Skip to main content
Log in

Nanotechnology and Nanotoxicology

A Primer for Clinicians

  • Review Article
  • Published:
Toxicological Reviews

Abstract

Nanotechnology is the manipulation of matter in dimensions <100nm. At this size, matter can take on different chemical and physical properties, giving the products characteristics useful to industry, medicine and technology. Government funding and private investors provide billions of research dollars for the development of new materials and applications. The potential utility of these technologies is such that they are expected be a trillion-dollar industry within the next 10 years.

However, the novel properties of nanoengineered materials lead to the potential for different toxicity compared with the bulk material. The field of nanotoxicology is still in its infancy, however, with very limited literature regarding potential health effects. Inhalational toxicity is to be expected, given the known effects of inhaled fine particulate matter. However, the degree to which most nanoparticles will aerosolise remains to be determined. It has been proposed that dermal exposure will be the most relevant route of exposure, but there is considerably less literature regarding dermal effects and absorption. Less defined still are the potential effects of nanoproducts on fetal development and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II

Similar content being viewed by others

References

  1. Lin H, Datar RH. Medical applications of nanotechnology. Natl Med J India 2006; 19(1): 27–32

    PubMed  Google Scholar 

  2. Joy B. Why the future doesn’t need us. Wired 2000; 8.04: 1–11

    Google Scholar 

  3. Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56–8

    Article  CAS  Google Scholar 

  4. Gogotsi Y. How safe are nanotubes and other nanofilaments? Mat Res Innov 2003; 7: 192–4

    Article  CAS  Google Scholar 

  5. Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004; 77(1): 126–34

    Article  PubMed  CAS  Google Scholar 

  6. Chan WC, Maxwell DJ, Gao X, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 2002; 13(1): 40–6

    Article  PubMed  CAS  Google Scholar 

  7. Hoshino A. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 2004; 4(11): 2163–9

    Article  CAS  Google Scholar 

  8. Hanaki K, Momo A, Oku T, et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 2003; 302(3): 496–501

    Article  PubMed  CAS  Google Scholar 

  9. Akerman ME, Chan WC, Laakkonen P, et al. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 2002; 99(20): 12617–21

    Article  PubMed  CAS  Google Scholar 

  10. Han M, Gao X, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001; 19(7): 631–5

    Article  PubMed  CAS  Google Scholar 

  11. Office of the Press Secretary. National nanotechnology initiative: leading to the next industrial revolution [online]. Available from URL: http://clinton4.nara.gov/textonly/WH/New/html/20000121_4.html [Accessed 2006 Aug 18]

  12. Guzman KA, Taylor MR, Banfield JF. Environmental risks of nanotechnology: National Nanotechnology Initiative funding, 2000–2004. Environ Sci Technol 2006; 40(5): 1401–7

    Article  PubMed  CAS  Google Scholar 

  13. Salamanca-Buentello F, Persad DL, Court EB, et al. Nanotechnology and the developing world. PLoS Med 2005; 2(5): e97

    Article  PubMed  Google Scholar 

  14. Hsiao JC, Fong K. Making big money from small technology. Nature 2004; 428(6979): 218–20

    Article  PubMed  CAS  Google Scholar 

  15. Triendl R. Breaking down biological borders. Nature 2002; 418(6899): 7

    Article  PubMed  CAS  Google Scholar 

  16. Aitken RJ, Chaudhry MQ, Boxall AB, et al. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med (Lond) 2006; 56(5): 300–6

    Article  CAS  Google Scholar 

  17. Milunovich S, Roy JMA, Fan Z-H. Nanotechnology: introducing the Merrill Lynch Nanotech Index [online]. Available from URL: http://www.ml.com/media/42322.pdf [Accessed 2007 Jan 11]

  18. Brumfiel G. Consumer products leap aboard the nano bandwagon. Nature 2006; 440(7082): 262

    Article  PubMed  CAS  Google Scholar 

  19. Lemley MA. Patenting nanotechnology. Stanford Law Rev 2005; 58(2): 601–30

    PubMed  Google Scholar 

  20. Whatmore RW. Nanotechnology: what is it? Should we be worried? Occup Med (Lond) 2006; 56(5): 295–9

    Article  Google Scholar 

  21. Vandorpe J, Schacht E, Dunn S, et al. Long circulating biodegradable poly (phosphazene) nanoparticles surface modified with poly (phosphazene)-poly (ethylene oxide) copolymer. Biomaterials 1997; 18(17): 1147–52

    Article  PubMed  CAS  Google Scholar 

  22. Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology: some physiological principles. Occup Med (Lond) 2006; 56(5): 307–11

    Article  CAS  Google Scholar 

  23. Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 1989; 6(3): 193–210

    PubMed  CAS  Google Scholar 

  24. Porter CJ, Moghimi SM, Ilium L, et al. The polyoxyethylene/polyoxypropylene block co-polymer poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett 1992; 305(1): 62–6

    Article  PubMed  CAS  Google Scholar 

  25. Lind K, Kresse M, Debus NP, et al. A novel formulation for superparamagnetic iron oxide (SPIO) particles enhancing MR lymphography: comparison of physicochemical properties and the in vivo behaviour. J Drug Target 2002; 10(3): 221–30

    Article  PubMed  CAS  Google Scholar 

  26. Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001; 47(1): 65–81

    Article  PubMed  CAS  Google Scholar 

  27. Pantarotto D, Briand JP, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 2004; (1): 16–7

    Google Scholar 

  28. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003; 348(25): 2491–9

    Article  PubMed  Google Scholar 

  29. Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science 1998; 281(5385): 2013–6

    Article  PubMed  CAS  Google Scholar 

  30. Steiniger SCJ, Kreuter J, Khalansky AS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 2004; 109(5): 759–67

    Article  PubMed  CAS  Google Scholar 

  31. Michaelis K, Hoffmann MM, Dreis S, et al. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 2006; 317(3): 1246–53

    Article  PubMed  CAS  Google Scholar 

  32. Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 2005; 23(10): 1294–301

    Article  PubMed  CAS  Google Scholar 

  33. Donaldson K, Stone V, Clouter A, et al. Ultrafine particles. Occup Environ Med 2001; 58(3): 211–6, 199

    Article  PubMed  CAS  Google Scholar 

  34. Peters A, Wichmann HE, Tuch T, et al. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 1997; 155(4): 1376–83

    PubMed  CAS  Google Scholar 

  35. Dockery DW, Pope CA, Xu X, et al. An association between air pollution and mortality in six US cities. N Engl J Med 1993; 329(24): 1753–9

    Article  PubMed  CAS  Google Scholar 

  36. Dockery DW. Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect 2001; 109Suppl. 4: 483–6

    PubMed  CAS  Google Scholar 

  37. Pope CA, Dockery DW. Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am Rev Respir Dis 1992; 145(5): 1123–8

    Article  PubMed  Google Scholar 

  38. Xu B, Xia M, Deng Y, et al. Nanotechnology and nanoparticles and their advances of investigation and application in the fields of biomedicine [in Chinese]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2004; 21(2): 333–6

    PubMed  CAS  Google Scholar 

  39. Dockery DW, Luttmann-Gibson H, Rich DQ, et al. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implanted cardioverter defibrillators. Environ Health Perspect 2005; 113(6): 670–4

    Article  PubMed  CAS  Google Scholar 

  40. Franklin M, Zeka A, Schwartz J. Association between PM (2.5) and all-cause and specific-cause mortality in 27 US communities. J Expo Sci Environ Epidemiol 2006 [Epub ahead of print]

    Google Scholar 

  41. Brown DM, Stone V, Findlay P, et al. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med 2000; 57(10): 685–91

    Article  PubMed  CAS  Google Scholar 

  42. Renwick LC, Brown D, Clouter A, et al. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 2004; 61(5): 442–7

    Article  PubMed  CAS  Google Scholar 

  43. Warheit DB, Webb TR, Sayes CM, et al. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 2006; 91(1): 227–36

    Article  PubMed  CAS  Google Scholar 

  44. Beckett WS, Chalupa DF, Pauly-Brown A, et al. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am J Respir Crit Care Med 2005; 171(10): 1129–35

    Article  PubMed  Google Scholar 

  45. Brown JS, Zeman KL, Bennett WD. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 2002; 166(9): 1240–7

    Article  PubMed  Google Scholar 

  46. Geiser M, Rothen-Rutishauser B, Kapp N, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005; 113(11): 1555–60

    Article  PubMed  Google Scholar 

  47. Beck-Speier I, Dayal N, Karg E, et al. Agglomerates of ultrafine particles of elemental carbon and TiO2 induce generation of lipid mediators in alveolar macrophages. Environ Health Perspect 2001; 109Suppl. 4: 613–8

    PubMed  CAS  Google Scholar 

  48. Gavett SH, Madison SL, Dreher KL, et al. Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environ Res 1997; 72(2): 162–72

    Article  PubMed  CAS  Google Scholar 

  49. Dreher KL, Jaskot RH, Lehmann JR, et al. Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health 1997; 50(3): 285–305

    Article  PubMed  CAS  Google Scholar 

  50. Ghio AJ, Cohen MD. Disruption of iron homeostasis as a mechanism of biologic effect by ambient air pollution particles. Inhal Toxicol 2005; 17(13): 709–16

    Article  PubMed  CAS  Google Scholar 

  51. Mossman BT, Bignon J, Corn M, et al. Asbestos: scientific developments and implications for public policy. Science 1990; 247(4940): 294–301

    Article  PubMed  CAS  Google Scholar 

  52. Brown RC, Hoskins JA, Miller K, et al. Pathogenetic mechanisms of asbestos and other mineral fibres. Mol Aspects Med 1990; 11(5): 325–49

    Article  PubMed  CAS  Google Scholar 

  53. Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials. Nano Lett 2006; 6(6): 1121–5

    Article  PubMed  CAS  Google Scholar 

  54. Gaensler EA, Cadigan JB, Sasahara AA, et al. Graphite pneumoconiosis of electrotypers. Am J Med 1966; 41(6): 864–82

    Article  PubMed  CAS  Google Scholar 

  55. Oberdorster G. Determinants of the pathogenicity of man-made vitreous fibers (MMVF). Int Arch Occup Environ Health 2000; 73 Suppl.: S60–8

    Article  PubMed  CAS  Google Scholar 

  56. Hesterberg TW, Chase G, Axten C, et al. Biopersistence of synthetic vitreous fibers and amosite asbestos in the rat lung following inhalation. Toxicol Appl Pharmacol 1998; 151(2): 262–75

    Article  PubMed  CAS  Google Scholar 

  57. Hesterberg TW, Hart GA, Chevalier J, et al. The importance of fiber biopersistence and lung dose in determining the chronic inhalation effects of X607, RCF1, and chrysotile asbestos in rats. Toxicol Appl Pharmacol 1998; 153(1): 68–82

    Article  PubMed  CAS  Google Scholar 

  58. Hesterberg TW, Miiller WC, Musselman RP, et al. Biopersistence of man-made vitreous fibers and crocidolite asbestos in the rat lung following inhalation. Fundam Appl Toxicol 1996; 29(2): 267–79

    Article  PubMed  CAS  Google Scholar 

  59. Shvedova AA, Kisin ER, Mercer R, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005; 289(5): L698–708

    Article  PubMed  CAS  Google Scholar 

  60. Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004; 77(1): 117–25

    Article  PubMed  CAS  Google Scholar 

  61. Muller J, Huaux F, Moreau N, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005; 207(3): 221–31

    Article  PubMed  CAS  Google Scholar 

  62. Inoue K, Takano H, Yanagisawa R, et al. Effects of nano particles on antigen-related airway inflammation in mice. Respir Res 2005; 6: 106

    Article  PubMed  CAS  Google Scholar 

  63. Jia G, Wang H, Yan L, et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 2005; 39(5): 1378–83

    Article  PubMed  CAS  Google Scholar 

  64. Baron PA, Maynard AD, Foley M. Evaluation of aerosol release during the handling of unrefined single walled carbon nanotube material. Cincinnati (OH): National Institute for Occupational Safety and Health, 2002 Dec. NIOSH report: DART-02-191

    Google Scholar 

  65. Maynard AD, Baron PA, Foley M, et al. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 2004; 67(1): 87–107

    Article  PubMed  CAS  Google Scholar 

  66. Masciangioli T, Zhang WX. Environmental technologies at the nanoscale. Environ Sci Technol 2003; 37(5): 102A–8A

    Article  PubMed  CAS  Google Scholar 

  67. Sayes CM, Gobin AM, Ausman KD, et al. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 2005; 26(36): 7587–95

    Article  PubMed  CAS  Google Scholar 

  68. Sayes C, Fortner J, Lyon D, et al. The differential cytotoxicity of water soluble fullerenes. Nano Lett 2004; 4: 1881–7

    Article  CAS  Google Scholar 

  69. Nelson MA, Domann FE, Bowden GT, et al. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol Ind Health 1993; 9(4): 623–30

    PubMed  CAS  Google Scholar 

  70. Monteiro-Riviere NA, Nemanich RJ, Inman AO, et al. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 2005; 155(3): 377–84

    Article  PubMed  CAS  Google Scholar 

  71. Ding L, Stilwell J, Zhang T, et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 2005; 5(12): 2448–64

    Article  PubMed  CAS  Google Scholar 

  72. Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 2003; 66(20): 1909–26

    Article  PubMed  CAS  Google Scholar 

  73. Manna SK, Sarkar S, Barr J, et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 2005; 5(9): 1676–84

    Article  PubMed  CAS  Google Scholar 

  74. Huczko AL, Lange H. Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy. Fullerene Sci Technol 2001; 9(2): 247–50

    Article  CAS  Google Scholar 

  75. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 2006; 91(1): 159–65

    Article  PubMed  CAS  Google Scholar 

  76. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol. Epub 2006 Aug 10

    Google Scholar 

  77. Lademann J, Weigmann H, Rickmeyer C, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 1999; 12(5): 247–56

    Article  PubMed  CAS  Google Scholar 

  78. Schulz J, Hohenberg H, Pflucker F, et al. Distribution of sunscreens on skin. Adv Drug Deliv Rev 2002; 54Suppl. 1: S157–63

    Article  PubMed  CAS  Google Scholar 

  79. Lam PK, Chan ES, Ho WS, et al. In vitro cytotoxicity testing of a nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Br J Biomed Sci 2004; 61(3): 125–7

    PubMed  CAS  Google Scholar 

  80. Chen Z, Meng H, Xing G, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 2006; 163(2): 109–20

    Article  PubMed  CAS  Google Scholar 

  81. Chen HH, Yu C, Ueng TH, et al. Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol Pathol 1998; 26(1): 143–51

    Article  PubMed  CAS  Google Scholar 

  82. Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 1995; 2(6): 385–9

    Article  PubMed  CAS  Google Scholar 

  83. Tsuchiya T, Oguri I, Yamakoshi YN, et al. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett 1996; 393(1): 139–45

    Article  PubMed  Google Scholar 

  84. Rajagopalan P, Wudl F, Schinazi RF, et al. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother 1996; 40(10): 2262–5

    PubMed  CAS  Google Scholar 

  85. Hillyer JF, Albrecht RM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 2001; 90(12): 1927–36

    Article  PubMed  CAS  Google Scholar 

  86. Oberdorster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004; 16(6–07): 437–45

    Article  PubMed  CAS  Google Scholar 

  87. Oberdorster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004; 112(10): 1058–62

    Article  PubMed  CAS  Google Scholar 

  88. Zhu S, Oberdorster E, Haasch ML. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 2006; 62 Suppl.: S5–9

    Article  PubMed  CAS  Google Scholar 

  89. Wang H, Wang J, Deng X, et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 2004; 4(8): 1019–24

    Article  PubMed  CAS  Google Scholar 

  90. Yamawaki H, Iwai N. Cytotoxicity of water-soluble fullerene in vascular endothelial cells. Am J Physiol Cell Physiol 2006; 290(6): C1495–502

    Article  PubMed  CAS  Google Scholar 

  91. Kirchner C, Liedl T, Kudera S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005; 5(2): 331–8

    Article  PubMed  CAS  Google Scholar 

  92. Derfus AM, Chan WCW, Bahtia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004; 4(1): 11–8

    Article  CAS  Google Scholar 

  93. Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006; 160(2): 121–6

    Article  PubMed  CAS  Google Scholar 

  94. Pantarotto D, Partidos CD, Graff R, et al. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J Am Chem Soc 2003; 125(20): 6160–4

    Article  PubMed  CAS  Google Scholar 

  95. Pantarotto D, Partidos CD, Hoebeke J, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 2003; 10(10): 961–6

    Article  PubMed  CAS  Google Scholar 

  96. Chen BX, Wilson SR, Das M, et al. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci U S A 1998; 95(18): 10809–13

    Article  PubMed  CAS  Google Scholar 

  97. Zakharenko LP, Zakharov IK, Vasiunina EA, et al. Determination of the genotoxicity of fullerene C60 and fullerol using the method of somatic mosaics on cells of Drosophila melanogaster wing and SOS-chromotest [in Russian]. Genetika 1997; 33(3): 405–9

    PubMed  CAS  Google Scholar 

  98. Babynin EV, Nuretdinov IA, Gubskaia VP, et al. Study of mutagenic activity of fullerene and some of its derivatives using His+ reversions of Salmonella typhimurium as an example [in Russian]. Genetika 2002; 38(4): 453–7

    PubMed  CAS  Google Scholar 

  99. Sera N, Tokiwa H, Miyata N. Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis 1996; 17(10): 2163–9

    Article  PubMed  CAS  Google Scholar 

  100. Tsuchiya T, Yamakoshi YN, Miyata N. A novel promoting action of fullerene C60 on the chondrogenesis in rat embryonic limb bud cell culture system. Biochem Biophys Res Commun 1995; 206(3): 885–94

    Article  PubMed  CAS  Google Scholar 

  101. Zheng M, Jagota A, Semke ED, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2003; 2(5): 338–42

    Article  PubMed  CAS  Google Scholar 

  102. Green M, Howman E. Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun (Camb) 2005; (1): 121–3

    Google Scholar 

  103. Lu ZX, Zhang ZL, Zhang MX, et al. Core/shell quantum-dot-photosensitized nano-TiO (2) films: fabrication and application to the damage of cells and DNA. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 2005; 109(47): 22663–6

    PubMed  CAS  Google Scholar 

  104. Braydich-Stolle L, Hussain S, Schlager JJ, et al. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 2005; 88(2): 412–9

    Article  PubMed  CAS  Google Scholar 

  105. ETC-Group. No small matter II: the case for a global moratorium. Size matters! Ottawa: ETC Group, 2003

    Google Scholar 

  106. Owen R, Depledge M. Nanotechnology and the environment: risks and rewards. Mar Pollut Bull 2005; 50(6): 609–12

    Article  PubMed  CAS  Google Scholar 

  107. Powell K. Green groups baulk at joining nanotechnology talks. Nature 2004; 432(7013): 5

    Article  PubMed  CAS  Google Scholar 

  108. Gaskell G, Ten Eyck T, Jackson J, et al. Public attitudes to nanotechnology in Europe and the United States. Nat Mater 2004; 3(8): 496

    Article  PubMed  CAS  Google Scholar 

  109. Giles J. Size matters when it comes to safety, report warns. Nature 2004; 430(7000): 599

    Article  PubMed  CAS  Google Scholar 

  110. Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 2006 Dec; 32(8): 967–76

    Article  PubMed  CAS  Google Scholar 

  111. Colvin VL. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 2003; 21(10): 1166–70

    Article  PubMed  CAS  Google Scholar 

  112. Oberdorster E, Zhu S, Blickley TM, et al. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 2006; 44: 1112–20

    Article  CAS  Google Scholar 

  113. Bergeson LL, Auerbach B. The Environmental regulatory implications of nanotechnology. Daily Environment Report No. 71. Washington, DC: Bureau of National Affairs Inc., 2004

    Google Scholar 

  114. Sharpe M. Small wonders, big future: the development of environmental nanotechnology. J Environ Monit 2006; 8(2): 235–9

    Article  PubMed  CAS  Google Scholar 

  115. Service RF. Nanotechnology: EPA ponders voluntary nanotechnology regulations [online]. Available from URL: http://www.sciencemag.org/cgi/content/full/sci;309/5731/36b [Accessed 2007 Jan 15]

  116. US Environmental Protection Agency. Toxicology of particulate matter in humans and laboratory animals [online]. Available from URL: http://www.epa.gov/osa/pdfs/EPA_nanotechnology_white_paper_external_review-_draft_12-02-2005.pdf [Accessed 2007 Jan 15]

  117. US Environmental Protection Agency. Air quality criteria for particulate matter [online]. Available from URL: http://cfpub.epa.gov/ncea/cfm/partmatt.cfm [Accessed 2007 Jan 15]

  118. US Environmental Protection Agency. Particulate matter standards [online]. Available from URL: http://www.epa.gov/air/particlepollution/standards.html [Accessed 2006 Dec 13]

  119. Dreher KL. Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 2004; 77(1): 3–5

    Article  PubMed  CAS  Google Scholar 

  120. US Department of Labor. Occupational Safety & Health Administration. Table Z-1 limits for air contaminants [online]. Available from URL: http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standard-s&p_id=9992 [Accessed 2007 Jan 11]

  121. US Department of Labor. Occupational Safety & Health Administration. Table Z-2–1910 [online]. Available from URL: http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=9993 [Accessed 2007 Jan 11]

  122. US Department of Labor. Occupational Safety & Health Administration. Table Z-3 mineral dusts [online]. Available from URL: http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=9994 [Accessed 2007 Jan 11]

  123. Miller J. Beyond biotechnology: FDA regulation of nanomedicine. Columbia Sci Technol Law Rev 2003; 4: E5

    PubMed  Google Scholar 

  124. Moore R. Standards in the 21st century: standardising new medical technologies, part I. Med Device Technol 2002; 13(9): 44–5

    PubMed  Google Scholar 

Download references

Acknowledgements

John Curtis, MD, reports that he was compensated for his time by Newfields, LLC, Atlanta, GA, USA. No other sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review. The authors would like to thank Benjamin Legum for his contributions to the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Curtis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, J., Greenberg, M., Kester, J. et al. Nanotechnology and Nanotoxicology. Toxicol Rev 25, 245–260 (2006). https://doi.org/10.2165/00139709-200625040-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00139709-200625040-00005

Keywords

Navigation