assessment. Xenobiotica 2007 Oct–Nov; 37(10–11): 1225–56

    Article  PubMed  CAS  Google Scholar 

  31. Ito K, Iwatsubo T, Kanamitsu S, et al. Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev 1998 Sep; 50(3): 387–412

    PubMed  CAS  Google Scholar 

  32. Kivisto KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998 Jul; 46(1): 49–53

    Article  PubMed  CAS  Google Scholar 

  33. Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996 Jul; 60(1): 54–61

    Article  PubMed  CAS  Google Scholar 

  34. Kantola T, Kivisto KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998 Jul; 64(1): 58–65

    Article  PubMed  CAS  Google Scholar 

  35. Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000 Oct; 68(4): 391–400

    Article  PubMed  CAS  Google Scholar 

  36. Heinig R, Adelmann HG, Ahr G. The effect of ketoconazole on the pharmacokinetics, pharmacodynamics and safety of nisoldipine. Eur J Clin Pharmacol 1999 Mar; 55(1): 57–60

    Article  PubMed  CAS  Google Scholar 

  37. Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997 Apr; 61(4): 410–5

    Article  PubMed  CAS  Google Scholar 

  38. Tateishi T, Ohashi K, Sudo T, et al. Dose dependent effect of diltiazem on the pharmacokinetics of nifedipine. J Clin Pharmacol 1989 Nov; 29(11): 994–7

    PubMed  CAS  Google Scholar 

  39. Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994 Dec; 56(6 Pt 1): 601–7

    Article  PubMed  CAS  Google Scholar 

  40. Greenblatt DJ, Wright CE, von Moltke LL, et al. Ketoconazole inhibition of triazolam and alprazolam clearance: differential kinetic and dynamic consequences. Clin Pharmacol Ther 1998 Sep; 64(3): 237–47

    Article  PubMed  CAS  Google Scholar 

  41. von Moltke LL, Greenblatt DJ, Harmatz JS, et al. Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 1996 Feb; 276(2): 370–9

    Google Scholar 

  42. Lam YW, Alfaro CL, Ereshefsky L, et al. Pharmacokinetic and pharmacodynamic interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone. J Clin Pharmacol 2003 Nov; 43(11): 1274–82

    Article  PubMed  CAS  Google Scholar 

  43. Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994 May; 55(5): 481–5

    Article  PubMed  CAS  Google Scholar 

  44. Chung E, Nafziger AN, Kazierad DJ, et al. Comparison of midazolam and simvastatin as cytochrome P450 3A probes. Clin Pharmacol Ther 2006 Apr; 79(4): 350–61

    Article  PubMed  CAS  Google Scholar 

  45. Tsunoda SM, Velez RL, von Moltke LL, et al. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999 Nov; 66(5): 461–71

    Article  PubMed  CAS  Google Scholar 

  46. Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Kinetic and dynamic interaction study of zolpidem with ketoconazole, itraconazole, and fluconazole. Clin Pharmacol Ther 1998 Dec; 64(6): 661–71

    Article  PubMed  CAS  Google Scholar 

  47. Kivisto KT, Lamberg TS, Kantola T, et al. Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clin Pharmacol Ther 1997 Sep; 62(3): 348–54

    Article  PubMed  CAS  Google Scholar 

  48. Kivisto KT, Lamberg TS, Neuvonen PJ. Interactions of buspirone with itraconazole and rifampicin: effects on the pharmacokinetics of the active 1-(2-pyrimidinyl)-piperazine metabolite of buspirone. Pharmacol Toxicol 1999 Feb; 84(2): 94–7

    Article  PubMed  CAS  Google Scholar 

  49. Foradori A, Mezzano S, Videla C, et al. Modification of the pharmacokinetics of cyclosporine A and metabolites by the concomitant use of Neoral and diltiazem or ketoconazole in stable adult kidney transplants. Transplant Proc 1998 Aug; 30(5): 1685–7

    Article  PubMed  CAS  Google Scholar 

  50. Butman SM, Wild JC, Nolan PE, et al. Prospective study of the safety and financial benefit of ketoconazole as adjunctive therapy to cyclosporine after heart transplantation. J Heart Lung Transplant 1991 May–Jun; 10(3): 351–8

    PubMed  CAS  Google Scholar 

  51. Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995 Jul; 58(1): 15–9

    Article  PubMed  CAS  Google Scholar 

  52. Sanofi Aventis US LLC. Ketek® (telithromycin tablets): label. Bridgewater (NJ): Sanofi Aventis US LLC, 2007 Feb [online]. Available from URL: http://www.accessdata.fda.gov/drugsatfda_docs/label/2007/021144s012lbl.pdf [Accessed 2009 Aug 4]

  53. Saari TI, Laine K, Leino K, et al. Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther 2006 Apr; 79(4): 362–70

    Article  PubMed  CAS  Google Scholar 

  54. Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998 Mar; 63(3): 332–41

    Article  PubMed  CAS  Google Scholar 

  55. Yeates RA, Laufen H, Zimmermann T. Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther 1996 Sep; 34(9): 400–5

    PubMed  CAS  Google Scholar 

  56. Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998 Aug; 64(2): 133–43

    Article  PubMed  CAS  Google Scholar 

  57. Zimmermann T, Yeates RA, Laufen H, et al. Influence of the antibiotics erythromycin and azithromycin on the pharmacokinetics and pharmacodynamics of midazolam. Arzneimittelforschung 1996 Feb; 46(2): 213–7

    PubMed  CAS  Google Scholar 

  58. Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993 Mar; 53(3): 298–305

    Article  PubMed  CAS  Google Scholar 

  59. Backman JT, Olkkola KT, Aranko K, et al. Dose of midazolam should be reduced during diltiazem and verapamil treatments. Br J Clin Pharmacol 1994 Mar; 37(3): 221–5

    Article  PubMed  CAS  Google Scholar 

  60. Olkkola KT, Ahonen J, Neuvonen PJ. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996 Mar; 82(3): 511–6

    PubMed  CAS  Google Scholar 

  61. Elliott P, Dundee JW, Elwood RJ, et al. The influence of H2 receptor antagonists on the plasma concentrations of midazolam and temazepam. Eur J Anaesthesiol 1984 Sep; 1(3): 245–51

    PubMed  CAS  Google Scholar 

  62. Fee JP, Collier PS, Howard PJ, et al. Cimetidine and ranitidine increase midazolam bioavailability. Clin Pharmacol Ther 1987 Jan; 41(1): 80–4

    Article  PubMed  CAS  Google Scholar 

  63. Elwood RJ, Hildebrand PJ, Dundee JW, et al. Ranitidine influences the uptake of oral midazolam. Br J Clin Pharmacol 1983 Jun; 15(6): 743–5

    Article  PubMed  CAS  Google Scholar 

  64. Backman JT, Aranko K, Himberg JJ, et al. A pharmacokinetic interaction between roxithromycin and midazolam. Eur J Clin Pharmacol 1994; 46(6): 551–5

    Article  PubMed  CAS  Google Scholar 

  65. Backman JT, Olkkola KT, Neuvonen PJ. Azithromycin does not increase plasma concentrations of oral midazolam. Int J Clin Pharmacol Ther 1995 Jun; 33(6): 356–9

    PubMed  CAS  Google Scholar 

  66. Grasela DM, LaCreta FP, Kollia GD, et al. Open-label, nonrandomized study of the effects of gatifloxacin on the pharmacokinetics of midazolam in healthy male volunteers. Pharmacotherapy 2000 Mar; 20(3): 330–5

    Article  PubMed  CAS  Google Scholar 

  67. Van Harten J, van Brummelen P, Lodewijks MT, et al. Pharmacokinetics and hemodynamic effects of nisoldipine and its interaction with cimetidine. Clin Pharmacol Ther 1988 Mar; 43(3): 332–41

    Article  PubMed  Google Scholar 

  68. Mousa O, Brater DC, Sunblad KJ, et al. The interaction of diltiazem with simvastatin. Clin Pharmacol Ther 2000 Mar; 67(3): 267–74

    Article  PubMed  CAS  Google Scholar 

  69. Kantola T, Kivisto KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998 Aug; 64(2): 177–82

    Article  PubMed  CAS  Google Scholar 

  70. Ito K, Sawada Y, Sugiyama Y, et al. Linear relationship between GABAA receptor occupancy of muscimol and glucose metabolic response in the conscious mouse brain: clinical implication based on comparison with benzodiazepine receptor agonist. Drug Metab Dispos 1994 Jan–Feb; 22(1): 50–4

    PubMed  CAS  Google Scholar 

  71. Shimada S, Nakajima Y, Yamamoto K, et al. Comparative pharmacodynamics of eight calcium channel blocking agents in Japanese essential hypertensive patients. Biol Pharm Bull 1996 Mar; 19(3): 430–7

    Article  PubMed  CAS  Google Scholar 

  72. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA 2003 Apr 2; 289(13): 1681–90

    Article  PubMed  CAS  Google Scholar 

  73. Robin DW, Hasan SS, Lichtenstein MJ, et al. Dose-related effect of triazolam on postural sway. Clin Pharmacol Ther 1991 May; 49(5): 581–8

    Article  PubMed  CAS  Google Scholar 

  74. Yasui N, Kondo T, Otani K, et al. Effect of itraconazole on the single oral dose pharmacokinetics and pharmacodynamics of alprazolam. Psychopharmacology 1998 Oct; 139(3): 269–73

    Article  PubMed  CAS  Google Scholar 

  75. Bottorff MB. Statin safety and drug interactions: clinical implications. Am J Cardiol 2006 Apr 17; 97(8A): 27–31C

    Article  Google Scholar 

  76. Herbrecht R. Voriconazole: therapeutic review of a new azole antifungal. Expert Rev Anti Infect Ther 2004 Aug; 2(4): 485–97

    Article  PubMed  CAS  Google Scholar 

  77. Niwa T, Shiraga T, Takagi A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 2005 Sep; 28(9): 1805–8

    Article  PubMed  CAS  Google Scholar 

  78. Marty FM, Lowry CM, Cutler CS, et al. Voriconazole and sirolimus coadministration after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2006 May; 12(5): 552–9

    Article  PubMed  CAS  Google Scholar 

  79. Yoshida N, Yamada A, Mimura Y, et al. Trends in new drug interactions for pharmaceutical products in Japan. Pharmacoepidemiol Drug Saf 2006 Jun; 15(6): 421–7

    Article  PubMed  CAS  Google Scholar 

  80. Vasques LR, Stabellini R, Xue F, et al. XIST repression in the absence of DNMT1 and DNMT3B. DNA Res 2005; 12(5): 373–8

    Article  PubMed  CAS  Google Scholar 

  81. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet 2006; 45(9): 931–56

    Article  PubMed  CAS  Google Scholar 

  82. Shorr RI, Robin DW. Rational use of benzodiazepines in the elderly. Drugs Aging 1994 Jan; 4(1): 9–20

    Article  PubMed  CAS  Google Scholar 

  83. Petrovic M, Mariman A, Warie H, et al. Is there a rationale for prescription of benzodiazepines in the elderly? Review of the literature. Acta Clin Belg 2003 Jan–Feb; 58(1): 27–36

    PubMed  CAS  Google Scholar 

  84. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 2006 Dec; 80(6): 565–81

    Article  PubMed  CAS  Google Scholar 

  85. Asberg A. Interactions between cyclosporin and lipid-lowering drugs: implications for organ transplant recipients. Drugs 2003; 63(4): 367–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Health and Labor Sciences Research Grants for Research on Regulatory Science of Pharmaceuticals and Medical Devices from the Ministry of Health, Labor and Welfare, Japan. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Hisaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hisaka, A., Kusama, M., Ohno, Y. et al. A Proposal for a Pharmacokinetic Interaction Significance Classification System (PISCS) Based on Predicted Drug Exposure Changes and Its Potential Application to Alert Classifications in Product Labelling. Clin Pharmacokinet 48, 653–666 (2009). https://doi.org/10.2165/11317220-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11317220-000000000-00000

Keywords

Navigation