Skip to main content
Log in

Oncogenes as Novel Targets for Cancer Therapy (Part III)

Transcription Factors

  • Targeted Therapeutics
  • Published:
American Journal of Pharmacogenomics

Abstract

This is the third paper in a four-part serial review on potential therapeutic targeting of oncogenes. The previous parts described the involvement of oncogenes in different aspects of cancer growth and development, and considered the new technologies responsible for the advancement of oncogene identification, target validation, and drug design. Because of such advances, new specific and more efficient therapeutic agents can be developed for cancer. This part of the review continues the exploration of various oncogenes that we have grouped within seven categories: growth factors, tyrosine kinases, intermediate signaling molecules, transcription factors, cell cycle regulators, DNA damage repair genes, and genes involved in apoptosis. Part one discussed growth factors and tyrosine kinases and part two discussed intermediate signaling molecules. This portion of the review covers transcription factors and the various strategies being used to inhibit their expression or decrease their activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rappold GA, Hameister H, Cremer T, et al. c-myc and immunoglobulin kappa light chain constant genes are on the 8q+ chromosome of three Burkitt lymphoma lines with t(2;8) translocations. EMBO J 1984; 3: 2951–5

    PubMed  CAS  Google Scholar 

  2. Levens DL. Reconstructing MYC. Genes Dev 2003; 17: 1071–7

    Article  PubMed  CAS  Google Scholar 

  3. Oster SK, Ho CS, Soucie EL, et al. The myc oncogene: MarvelouslY complex. Adv Cancer Res 2002; 84: 81–154

    Article  PubMed  CAS  Google Scholar 

  4. Bouchard C, Dittrich O, Kiermaier A, et al. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 2001; 15: 2042–7

    Article  PubMed  CAS  Google Scholar 

  5. Nair SK, Burley SK. X-ray structures of Myc-Max and Mad-Max recognizing DNA: molecular bases of regulation by proto-oncogenic transcription factors. Cell 2003; 112: 193–205

    Article  PubMed  CAS  Google Scholar 

  6. Patel JH, Loboda AP, Showe MK, et al. Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 2004; 4: 562–8

    Article  PubMed  CAS  Google Scholar 

  7. Pelengaris S, Khan M. The many faces of c-MYC. Arch Biochem Biophys 2003; 416: 129–36

    Article  PubMed  CAS  Google Scholar 

  8. Hipfner DR, Cohen SM. Connecting proliferation and apoptosis in development and disease. Nat Rev Mol Cell Biol 2004; 5: 805–15

    Article  PubMed  CAS  Google Scholar 

  9. Amati B. Integrating Myc and TGF-beta signalling in cell-cycle control. Nat Cell Biol 2001; 3: E112–3

    Article  PubMed  CAS  Google Scholar 

  10. O’Connell BC, Cheung AF, Simkevich CP, et al. A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem 2003; 278: 12563–73

    Article  PubMed  Google Scholar 

  11. Mateyak MK, Obaya AJ, Adachi S, et al. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ 1997; 8: 1039–48

    PubMed  CAS  Google Scholar 

  12. Iritani BM, Eisenman RN. C-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci U S A 1999; 96: 13180–5

    Article  PubMed  CAS  Google Scholar 

  13. Coller HA, Grandori C, Tamayo P, et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A 2000; 97: 3260–5

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt EV. The role of c-myc in regulation of translation initiation. Oncogene 2004; 23: 3217–21

    Article  PubMed  CAS  Google Scholar 

  15. Gomez-Roman N, Grandori C, Eisenman RN, et al. Direct activation of RNA polymerase III transcription by c-Myc. Nature 2003; 421: 290–4

    Article  PubMed  CAS  Google Scholar 

  16. Berns K, Hijmans EM, Bernards R. Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclin E/CDK2 kinase activity. Oncogene 1997; 15: 1347–56

    Article  PubMed  CAS  Google Scholar 

  17. Dotto GP, Gilman MZ, Maruyama M, et al. c-myc and c-fos expression in differentiating mouse primary keratinocytes. EMBO J 1986; 5: 2853–7

    PubMed  CAS  Google Scholar 

  18. Juin P, Hueber AO, Littlewood T, et al. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev 1999; 13: 1367–81

    Article  PubMed  CAS  Google Scholar 

  19. Zindy F, Eischen CM, Randle DH, et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998; 12: 2424–33

    Article  PubMed  CAS  Google Scholar 

  20. Moreno E, Basier K. dMyc transforms cells into super-competitors. Cell 2004; 117: 117–29

    Article  PubMed  CAS  Google Scholar 

  21. de la Cova C, Abril M, Bellosta P, et al. Drosophila myc regulates organ size by inducing cell competition. Cell 2004; 117: 107–16

    Article  PubMed  Google Scholar 

  22. Biroccio A, Leonetti C, Zupi G. The future of antisense therapy: combination with anticancer treatments. Oncogene 2003; 22: 6579–88

    Article  PubMed  CAS  Google Scholar 

  23. Nilsson JA, Cleveland JL. Myc pathways provoking cell suicide and cancer. Oncogene 2003; 22: 9007–21

    Article  PubMed  CAS  Google Scholar 

  24. Bitzer M, Stahl M, Arjumand J, et al. C-myc gene amplification in different stages of oesophageal squamous cell carcinoma: prognostic value in relation to treatment modality. Anticancer Res 2003; 23: 1489–93

    PubMed  CAS  Google Scholar 

  25. Jamerson MH, Johnson MD, Dickson RB. Of mice and Myc: c-Myc and mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2004; 9: 27–37

    Article  PubMed  Google Scholar 

  26. Hilbe W, Dirnhofer S, Greil R, et al. Biomarkers in non-small cell lung cancer prevention. Eur J Cancer Prev 2004; 13: 425–36

    Article  PubMed  CAS  Google Scholar 

  27. Brychtova S, Brychta T, Sedlakova E, et al. Proto-oncogene c-myc in uterine cervix carcinogenesis. Neoplasma 2004; 51: 84–9

    PubMed  CAS  Google Scholar 

  28. Grushko TA, Dignam JJ, Das S, et al. MYC is amplified in BRCA1-associated breast cancers. Clin Cancer Res 2004; 10: 499–507

    Article  PubMed  CAS  Google Scholar 

  29. Court EL, Smith MA, Avent ND, et al. DNA microarray screening of differential gene expression in bone marrow samples from AML, non-AML patients and AML cell lines. Leuk Res 2004; 28: 743–53

    Article  PubMed  CAS  Google Scholar 

  30. Schlotter CM, Vogt U, Bosse U, et al. C-myc, not HER-2/neu, can predict recurrence and mortality of patients with node-negative breast cancer. Breast Cancer Res 2003; 5: R30–6

    Article  PubMed  CAS  Google Scholar 

  31. Vijayalakshmi N, Selvaluxmi G, Mahji U, et al. T. C-myc oncoprotein expression and prognosis in patients with carcinoma of the cervix: an immunohistochemical study. Eur J Gynaecol Oncol 2002; 23: 135–8

    PubMed  CAS  Google Scholar 

  32. Geisler JP, Geisler HE, Manahan KJ, et al. Nuclear and cytoplasmic c-myc staining in endometrial carcinoma and their relationship to survival. Int J Gynecol Cancer 2004; 14: 133–7

    Article  PubMed  CAS  Google Scholar 

  33. Cui J, Dong BW, Liang P, et al. Effect of c-myc, Ki-67, MMP-2 and VEGF expression on prognosis of hepatocellular carcinoma patients undergoing tumor resection. World J Gastroenterol 2004; 10: 1533–6

    PubMed  CAS  Google Scholar 

  34. Prochownik EV. c-Myc as a therapeutic target in cancer. Expert Rev Anticancer Ther 2004; 4: 289–302

    Article  PubMed  CAS  Google Scholar 

  35. Langenau DM, Traver D, Ferrando AA, et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 2003; 299: 887–90

    Article  PubMed  CAS  Google Scholar 

  36. Flores I, Murphy DJ, Swigart LB, et al. Defining the temporal requirements for Myc in the progression and maintenance of skin neoplasia. Oncogene 2004; 23: 5923–30

    Article  PubMed  CAS  Google Scholar 

  37. Swanson PJ, Kuslak SL, Fang W, et al. Fatal acute lymphoblastic leukemia in mice transgenic for B cell-restricted bcl-xL and c-myc. J Immunol 2004; 172: 6684–91

    PubMed  CAS  Google Scholar 

  38. Cheung WC, Kim JS, Linden M, et al. Novel targeted deregulation of c-Myc cooperates with Bcl-X(L) to cause plasma cell neoplasms in mice. J Clin Invest 2004; 113: 1763–73

    PubMed  CAS  Google Scholar 

  39. Pelengaris S, Khan M, Evan GI. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 2002; 109: 321–34

    Article  PubMed  CAS  Google Scholar 

  40. Jain M, Arvanitis C, Chu K, et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 2002; 297: 102–4

    Article  PubMed  CAS  Google Scholar 

  41. Vafa O, Wade M, Kern S, et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002; 9: 1031–44

    Article  PubMed  CAS  Google Scholar 

  42. Russo P, Arzani D, Trombino S, et al. c-myc down-regulation induces apoptosis in human cancer cell lines exposed to RPR-115135 (C31H29NO4), a non-pep-tidomimetic farnesyltransferase inhibitor. J Pharmacol Exp Ther 2003; 304: 37–47

    Article  PubMed  CAS  Google Scholar 

  43. Knapp DC, Mata JE, Reddy MT, et al. Resistance to chemotherapeutic drugs overcome by c-Myc inhibition in a Lewis lung carcinoma murine model. Anticancer Drugs 2003; 14: 39–47

    Article  PubMed  CAS  Google Scholar 

  44. Pession A, Tonelli R, Fronza R, et al. Targeted inhibition of NMYC by peptide nucleic acid in N-myc amplified human neuroblastoma cells: cell-cycle inhibition with induction of neuronal cell differentiation and apoptosis. Int J Oncol 2004; 24: 265–72

    PubMed  CAS  Google Scholar 

  45. Galderisi U, Jori FP, Giordano A. Cell cycle regulation and neural differentiation. Oncogene 2003; 22: 5208–19

    Article  PubMed  CAS  Google Scholar 

  46. Hogarty MD. The requirement for evasion of programmed cell death in neuroblastomas with MYCN amplification. Cancer Lett 2003; 197: 173–9

    Article  PubMed  CAS  Google Scholar 

  47. Lu X, Pearson A, Lunec J. The MYCN oncoprotein as a drug development target. Cancer Lett 2003; 197: 125–30

    Article  PubMed  CAS  Google Scholar 

  48. Schor NF. Neuroblastoma as a neurobiological disease. J Neurooncol 1999; 41: 159–66

    Article  PubMed  CAS  Google Scholar 

  49. Galderisi U, Di Bernardo G, Cipollaro M, et al. Differentiation and apoptosis of neuroblastoma cells: role of N-myc gene product. J Cell Biochem 1999; 73: 97–105

    Article  PubMed  CAS  Google Scholar 

  50. Oh IH, Reddy EP. The myb gene family in cell growth, differentiation and apoptosis. Oncogene 1999; 18: 3017–33

    Article  PubMed  CAS  Google Scholar 

  51. Zabel BU, Naylor SL, Grzeschik KH, et al. Regional assignment of human protooncogene c-myb to 6q21—qter. Somat Cell Mol Genet 1984; 10: 105–8

    Article  PubMed  CAS  Google Scholar 

  52. Biedenkapp H, Borgmeyer U, Sippel AE, et al. Viral myb oncogene encodes a sequence-specific DNA-binding activity. Nature 1988; 335: 835–7

    Article  PubMed  CAS  Google Scholar 

  53. Ramsay RG, Barton AL, Gonda TJ. Targeting c-Myb expression in human disease. Expert Opin Ther Targets 2003; 7: 235–48

    Article  PubMed  CAS  Google Scholar 

  54. Schmidt M, Koller R, Haviernik P, et al. Deregulated c-Myb expression in murine myeloid leukemias prevents the up-regulation of p15(INK4b) normally associated with differentiation. Oncogene 2001; 20: 6205–14

    Article  PubMed  CAS  Google Scholar 

  55. Mucenski ML, McLain K, Kier AB, et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 1991; 65: 677–89

    Article  PubMed  CAS  Google Scholar 

  56. Zorbas M, Sicurella C, Bertoncello I, et al. c-Myb is critical for murine colon development. Oncogene 1999; 18: 5821–30

    Article  PubMed  CAS  Google Scholar 

  57. Ramsay RG, Micallef S, Lightowler S, et al. c-Myb heterozygous mice are hypersensitive to 5-fluorouracil and ionizing radiation. Mol Cancer Res 2004; 2: 354–61

    PubMed  CAS  Google Scholar 

  58. Chen J, Kremer CS, Bender TP. A Myb dependent pathway maintains Friend murine erythroleukemia cells in an immature and proliferating state. Oncogene 2002; 21: 1859–69

    Article  PubMed  CAS  Google Scholar 

  59. Fu SL, Lipsick JS. Constitutive expression of full-length c-Myb transforms avian cells characteristic of both the monocytic and granulocytic lineages. Cell Growth Differ 1997; 8: 35–45

    PubMed  CAS  Google Scholar 

  60. Jahagirdar BN, Miller JS, Shet A, et al. Novel therapies for chronic myelogenous leukemia. Exp Hematol 2001; 29: 543–56

    Article  PubMed  CAS  Google Scholar 

  61. Funato T, Satou J, Kozawa K, et al. Use of c-myb antisense oligonucleotides to increase the sensitivity of human colon cancer cells to cisplatin. Oncol Rep 2001; 8: 807–10

    PubMed  CAS  Google Scholar 

  62. Pastorino F, Brignole C, Marimpietri D, et al. Targeted liposomal c-myc antisense olig odeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models. Clin Cancer Res 2003; 9: 4595–605

    PubMed  CAS  Google Scholar 

  63. Luger SM, O’Brien SG, Ratajczak J, et al. Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 2002; 99: 1150–8

    Article  PubMed  CAS  Google Scholar 

  64. Cavalieri F, Ruscio T, Tinoco R, et al. Isolation of three new avian sarcoma viruses: ASV 9, ASV 17, and ASV 25. Virology 1985; 143: 680–3

    Article  PubMed  CAS  Google Scholar 

  65. Dunn C, Wiltshire C, MacLaren A, et al. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal 2002; 14: 585–93

    Article  PubMed  CAS  Google Scholar 

  66. Li G, Gustafson-Brown C, Hanks SK, et al. c-Jun is essential for organization of the epidermal leading edge. Dev Cell 2003; 4: 865–77

    Article  PubMed  CAS  Google Scholar 

  67. Chinenov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001; 20: 2438–52

    Article  PubMed  CAS  Google Scholar 

  68. Hattori K, Angel P, Le Beau MM, et al. Structure and chromosomal localization of the functional intronless human JUN protooncogene. Proc Natl Acad Sci U S A 1988; 85: 148–52

    Article  Google Scholar 

  69. Vogt PK. Jun, the oncoprotein. Oncogene 2001; 20: 2365–77

    Article  PubMed  CAS  Google Scholar 

  70. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: E131–6

    Article  PubMed  CAS  Google Scholar 

  71. Schreiber M, Kolbus A, Piu F, et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 1999; 13: 607–19

    Article  PubMed  CAS  Google Scholar 

  72. Shaulian E, Schreiber M, Piu F, et al. The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest. Cell 2000; 103: 897–907

    Article  PubMed  CAS  Google Scholar 

  73. Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene 2001; 20: 2390–400

    Article  PubMed  CAS  Google Scholar 

  74. Wong WY, Havarstein LS, Morgan IM, et al. c-Jun causes focus formation and anchorage-independent growth in culture but is non-tumorigenic. Oncogene 1992; 7: 2077–80

    PubMed  CAS  Google Scholar 

  75. Castellazzi M, Dangy JP, Mechta F, et al. Overexpression of avian or mouse c-jun in primary chick embryo fibroblasts confers a partially transformed phenotype. Oncogene 1990; 5: 1541–7

    PubMed  CAS  Google Scholar 

  76. Schutte J, Minna JD, Birrer MJ. Deregulated expression of human c-jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms rat-la cells as a single gene. Proc Natl Acad Sci U S A 1989; 86: 2257–61

    Article  PubMed  CAS  Google Scholar 

  77. Mechta F, Lallemand D, Pfarr CM, et al. Transformation by ras modifies AP1 composition and activity. Oncogene 1997; 14: 837–47

    Article  PubMed  CAS  Google Scholar 

  78. Smith LM, Wise SC, Hendricks DT, et al. c-Jun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype. Oncogene 1999; 18: 6063–70

    Article  PubMed  CAS  Google Scholar 

  79. Kameda T, Watanabe H, Iba H. C-Jun and JunD suppress maturation of chondrocytes. Cell Growth Differ 1997; 8: 495–503

    PubMed  CAS  Google Scholar 

  80. Johnson R, Spiegelman B, Hanahan D, et al. Cellular transformation and malignancy induced by ras require c-jun. Mol Cell Biol 1996; 16: 4504–11

    PubMed  CAS  Google Scholar 

  81. Zenz R, Scheuch H, Martin P, et al. c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev Cell 2003; 4: 879–89

    Article  PubMed  CAS  Google Scholar 

  82. Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 2003; 3: 859–68

    Article  PubMed  CAS  Google Scholar 

  83. Troen G, Nygaard V, Jenssen TK, et al. Constitutive expression of the AP-1 transcription factors c-jun, junD, junB, and c-fos and the marginal zone B-cell transcription factor Notch2 in splenic marginal zone lymphoma. J Mol Diagn 2004; 6: 297–307

    Article  PubMed  CAS  Google Scholar 

  84. Edwards J, Krishna NS, Mukherjee R, et al. The role of c-Jun and c-Fos expression in androgen-independent prostate cancer. J Pathol 2004; 204: 153–8

    Article  PubMed  CAS  Google Scholar 

  85. Karamouzis MV, Sotiropoulou-Bonikou G, Vandoros G, et al. Differential expression of retinoic acid receptor beta (RARbeta) and the AP-1 transcription factor in normal, premalignant and malignant human laryngeal tissues. Eur J Cancer 2004; 40: 761–73

    Article  PubMed  CAS  Google Scholar 

  86. Staber PB, Linkesch W, Zauner D, et al. Common alterations in gene expression and increased proliferation in recurrent acute myeloid leukemia. Oncogene 2004; 23: 894–904

    Article  PubMed  CAS  Google Scholar 

  87. Huang Y, Keen JC, Hager E, et al. Regulation of polyamine analogue cytotoxicity by c-Jun in human MDA-MB-435 cancer cells. Mol Cancer Res 2004; 2: 81–8

    PubMed  CAS  Google Scholar 

  88. Eferl R, Sibilia M, Hilberg F, et al. Functions of c-Jun in liver and heart development. J Cell Biol 1999; 145: 1049–61

    Article  PubMed  CAS  Google Scholar 

  89. Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood 2003; 101: 4667–79

    Article  PubMed  CAS  Google Scholar 

  90. Meggiato T, Calabrese F, De Cesare CM, et al. C-JUN and CPP32 (CASPASE 3) in human pancreatic cancer: relation to cell proliferation and death. Pancreas 2003; 26: 65–70

    Article  PubMed  CAS  Google Scholar 

  91. Ivanov VN, Bhoumik A, Ronai Z. Death receptors and melanoma resistance to apoptosis. Oncogene 2003; 22: 3152–61

    Article  PubMed  CAS  Google Scholar 

  92. Hartl M, Bader AG, Bister K. Molecular targets of the oncogenic transcription factor jun. Curr Cancer Drug Targets 2003; 3: 41–55

    Article  PubMed  CAS  Google Scholar 

  93. Hahm ER, Park S, Yang CH. 7, 8-dihydroxyflavanone as an inhibitor for Jun-Fos-DNA complex formation and its cytotoxic effect on cultured human cancer cells. Nat Prod Res 2003; 17: 431–6

    Article  PubMed  CAS  Google Scholar 

  94. Suto R, Tominaga K, Mizuguchi H, et al. Dominant-negative mutant of c-Jun gene transfer: a novel therapeutic strategy for colorectal cancer. Gene Ther 2004; 11: 187–93

    Article  PubMed  CAS  Google Scholar 

  95. Young MR, Farrell L, Lambert P, et al. Protection against human papillomavirus type 16-E7 oncogene-induced tumorigenesis by in vivo expression of dominant-negative c-jun. Mol Carcinog 2002; 34: 72–7

    Article  PubMed  CAS  Google Scholar 

  96. Thompson EJ, MacGowan J, Young MR, et al. A dominant negative c-jun specifically blocks okadaic acid-induced skin tumor promotion. Cancer Res 2002; 62: 3044–7

    PubMed  CAS  Google Scholar 

  97. Zhang G, Dass CR, Sumithran E, et al. Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents. J Natl Cancer Inst 2004; 96: 683–96

    Article  PubMed  CAS  Google Scholar 

  98. Zada AA, Singh SM, Reddy VA, et al. Downregulation of c-Jun expression and cell cycle regulatory molecules in acute myeloid leukemia cells upon CD44 ligation. Oncogene 2003; 22: 2296–308

    Article  PubMed  CAS  Google Scholar 

  99. Kovesdi I, Reichel R, Nevins JR. Identification of a cellular transcription factor involved in E1A trans-activation. Cell 1986; 45: 219–28

    Article  PubMed  CAS  Google Scholar 

  100. Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 2002; 3: 11–20

    Article  PubMed  CAS  Google Scholar 

  101. Logan N, Delavaine L, Graham A, et al. E2F-7: a distinctive E2F family member with an unusual organization of DNA-binding domains. Oncogene 2004; 23: 5138–50

    Article  PubMed  CAS  Google Scholar 

  102. Bell LA, Ryan KM. Life and death decisions by E2F-1. Cell Death Differ 2004; 11: 137–42

    Article  PubMed  CAS  Google Scholar 

  103. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12: 2245–62

    Article  PubMed  CAS  Google Scholar 

  104. Trimarchi JM, Fairchild B, Wen J, et al. The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc Natl Acad Sci U S A 2001; 98: 1519–24

    Article  PubMed  CAS  Google Scholar 

  105. Mundle SD, Saberwal G. Evolving intricacies and implications of E2F1 regulation. FASEB J 2003; 17: 569–74

    Article  PubMed  CAS  Google Scholar 

  106. Onda M, Nagai H, Yoshida A, et al. Up-regulation of transcriptional factor E2F1 in papillary and anaplastic thyroid cancers. J Hum Genet 2004; 49: 312–8

    Article  PubMed  CAS  Google Scholar 

  107. Gorgoulis VG, Zacharatos P, Mariatos G, et al. Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol 2002; 198: 142–56

    Article  PubMed  CAS  Google Scholar 

  108. Yamazaki K, Yajima T, Nagao T, et al. Expression of transcription factor E2F-1 in pancreatic ductal carcinoma: an immunohistochemical study. Pathol Res Pract 2003; 199: 23–8

    Article  PubMed  Google Scholar 

  109. Pierce AM, Schneider-Broussard R, Gimenez-Conti IB, et al. E2F1 has both oncogenic and tumor-suppressive properties in a transgenic model. Mol Cell Biol 1999; 19: 6408–14

    PubMed  CAS  Google Scholar 

  110. Wong CF, Barnes LM, Dahler AL, et al. E2F modulates keratinocyte squamous differentiation: implications for E2F inhibition in squamous cell carcinoma. J Biol Chem 2003; 278: 28516–22

    Article  PubMed  CAS  Google Scholar 

  111. Louie MC, Zou JX, Rabinovich A, et al. ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol 2004; 24: 5157–71

    Article  PubMed  CAS  Google Scholar 

  112. Arakawa Y, Kajino K, Kano S, et al. Transcription of dbpA, a Y box binding protein, is positively regulated by E2F1: implications in hepatocarcinogenesis. Biochem Biophys Res Commun 2004; 322: 297–302

    Article  PubMed  CAS  Google Scholar 

  113. Jiang Y, Saavedra HI, Holloway MP, et al. Aberrant regulation of survivin by the RB/E2F family of proteins. J Biol Chem 2004; 279: 40511–20

    Article  PubMed  CAS  Google Scholar 

  114. Santoni-Rugiu E, Duro D, Farkas T, et al. E2F activity is essential for survival of Myc-overexpressing human cancer cells. Oncogene 2002; 21: 6498–509

    Article  PubMed  CAS  Google Scholar 

  115. Baudino TA, Maclean KH, Brennan J, et al. Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2fl loss. Mol Cell 2003; 11: 905–14

    Article  PubMed  CAS  Google Scholar 

  116. Agger K, Santoni-Rugiu E, Holmberg C, et al. Conditional E2F1 activation in transgenic mice causes testicular atrophy and dysplasia mimicking human CIS. Oncogene 2005; 24: 780–9

    Article  PubMed  CAS  Google Scholar 

  117. Wikonkal NM, Remenyik E, Knezevic D, et al. Inactivating E2f 1 reverts apoptosis resistance and cancer sensitivity in Trp53-deficient mice. Nat Cell Biol 2003; 5: 655–60

    Article  PubMed  CAS  Google Scholar 

  118. La Thangue NB. The yin and yang of E2F-1: balancing life and death. Nat Cell Biol 2003; 5: 587–9

    Article  PubMed  CAS  Google Scholar 

  119. Ahn JD, Kim CH, Magae J, et al. E2F decoy oligodeoxynucleotides effectively inhibit growth of human tumor cells. Biochem Biophys Res Commun 2003; 310: 1048–53

    Article  PubMed  CAS  Google Scholar 

  120. Shi Y, Lee JS, Galvin KM. Everything you have ever wanted to know about Yin Yang 1. Biochim Biophys Acta 1997; 1332: F49–66

    PubMed  CAS  Google Scholar 

  121. Shi Y, Seto E, Chang LS, et al. Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein. Cell 1991; 67: 377–88

    Article  PubMed  CAS  Google Scholar 

  122. Becker KG, Jedlicka P, Templeton NS, et al. Characterization of hUCRBP (YY1, NF-E1, delta): a transcription factor that binds the regulatory regions of many viral and cellular genes. Gene 1994; 150: 259–66

    Article  PubMed  CAS  Google Scholar 

  123. Flanagan JR, Becker KG, Ennist DL, et al. Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus. Mol Cell Biol 1992; 12: 38–44

    PubMed  CAS  Google Scholar 

  124. Park K, Atchison ML. Isolation of a candidate repressor/activator, NF-E1 (YY-1, delta), that binds to the immunoglobulin kappa 3′ enhancer and the immunoglobulin heavy-chain mu El site. Proc Natl Acad Sci U S A 1991; 88: 9804–8

    Article  PubMed  CAS  Google Scholar 

  125. Yao YL, Dupont BR, Ghosh S, et al. Cloning, chromosomal localization and promoter analysis of the human transcription factor YY1. Nucleic Acids Res 1998; 26: 3776–83

    Article  PubMed  CAS  Google Scholar 

  126. Thomas MJ, Seto E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene 1999; 236: 197–208

    Article  PubMed  CAS  Google Scholar 

  127. Santiago FS, Lowe HC, Bobryshev YV, et al. Induction of the transcriptional repressor Yin Yang-1 by vascular cell injury: autocrine/paracrine role of endogenous fibroblast growth factor-2. J Biol Chem 2001; 276: 41143–9

    Article  PubMed  CAS  Google Scholar 

  128. Walowitz JL, Bradley ME, Chen S, et al. Proteolytic regulation of the zinc finger transcription factor YY1, a repressor of muscle-restricted gene expression. J Biol Chem 1998; 273: 6656–61

    Article  PubMed  CAS  Google Scholar 

  129. Pizzorno MC. Nuclear cathepsin B-like protease cleaves transcription factor YY1 in differentiated cells. Biochim Biophys Acta 2001; 1536: 31–42

    Article  PubMed  CAS  Google Scholar 

  130. Yao YL, Yang WM, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 2001; 21: 5979–91

    Article  PubMed  CAS  Google Scholar 

  131. Hiromura M, Choi CH, Sabourin NA, et al. YY1 is regulated by O-linked N-acetylglucosaminylation (O-glcNAcylation). J Biol Chem 2003; 278: 14046–52

    Article  PubMed  CAS  Google Scholar 

  132. Petkova V, Romanowski MJ, Sulijoadikusumo I, et al. Interaction between YY1 and the retinoblastoma protein: regulation of cell cycle progression in differentiated cells. J Biol Chem 2001; 276: 7932–6

    Article  PubMed  CAS  Google Scholar 

  133. Yeh TS, Lin YM, Hsieh RH, et al. Association of transcription factor YY1 with the high molecular weight Notch complex suppresses the transactivation activity of Notch. J Biol Chem 2003; 278: 41963–9

    Article  PubMed  CAS  Google Scholar 

  134. Lee KH, Evans S, Ruan TY, et al. SMAD-mediated modulation of YY1 activity regulates the BMP response and cardiac-specific expression of a GATA4/5/6-dependent chick Nkx2.5 enhancer. Development 2004; 131: 4709–23

    Article  PubMed  CAS  Google Scholar 

  135. Morgan MJ, Woltering JM, In der Rieden PM, et al. YY1 regulates the neural crest associated slug gene in Xenopus laevis. J Biol Chem 2004 Nov 5; 279(45): 46826–46834. Epub 2004 Aug 23

    Article  PubMed  CAS  Google Scholar 

  136. Patel SR, Dressler GR. Expression of Pax2 in the intermediate mesoderm is regulated by YY1. Dev Biol 2004; 267: 505–16

    Article  PubMed  CAS  Google Scholar 

  137. Latinkic BV, Cooper B, Smith S, et al. Transcriptional regulation of the cardiac-specific MLC2 gene during Xenopus embryonic development. Development 2004; 131: 669–79

    Article  PubMed  CAS  Google Scholar 

  138. Schlisio S, Halperin T, Vidal M, et al. Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function. EMBO J 2002; 21: 5775–86

    Article  PubMed  CAS  Google Scholar 

  139. Palko L, Bass HW, Beyrouthy MJ, et al. The Yin Yang-1 (YY1) protein undergoes a DNA-replication-associated switch in localization from the cytoplasm to the nucleus at the onset of S phase. J Cell Sci 2004; 117: 465–76

    Article  PubMed  CAS  Google Scholar 

  140. Shestakova EA, Mansuroglu Z, Mokrani H, et al. Transcription factor YY1 associates with pericentromeric gamma-satellite DNA in cycling but not in quiescent (GO) cells. Nucleic Acids Res 2004; 32: 4390–9

    Article  PubMed  CAS  Google Scholar 

  141. Mobley CM, Sealy L. Role of the transcription start site core region and transcription factor YY1 in Rous sarcoma virus long terminal repeat promoter activity. J Virol 1998; 72: 6592–601

    PubMed  CAS  Google Scholar 

  142. Knossl M, Lower R, Lower J. Expression of the human endogenous retrovirus HTDV/HERV-K is enhanced by cellular transcription factor YY1. J Virol 1999; 73: 1254–61

    PubMed  CAS  Google Scholar 

  143. Meier JL, Keller MJ, McCoy JJ. Requirement of multiple cis-acting elements in the human cytomegalovirus major immediate-early distal enhancer for viral gene expression and replication. J Virol 2002; 76: 313–26

    Article  PubMed  CAS  Google Scholar 

  144. Rose BR, Thompson CH, Zhang J, et al. Sequence variation in the upstream regulatory region of HPV 18 isolates from cervical cancers. Gynecol Oncol 1997; 66: 282–9

    Article  PubMed  CAS  Google Scholar 

  145. Meccia E, Bottero L, Felicetti F, et al. HOXB7 expression is regulated by the transcription factors NF-Y, YY1, Sp1 and USF-1. Biochim Biophys Acta 2003; 1626: 1–9

    Article  PubMed  CAS  Google Scholar 

  146. Sitwala KV, Adams K, Markovitz DM. YY1 and NF-Y binding sites regulate the transcriptional activity of the dek and dek-can promoter. Oncogene 2002; 21: 8862–70

    Article  PubMed  CAS  Google Scholar 

  147. Erkeland SJ, Valkhof M, Heijmans-Antonissen C, et al. gene encoding the transcriptional regulator Yin Yang 1 (YY1) is a myeloid transforming gene interfering with neutrophilic differentiation. Blood 2003; 101: 1111–7

    Article  PubMed  CAS  Google Scholar 

  148. Lee HY, Chaudhary J, Walsh GL, et al. Suppression of c-Fos gene transcription with malignant transformation of human bronchial epithelial cells. Oncogene 1998; 16: 3039–46

    Article  PubMed  CAS  Google Scholar 

  149. Sui G, Affar el B, Shi Y, et al. Yin Yang 1 is a negative regulator of p53. Cell 2004; 117: 859–72

    Article  PubMed  CAS  Google Scholar 

  150. Gronroos E, Terentiev AA, Punga T, et al. YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc Natl Acad Sci U S A 2004; 101: 12165–70

    Article  PubMed  Google Scholar 

  151. Yakovleva T, Kolesnikova L, Vukojevic V, et al. YY1 binding to a subset of p53 DNA-target sites regulates p53-dependent transcription. Biochem Biophys Res Commun 2004; 318: 615–24

    Article  PubMed  CAS  Google Scholar 

  152. Park JS, Hwang ES, Lee CJ, et al. Mutational and functional analysis of HPV-16 URR derived from Korean cervical neoplasia. Gynecol Oncol 1999; 74: 23–9

    Article  PubMed  CAS  Google Scholar 

  153. Stephen AL, Thompson CH, Tattersall MH, et al. Analysis of mutations in the URR and E6/E7 oncogenes of HPV 16 cervical cancer isolates from central China. Int J Cancer 2000; 86: 695–701

    Article  PubMed  CAS  Google Scholar 

  154. Veress G, Murvai M, Szarka K, et al. Transcriptional activity of human papillomavirus type 16 variants having deletions in the long control region. Eur J Cancer 2001; 37: 1946–52

    Article  PubMed  CAS  Google Scholar 

  155. Kozuka T, Aoki Y, Nakagawa K, et al. Enhancer-promoter activity of human papillomavirus type 16 long control regions isolated from cell lines SiHa and CaSki and cervical cancer biopsies. Jpn J Cancer Res 2000; 91: 271–9

    Article  PubMed  CAS  Google Scholar 

  156. Parija T, Das BR. Involvement of YY1 and its correlation with c-myc in NDEA induced hepatocarcinogenesis, its prevention by d-limonene. Mol Biol Rep 2003; 30: 41–6

    Article  PubMed  CAS  Google Scholar 

  157. Johnson PF, McKnight SL. Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 1989; 58: 799–839

    Article  PubMed  CAS  Google Scholar 

  158. Landschulz WH, Johnson PF, Adashi EY, et al. Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev 1988; 2: 786–800

    Article  PubMed  CAS  Google Scholar 

  159. Hendricks-Taylor LR, Bachinski LL, Siciliano MJ, et al. The CCAAT/enhancer binding protein (C/EBP alpha) gene (CEBPA) maps to human chromosome 19q13.1 and the related nuclear factor NF-IL6 (C/EBP beta) gene (CEBPB) maps to human chromosome 20q13.1. Genomics 1992; 14: 12–7

    Article  PubMed  CAS  Google Scholar 

  160. Takiguchi M. The C/EBP family of transcription factors in the liver and other organs. Int J Exp Pathol 1998; 79: 369–91

    Article  PubMed  CAS  Google Scholar 

  161. Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 2002; 365: 561–75

    PubMed  CAS  Google Scholar 

  162. Poli V, Mancini FP, Cortese R. IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. Cell 1990; 63: 643–53

    Article  PubMed  CAS  Google Scholar 

  163. Chumakov AM, Grillier I, Chumakova E, et al. Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor. Mol Cell Biol 1997; 17: 1375–86

    PubMed  CAS  Google Scholar 

  164. Cooper C, Henderson A, Artandi S, et al. Ig/EBP (C/EBP gamma) is a transdominant negative inhibitor of C/EBP family transcriptional activators. Nucleic Acids Res 1995; 23: 4371–7

    Article  PubMed  CAS  Google Scholar 

  165. Osada S, Yamamoto H, Nishihara T, et al. DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family. J Biol Chem 1996; 271: 3891–6

    Article  PubMed  CAS  Google Scholar 

  166. Descombes P, Schibier U. A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 1991; 67: 569–79

    Article  PubMed  CAS  Google Scholar 

  167. Milde-Langosch K, Loning T, Bamberger AM. Expression of the CCAAT/enhancer-binding proteins C/EBPalpha, C/EBPbeta and C/EBPdelta in breast cancer: correlations with clinicopathologic parameters and cell-cycle regulatory proteins. Breast Cancer Res Treat 2003; 79: 175–85

    Article  PubMed  CAS  Google Scholar 

  168. Zhang P, Iwama A, Datta MW, et al. Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis. J Exp Med 1998; 188: 1173–84

    Article  PubMed  CAS  Google Scholar 

  169. Schwieger M, Lohler J, Fischer M, et al. A dominant-negative mutant of C/EBPalpha, associated with acute myeloid leukemias, inhibits differentiation of myeloid and erythroid progenitors of man but not mouse. Blood 2004; 103: 2744–52

    Article  PubMed  CAS  Google Scholar 

  170. Frohling S, Schlenk RF, Stolze I, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004; 22: 624–33

    Article  PubMed  CAS  Google Scholar 

  171. Tiesmeier J, Czwalinna A, Muller-Tidow C, et al. Evidence for allelic evolution of C/EBPalpha mutations in acute myeloid leukaemia. Br J Haematol 2003; 123: 413–9

    Article  PubMed  CAS  Google Scholar 

  172. Screpanti I, Romani L, Musiani P, et al. Lymphoproliferative disorder and imbalanced T-helper response in C/EBP beta-deficient mice. EMBO J 1995; 14: 1932–41

    PubMed  CAS  Google Scholar 

  173. Croniger C, Trus M, Lysek-Stupp K, et al. Role of the isoforms of CCAAT/enhancer-binding protein in the initiation of phosphoenolpyruvate carboxykinase (GTP) gene transcription at birth. J Biol Chem 1997; 272: 26306–12

    Article  PubMed  CAS  Google Scholar 

  174. Sterneck E, Tessarollo L, Johnson PF. An essential role for C/EBPbeta in female reproduction. Genes Dev 1997; 11: 2153–62

    Article  PubMed  CAS  Google Scholar 

  175. Zhu S, Yoon K, Sterneck E, et al. CCAAT/enhancer binding protein-beta is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci U S A 2002; 99: 207–12

    Article  PubMed  CAS  Google Scholar 

  176. Zahnow CA. CCAAT/enhancer binding proteins in normal mammary development and breast cancer. Breast Cancer Res 2002; 4: 113–21

    Article  PubMed  CAS  Google Scholar 

  177. Dearth LR, Hutt J, Sattler A, et al. Expression and function of CCAAT/enhancer binding proteinbeta (C/EBPbeta) LAP and LIP isoforms in mouse mammary gland, tumors and cultured mammary epithelial cells. J Cell Biochem 2001; 82: 357–70

    Article  PubMed  CAS  Google Scholar 

  178. Arnett B, Soisson P, Ducatman BS, et al. Expression of CAAT enhancer binding protein beta (C/EBP beta) in cervix and endometrium. Mol Cancer 2004; 2: 21

    Article  Google Scholar 

  179. Kagan BL, Henke RT, Cabal-Manzano R, et al. Complex regulation of the fibroblast growth factor-binding protein in MDA-MB-468 breast cancer cells by CCAAT/enhancer-binding protein beta. Cancer Res 2003; 63: 1696–705

    PubMed  CAS  Google Scholar 

  180. Oya M, Horiguchi A, Mizuno R, et al. Increased activation of CCAAT/enhancer binding protein-beta correlates with the invasiveness of renal cell carcinoma. Clin Cancer Res 2003; 9: 1021–7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the National Institutes of Health/National Cancer Institute (R01 CA 80698 and R01 CA112029). Dr H Wang was supported in part by funds from the Comprehensive Cancer Center, University of Alabama at Birmingham. Dr Z Zhang was supported in part by a post-doctoral fellowship from the Department of Defense Prostate Cancer Research Program (Grant no. W81XWH-04-1-0845). Finally, we realize that, due to the limitation of space, we could not cite all the excellent contributions published in this field, and we apologize for the omission of many papers and reviews from our national and international colleagues. The authors had no potential conflicts of interest directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Li, M., Rayburn, E.R. et al. Oncogenes as Novel Targets for Cancer Therapy (Part III). Am J Pharmacogenomics 5, 327–338 (2005). https://doi.org/10.2165/00129785-200505050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200505050-00005

Keywords

Navigation