Skip to main content
Log in

Chromosomally-Encoded Resistance Mechanisms of Pseudomonas aeruginosa

Therapeutic Implications

  • Genomics In Human Disease
  • Published:
American Journal of Pharmacogenomics

Abstract

Pseudomonas aeruginosa is an important nosocomial pathogen that presents a difficult therapeutic challenge. Although P. aeruginosa has been shown to acquire resistance mechanisms encoded on plasmids, this pathogen comes armed with multiple chromosomally-encoded mechanisms of resistance that can provide impressive intrinsic resistance, as well as the potential to mutate to high-level multi-drug resistance. Recent analysis of the sequenced genome of P. aeruginosa PAO1 suggested that we have just started to unlock the resistance potential of this pathogen.

One of the most serious threats to the usefulness of β-lactams against P. aeruginosa is the chromosomal AmpC cephalosporinase. When AmpC production increases through mutational events, overproduction of this cephalosporinase provides high-level resistance to all β-lactams except the carbapenems. Carbapenem resistance typically requires down-regulation of the outer membrane protein (OprD), which serves as the primary route of entry for carbapenems.

Perhaps the most threatening of the resistance mechanisms encoded on the P. aeruginosa chromosome are the multi-drug efflux pumps. These pumps have the ability to extrude multiple classes of antibiotics from the periplasmic space, as well as the cytoplasm. Natural expression of efflux pumps in ‘wild-type’ cells plays an important role in the relatively decreased susceptibility of P. aeruginosa to antibiotics. However, the greatest therapeutic problems occur when these pumps are overproduced in mutants and high-level, multi-drug resistance develops.

Although the development of infections with highly resistant strains of P. aeruginosa can present serious therapeutic challenges, the most troublesome threat associated with the chromosomally-encoded resistance mechanisms is the potential for high-level resistance to emerge during the course of therapy. When resistance emerges during therapy, clinical failure can occur and the therapeutic options for second-line therapy can become severely limited. Unfortunately, the emergence of resistance during therapy is not a rare event with P. aeruginosa and these three resistance mechanisms. Therefore, clinicians must be mindful of this threat when choosing an appropriate therapy, and usually appropriate therapy includes a combination of drugs. Since the standard combination of an aminoglycoside and a β-lactam has been shown to be ineffective in preventing the emergence of some resistance problems, the search for more effective combinations must be a priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2

Similar content being viewed by others

References

  1. Kiska DL, Gilligan PH. Pseudomonas. In: Murray PR, Baron EJ, Pfaller MA, et al., editors. Manual of clinical microbiology. 7th ed. Washington, DC: Amercian Society for Microbiology Press, 1999: 517–25

    Google Scholar 

  2. Morrison AJ, Wenzel RP. Epidemiology of infections due to pseudomonas aeruginosa. Rev Infect Dis 1984; 6Suppl. 1: S627–42

    Article  PubMed  Google Scholar 

  3. Pollack M. Pseudomonas aeruginosa. In: Mandell GL, Dolan R, Bennett JE, editors. Principles and practices of infectious diseases. New York: Churchill Livingstone, 1995: 1980–2003

    Google Scholar 

  4. Richards MJ, Edwards JR, Culver DH, et al. Nosocomial infections in medical intensive care units in the United States: National Nosocomial Infections Surveillance. Crit Care Med 1999; 5: 887–92

    Article  Google Scholar 

  5. Toshimura F, Nikaido H. Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol 1982; 152: 636–42

    Google Scholar 

  6. Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406: 959–64

    Article  PubMed  CAS  Google Scholar 

  7. Sanders CC, Sanders Jr WE. β-lactam resistance in Gram-negative bacteria: global trends and clinical impact. Clin Infect Dis 1992; 15: 824–39

    Article  PubMed  CAS  Google Scholar 

  8. Sanders CC. β-lactamases of Gram-negative bacteria: new challenges for new drugs. Clin Infect Dis 1992; 14: 1089–99

    Article  PubMed  CAS  Google Scholar 

  9. Sanders WE, Sanders CC. Inducible β-lactamases: clinical and epidemiological implications for use of newer cephalosporins. Rev Infect Dis 1988; 10: 830–8

    Article  PubMed  Google Scholar 

  10. Hanson ND, Sanders CC. Regulation of inducible AmpC beta-lactamase expression among enterobacteriaceae. Curr Pharm Des 1999; 5(11): 881–94

    PubMed  CAS  Google Scholar 

  11. Langee TY, Gagnon L, Huletsky A. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC beta-lactamase expression. Antimicrob Agents Chemother 2000; 44: 583–9

    Article  Google Scholar 

  12. Lodge J, Busby S, Piddock I. Investigation of the pseudomonas aeruginosa ampR gene and its role at the chromosomal ampC promoter. FEMS Microbiol Lett 1993; 111:315–20

    PubMed  CAS  Google Scholar 

  13. Lindquist S, Weston-Hafer K, Schmidt H, et al. AmpG, a signal transducer in chromosomal β-lactamase induction. Mol Microbiol 1993; 9: 703–15

    Article  PubMed  CAS  Google Scholar 

  14. Jacobs C, Joris B, Jamin M, et al. AmpD, essential for both β-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol 1995; 15: 553–9

    Article  PubMed  CAS  Google Scholar 

  15. Jacobs C, Frère J-M, Normark S. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in Gram-negative bacteria. Cell 1997; 88: 823–32

    Article  PubMed  CAS  Google Scholar 

  16. Lindquist S, Lindberg F, Normark S. Binding of the Citrobacter freundii AmpR regulator to a single DNA binding site provides both autoregulation and activation of the inducible ampC β-lactamase gene. J Bacteriol 1989; 171: 3746–53

    PubMed  CAS  Google Scholar 

  17. Tolg M, Schmidt H, Schierl R, et al. Dependence of induction of enterobacterial AmpC beta-lactamase on cell-wall peptidoglycan, as demonstrated in proteus mirabilis and its wall-less protoplast L-form. J Gen Microbiol 1993; 139:2715–22

    Article  PubMed  CAS  Google Scholar 

  18. Holtje JV, Tuomanen EI. The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo. J Gen Microbiol 1991; 137 (Pt 3): 441–54

    Article  PubMed  CAS  Google Scholar 

  19. Park JT. The murein sacculus. In: Neidhardt FC, Curtiss III R, Ingraham JL, et al., editors. Escherichia coli and salmonella, cellular and molecular biology. 2nd ed. Washington, DC: ASM Press, 1996: 48–57

    Google Scholar 

  20. Dietz H, Pfeifle D, Wiedemann B. The signal molecule for β-lactamase induction in enterobacter cloacae is the anhydromuramyl-pentapeptide. Antimicrob Agents Chemother 1997; 41: 2113–20

    PubMed  CAS  Google Scholar 

  21. Dietz H, Wiedemann B. The role of N-acetylglucosaminyl-1,6 anhydro N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine for the induction of β-lactamase in Enterobacter cloacae. Zentralbl Bakteriol 1996; 284: 207–17

    Article  PubMed  CAS  Google Scholar 

  22. Jacobs C, Huang LJ, Bartkowsky E, et al. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β-lactamase induction. EMBO J 1994; 13: 4684–94

    PubMed  CAS  Google Scholar 

  23. Livermore DM, Yang YJ. Beta-lactamase lability and inducer power of newer beta-lactam antibiotics in relation to their activity against beta-lactamase-in-ducibility mutants of Pseudomonas aeruginosa. J Infect Dis 1987; 155:775–82

    Article  PubMed  CAS  Google Scholar 

  24. Sanders CC, SandersJr WE. Type I β-lactamases of Gram-negative bacteria: interactions with β-lactam antibiotics. J Infect Dis 1986; 154: 792–800

    Article  PubMed  CAS  Google Scholar 

  25. Sanders CC. Chromosomal cephalosporinases reponsible for multiple resistance to newer β-lactam antibiotics. Ann Rev Microbiol 1987; 41: 573–93

    Article  CAS  Google Scholar 

  26. Lister PD, Gardner VM, Sanders CC. Clavulanate induces expression of the Pseu-domonas aeruginosa AmpC Cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob Agents Chemother 1999; 43(4): 882–9

    PubMed  CAS  Google Scholar 

  27. Sanders CC, Bradford PA, Ehrhardt AF, et al. Penicillin-binding proteins and induction of AmpC beta-lactamase. Antimicrob Agents Chemother 1997; 41(9): 2013–5

    PubMed  CAS  Google Scholar 

  28. Lindberg F, Lindquist S, Nomark S. Genetic basis of induction and overproduction of chromosomal class I beta-lactamase in nonfastidious Gram-negative bacilli. Rev Infect Dis 1988; 10: 782–5

    Article  PubMed  CAS  Google Scholar 

  29. Lindberg F, Lindquist S, Normark S. Inactivation of the ampD gene causes semi-constitutive overproduction of the inducible Citrobacter freundii β-lactamase. J Bacteriol 1987; 169: 1923–8

    PubMed  CAS  Google Scholar 

  30. Nicolas MH, Honoré N, Jarlier V, et al. Molecular genetic analysis of cephalo-sporinase production and its role in β-lactam resistance in clinical isolates of Enterobacter cloacae. Antimicrob Agents Chemother 1987; 31: 295–9

    Article  PubMed  CAS  Google Scholar 

  31. Livermore DM. β-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995; 8: 557–84

    PubMed  CAS  Google Scholar 

  32. Sanders CC, Sanders WE. Emergence of resistance during therapy with the newer β-lactam antibiotics: role of inducible β-lactamases and implications for the future. Rev Infect Dis 1983; 1983: 639–48

    Article  Google Scholar 

  33. Masterton RG, Garner PJ, Harrison NA, et al. Timentin resistance. Lancet 1987; II: 975–6

    Article  Google Scholar 

  34. Letendre ED, Mantha R, Turgeon PL. Selection of resistance by piperacillin during pseudomonas aeruginosa endocarditis. J Antimicrob Chemother 1988; 22: 557–62

    Article  PubMed  CAS  Google Scholar 

  35. Scully BE, Ores CN, Prince AS, et al. Treatment of lower respiratory tract infections due to pseudomonas aeruginosa in patients with cystic fibrosis. Rev Infect Dis 1985; 7Suppl. 4: S669–74

    Article  PubMed  Google Scholar 

  36. Giwercman B, Lambert PA, Rosdahl VT, et al. Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis due to in -vivo selection of stable partially-derepressed β-lactamase-producing strains. J Antimicrob Chemother 1990; 26: 247–59

    Article  PubMed  CAS  Google Scholar 

  37. Lister PD, Sanders WE Jr, Sanders CC. Cefepime-aztreonam: a unique double β-lactam combination for pseudomonas aeruginosa. Antimicrob Agents Chem-other 1998; 42: 1610–9

    CAS  Google Scholar 

  38. Yoshimura F, Nikaido H. Diffusion of beta-lactam antibiotics through the porin Channels of Escherichia coli K-12. Antimicrob Agents Chemother 1985; 27(1): 84–92

    Article  PubMed  CAS  Google Scholar 

  39. Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 1989; 33(11): 1831–6

    Article  PubMed  CAS  Google Scholar 

  40. Nikaido H. Outer membrane of salmonella typhimurium: transmembrane diffusion of some hydrophobic compounds. Biochem Biophys Acta 1976; 433: 118–32

    Article  PubMed  CAS  Google Scholar 

  41. Nikaido H, Rosenberg EY, Foulds J. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol 1983; 153: 232–40

    PubMed  CAS  Google Scholar 

  42. Hancock REW, Siehnel R, Martin N. Outer membrane proteins of Pseudomonas. Mol Microbiol 1990; 4: 1069–75

    Article  PubMed  CAS  Google Scholar 

  43. Yoshimura F, Zalman LS, Nikaido H. Purification and properties of Pseudomonas aeruginosa porin. J Biol Chem 1983; 258: 2308–14

    PubMed  CAS  Google Scholar 

  44. Godfrey AJ, Bryan LE. Penetration of beta-lactams through Pseudomonas aeruginosa porin channels. Antimicrob Agents Chemother 1987; 31: 1216–21

    Article  PubMed  CAS  Google Scholar 

  45. Nicas TI, Hancock REW. Pseudomonas aeruginosa outer membrane permeability: isolation of a porin protein F-deficient mutant. J Bacteriol 1983; 153: 281–5

    PubMed  CAS  Google Scholar 

  46. Satake S, Yoshihara E, Nakae T. Diffusion of beta-lactam antibiotics through liposome membranes reconstituted from purified porins of the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1990; 34: 685–90

    Article  PubMed  CAS  Google Scholar 

  47. Trias J, Nikaido H. Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1990; 34: 52–7

    Article  PubMed  CAS  Google Scholar 

  48. Trias J, Dufresne J, Levesque RC, et al. Decreased outer membrane permeability in imipenem-resistant mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1989; 33: 1201–6

    Article  CAS  Google Scholar 

  49. Yoneyama H, Nakae T. Mechanism of efficient elimination of protein D2 in outer membrane of imipenem-resistant pseudomonas aeruginosa. Antimicrob Agents Chemother 1993; 37: 2385–90

    Article  PubMed  CAS  Google Scholar 

  50. Satake S, Yoneyama H, Nakae T. Role of OmpD2 and chromosomal beta-lactamase in carbapenem resistance in clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother 1991; 28: 199–207

    Article  PubMed  CAS  Google Scholar 

  51. Lynch MJ, Drusano GL, Mobley HLT. Emergence of resistance to imipenem in pseudomonas aeruginosa. Antimicrob Agents Chemother 1987; 31: 1892–6

    Article  PubMed  CAS  Google Scholar 

  52. Masuda N, Sakagawa E, Ohya S. Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995; 39: 645–9

    Article  PubMed  CAS  Google Scholar 

  53. Ochs MM, McCusker MP, Bains M, et al. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob Agents Chemother 1999; 43: 1085–90

    PubMed  CAS  Google Scholar 

  54. Quinn JP, Studemeister AE, DiVincenzo CA, et al. Resistance to imipenem in Pseudomonas aeruginosa: clinical experience and biochemical mechanisms. Rev Infect Dis 1988; 10: 892–8

    Article  PubMed  CAS  Google Scholar 

  55. Calandra GB, Hesney M, Brown KR. Imipenem/cilistatin therapy of serious infections: a US multicenter noncomparative trial. Clin Ther 1985; 7: 225–38

    PubMed  CAS  Google Scholar 

  56. Wolter DJ, Lister PD. Quinolone and imipenem combinations to prevent the emergence of resistance among Pseudomonas aeruginosa during therapy [abstract 2258].40th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto, Canada; Washington, DC: American Society for Microbiology, 2000

    Google Scholar 

  57. Nikaido H. Multidrug efflux pumps of Gram-negative bacteria. J Bacteriol 1996; 178: 5853–9

    PubMed  CAS  Google Scholar 

  58. Li X, Nikaido H, Poole K. Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995; 39: 1948–53

    Article  PubMed  CAS  Google Scholar 

  59. Poole K, Tetro K, Zhao Q, et al. Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob Agents Chemother 1996; 40: 2021–8

    PubMed  CAS  Google Scholar 

  60. Poole K, Gotoh N, Tsujimoto H, et al. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug resistant strains of Pseudomonas aeruginosa. Mol Microbiol 1996; 21: 713–24

    Article  PubMed  CAS  Google Scholar 

  61. Shiba T, Ishiguro K, Takemoto N, et al. Purification and characterization of the Pseudomonas aeruginosa NfxB protein, the negative regulator of the nfxB gene. J Bacteriol 1995; 177: 5872–7

    PubMed  CAS  Google Scholar 

  62. Masuda N, Sakagawa E, Ohya S, et al. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000; 44: 3322–7

    Article  PubMed  CAS  Google Scholar 

  63. Kohler T, Michea-Hamzehpour M, Henze U, et al. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 1997; 23: 345–54

    Article  PubMed  CAS  Google Scholar 

  64. Masuda N, Ohya S. Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemotherapy 1992; 36:1847–51

    Article  CAS  Google Scholar 

  65. Evans K, Adewoye L, Poole K. MexR repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa: identification of Mex R binding sites in the mexA-mexR intergenic region. J Bacteriol 2001; 183: 807–12

    Article  PubMed  CAS  Google Scholar 

  66. Saito K, Eda S, Maseda H, et al. Molecular mechanism of MexR-mediated regulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. FEMS Microbiol Lett 2001; 195: 23–8

    PubMed  CAS  Google Scholar 

  67. Evans K, Poole K. The MexA-MexB-OprM multidrug efflux system of Pseudmonas aeruginosa is growth-phase regulated. FEMS Microbiol Lett 1999; 173:35–9

    Article  PubMed  CAS  Google Scholar 

  68. Wolter DJ, Hanson ND, Lister PD. Efflux-mediated resistance among Pseudomonas aeruginosa: complex regulation of a complex resistance mechanism [abstract A-132]. 102nd General Meeting of the American Society for Microbiology; 2002 May 19–23; Salt Lake City (UT); Washington, DC: American Society for Microbiology, 2002

    Google Scholar 

  69. Rella M, Haas D. Resistance of pseudomonas aeruginosa to nalidixic acid and levels of beta-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother 1982; 22: 242–9

    Article  PubMed  CAS  Google Scholar 

  70. Saito K, Yoneyama H, Nakae T. nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome. FEMS Microbiol Lett 1999; 179: 67–72

    Article  PubMed  CAS  Google Scholar 

  71. Srikumar R, Paul CJ, Poole K. Influence of mutations in the mexR repressor gene on expression of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 2000; 182: 1410–4

    Article  PubMed  CAS  Google Scholar 

  72. Hosaka M, Gotoh N, Nishino T. Purification of a 54-kilodalton protein (OprJ) produced in NfxB mutants of Pseudomonas aeruginosa and production of a monoclonal antibody specific to OprJ. Antimicrob Agents Chemother 1995; 39: 1731–5

    Article  PubMed  CAS  Google Scholar 

  73. Hirai K, Suzue S, Irikura T, et al. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1987; 31: 582–6

    Article  PubMed  CAS  Google Scholar 

  74. Masuda N, Gotoh N, Ohya S, et al. Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1996; 40: 909–13

    PubMed  CAS  Google Scholar 

  75. Zhao Q, Li X-Z, Srikumar R, et al. Contribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB. Antimicrob Agents Chemother 1998; 42: 1682–8

    PubMed  CAS  Google Scholar 

  76. Gotoh N, Tsujimoto H, Tsuda M, et al. Characteriziation of the MexC-MexD-OprJ multidrug efflux system in mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998; 42: 1938–43

    PubMed  CAS  Google Scholar 

  77. Wolter DJ, Hanson ND, Lister PD. Imipenem hypersusceptibility among mexCD-oprJ hyperexpressing mutants of pseudomonas aeruginosa does not involve the decreased expression of ampC or an increased expression of oprD [abstract]. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy; 2002 Sep 27–30; San Diego; Washington, DC: American Society for Microbiology, 2002

    Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip D. Lister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lister, P.D. Chromosomally-Encoded Resistance Mechanisms of Pseudomonas aeruginosa . Am J Pharmacogenomics 2, 235–243 (2002). https://doi.org/10.2165/00129785-200202040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200202040-00003

Keywords

Navigation