Skip to main content
Log in

Peroxisome Proliferator-Activated Receptor-β and its Agonists in Hypertension and Atherosclerosis

Mechanisms and Clinical Implications

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are the leading cause of morbidity and mortality in the US. Proper management and/ or prevention of atherosclerosis and hypertension, two complex and chronic disorders, would significantly reduce the risk for cardiovascular events such as myocardial infarction and stroke, but this requires an understanding of the mechanisms underlying their development and progression. Whereas a great deal has been learned and applied toward the management of these disorders, especially hypertension, morbidity and mortality remains unacceptably high, most likely because there are disease-causing mechanisms that have yet to be fully recognized. Understanding these disease mechanisms is necessary so that novel management strategies can be developed. One of these novel mechanisms centers on peroxisome proliferator-activated receptor (PPAR)-β. PPAR-β is a member of the nuclear receptor superfamily of ligand-activated transcription factors known to play a role in glucose homeostasis and adipocyte differentiation and, more recently, has been shown to have anti-inflammatory, antiatherogenic, and antihypertensive effects. Thiazolidinediones, a class of drugs used in the treatment of type 2 diabetes mellitus, are high-affinity ligands for PPAR-β. In this review, the anti-inflammatory, anti-atherosclerotic, and anti-hypertensive mechanisms by which PPAR-β and its agonists are thought to exert protective effects on the cardiovascular system are discussed. Ongoing clinical trials using PPAR-β activators for the management of cardiovascular diseases, especially in patients with type 2 diabetes mellitus, are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II

Similar content being viewed by others

References

  1. American Heart Association [online]. Available from URL: http://www.americanheart.org [Accessed 2005 Sep 12].

  2. Plutzky J. The vascular biology of atherosclerosis. Am J Med 2003; 115 Suppl. 8A: 55S–61S.

    Article  PubMed  CAS  Google Scholar 

  3. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347(6294): 645–50.

    Article  PubMed  CAS  Google Scholar 

  4. Hsueh WA, Bruemmer D. Peroxisome proliferator-activated receptor β: implications for cardiovascular disease. Hypertension 2004; 43(2): 297–305.

    Article  PubMed  CAS  Google Scholar 

  5. Marx N, Duez H, Fruchart JC, et al. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res 2004; 94(9): 1168–78.

    Article  PubMed  CAS  Google Scholar 

  6. Moller DE, Berger JP. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int J Obes Relat Metab Disord 2003; 27 Suppl. 3: S17–21.

    Article  PubMed  CAS  Google Scholar 

  7. Schiffrin EL, Amiri F, Benkirane K, et al. Peroxisome proliferator-activated receptors: vascular and cardiac effects in hypertension. Hypertension 2003; 42(4): 664–8.

    Article  PubMed  CAS  Google Scholar 

  8. Dreyer C, Krey G, Keller H, et al. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 1992; 68(5): 879–87.

    Article  PubMed  CAS  Google Scholar 

  9. Kliewer SA, Forman BM, Blumberg B, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 1994; 91(15): 7355–9.

    Article  PubMed  CAS  Google Scholar 

  10. Neve BP, Fruchart JC, Staels B. Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 2000; 60(8): 1245–50.

    Article  PubMed  CAS  Google Scholar 

  11. Puddu P, Puddu GM, Muscari A. Peroxisome proliferator-activated receptors: are they involved in atherosclerosis progression? Int J Cardiol 2003; 90(2–3): 133–40.

    Article  PubMed  Google Scholar 

  12. Gilde AJ, van der Lee KA, Willemsen PH, et al. Peroxisome proliferator-activated receptor (PPAR) a and PPARβ/6, but not PPARy, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 2003; 92(5): 518–24.

    Article  PubMed  CAS  Google Scholar 

  13. Fajas L, Auboeuf D, Raspe E, et al. The organization, promoter analysis, and expression of the human PPARβ gene. J Biol Chem 1997; 272(30): 18779–89.

    Article  PubMed  CAS  Google Scholar 

  14. Fajas L, Fruchart JC, Auwerx J. PPARβ3 mRNA: a distinct PPARβmRNA subtype transcribed from an independent promoter. FEBS Lett 1998; 438(1–2): 55–60.

    Article  PubMed  CAS  Google Scholar 

  15. Mukherjee R, Jow L, Croston GE, et al. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARβ2 versus PPARβl and activation with retinoid X receptor agonists and antagonists. J Biol Chem 1997; 272(12): 8071–6.

    Article  PubMed  CAS  Google Scholar 

  16. Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor-β (PPARy). J Biol Chem 1995; 270(22): 12953–6.

    Article  PubMed  CAS  Google Scholar 

  17. Blanquart C, Barbier O, Fruchart JC, et al. Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 2003; 85(2–5): 267–73.

    Article  PubMed  CAS  Google Scholar 

  18. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors and inflammation: from basic science to clinical applications. Int J Obes Relat Metab Disord 2003; 27 Suppl. 3: S41–5.

    Article  PubMed  CAS  Google Scholar 

  19. Luscher TF, Barton M. Biology of the endothelium. Clin Cardiol 1997; 20(11 Suppl. 2): II–10.

    PubMed  CAS  Google Scholar 

  20. Libby P. Changing concepts of atherogenesis. J Intern Med 2000; 247(3): 349–58.

    Article  PubMed  CAS  Google Scholar 

  21. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340(2): 115–26.

    Article  PubMed  CAS  Google Scholar 

  22. Gimbrone MA, Resnick N, Nagel T, et al. Hemodynamics, endothelial gene expression, and atherogenesis. Ann N Y Acad Sci 1997; 811: 1–10.

    Article  PubMed  CAS  Google Scholar 

  23. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76(2): 301–14.

    Article  PubMed  CAS  Google Scholar 

  24. Creemers EE, Cleutjens JP, Smits JF, et al. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 2001; 89(3): 201–10.

    Article  PubMed  CAS  Google Scholar 

  25. Plutzky J. Atherosclerotic plaque rupture: emerging insights and opportunities. Am J Cardiol 1999; 84(1A): 15J–20J.

    Article  PubMed  CAS  Google Scholar 

  26. Inoue I, Shino K, Noji S, et al. Expression of peroxisome proliferator-activated receptor α (PPAR α) in primary cultures of human vascular endothelial cells. Biochem Biophys Res Commun 1998; 246(2): 370–4.

    Article  PubMed  CAS  Google Scholar 

  27. Satoh H, Tsukamoto K, Hashimoto Y, et al. Thiazolidinediones suppress endothelin-1 secretion from bovine vascular endothelial cells: a new possible role of PPARβ on vascular endothelial function. Biochem Biophys Res Commun 1999; 254(3): 757–63.

    Article  PubMed  CAS  Google Scholar 

  28. Law RE, Goetze S, Xi XP, et al. Expression and function of PPARβ in rat and human vascular smooth muscle cells. Circulation 2000; 101(11): 1311–8.

    Article  PubMed  CAS  Google Scholar 

  29. Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARβ: differentiation-dependent peroxisomal proliferator-activated receptor-β (PPARβ) expression and reduction of MMP-9 activity through PPARβ activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153(1): 17–23.

    Article  PubMed  CAS  Google Scholar 

  30. Yang XY, Wang LH, Chen T, et al. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor-β (PPARβ) agonists. PPARβ co-association with transcription factor NFAT. J Biol Chem 2000; 275(7): 4541–4.

    Article  PubMed  CAS  Google Scholar 

  31. Ricote M, Huang J, Fajas L, et al. Expression of the peroxisome proliferator-activated receptor-β (PPARβ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998; 95(13): 7614–9.

    Article  PubMed  CAS  Google Scholar 

  32. Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001; 21(3): 372–7.

    Article  PubMed  CAS  Google Scholar 

  33. Collins AR, Meehan WP, Kintscher U, et al. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21(3): 365–71.

    Article  PubMed  CAS  Google Scholar 

  34. Tao L, Liu HR, Gao E, et al. Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-β agonist in hypercholesterolemia. Circulation 2003; 108(22): 2805–11.

    Article  PubMed  CAS  Google Scholar 

  35. Cho DH, Choi YJ, Jo SA, et al. Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR) β-dependent and PPARβ-independent signaling pathways. J Biol Chem 2004; 279(4): 2499–506.

    Article  PubMed  CAS  Google Scholar 

  36. Chinetti G, Lestavel S, Bocher V, et al. PPAR-α and PPAR-β activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCAl pathway. Nat Med 2001; 7(1): 53–8.

    Article  PubMed  CAS  Google Scholar 

  37. Chawla A, Boisvert WA, Lee CH, et al. A PPAR β-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7(1): 161–71.

    Article  PubMed  CAS  Google Scholar 

  38. Akiyama TE, Sakai S, Lambert G, et al. Conditional disruption of the peroxisome proliferator-activated receptor β gene in mice results in lowered expression of ABCAl, ABCGl, and apoE in macrophages and reduced cholesterol efflux. Mol Cell Biol 2002; 22(8): 2607–19.

    Article  PubMed  CAS  Google Scholar 

  39. Tontonoz P, Nagy L, Alvarez JG, et al. PPARβ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93(2): 241–52.

    Article  PubMed  CAS  Google Scholar 

  40. Liang CP, Han S, Okamoto H, et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 2004; 113(5): 764–73.

    PubMed  CAS  Google Scholar 

  41. Argmann CA, Sawyez CG, McNeil CJ, et al. Activation of peroxisome proliferator-activated receptor β and retinoid X receptor results in net depletion of cellular cholesteryl esters in macrophages exposed to oxidized lipoproteins. Arterioscler Thromb Vasc Biol 2003; 23(3): 475–82.

    Article  PubMed  CAS  Google Scholar 

  42. Jiang C, Ting AT, Seed B. PPAR-β agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391(6662): 82–6.

    Article  PubMed  CAS  Google Scholar 

  43. Marx N, Mach F, Sauty A, et al. Peroxisome proliferator-activated receptor-β activators inhibit IFN-β-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol 2000; 164(12): 6503–8.

    PubMed  CAS  Google Scholar 

  44. Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106(6): 679–84.

    Article  PubMed  CAS  Google Scholar 

  45. Marx N, Froehlich J, Siam L, et al. Antidiabetic PPAR β-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2003; 23(2): 283–8.

    Article  PubMed  CAS  Google Scholar 

  46. Jackson SM, Parhami F, Xi XP, et al. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vasc Biol 1999; 19(9): 2094–104.

    Article  PubMed  CAS  Google Scholar 

  47. Pasceri V, Wu HD, Willerson JT, et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-y activators. Circulation 2000; 101(3): 235–8.

    Article  PubMed  CAS  Google Scholar 

  48. Ishibashi M, Egashira K, Hiasa K, et al. Antiinflammatory and antiarteriosclerotic effects of pioglitazone. Hypertension 2002; 40(5): 687–93.

    Article  PubMed  CAS  Google Scholar 

  49. Wakino S, Kintscher U, Kim S, et al. Peroxisome proliferator-activated receptor-β ligands inhibit retinoblastoma phosphorylation and G1→ S transition in vascular smooth muscle cells. J Biol Chem 2000; 275(29): 22435–41.

    Article  PubMed  CAS  Google Scholar 

  50. Marx N, Schonbeck U, Lazar MA, et al. Peroxisome proliferator-activated receptor-y activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998; 83(11): 1097–103.

    Article  PubMed  CAS  Google Scholar 

  51. Hong HK, Cho YM, Park KH, et al. Peroxisome proliferator-activated receptor-β mediated inhibition of plasminogen activator inhibitor type 1 production and proliferation of human umbilical vein endothelial cells. Diabetes Res Clin Pract 2003; 62(1): 1–8.

    Article  PubMed  CAS  Google Scholar 

  52. Koshiyama H, Shimono D, Kuwamura N, et al. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86(7): 3452–6.

    Article  PubMed  CAS  Google Scholar 

  53. Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-β agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J Am Coll Cardiol 2003; 42(10): 1757–63.

    Article  PubMed  CAS  Google Scholar 

  54. Sidhu JS, Kaposzta Z, Markus HS, et al. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol 2004; 24(5): 930–4.

    Article  PubMed  CAS  Google Scholar 

  55. Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev 2004; 84(4): 1381–478.

    Article  PubMed  CAS  Google Scholar 

  56. Ogita H, Liao J. Endothelial function and oxidative stress. Endothelium 2004; 11(2): 123–32.

    Article  PubMed  CAS  Google Scholar 

  57. Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003; 42(6): 1075–81.

    Article  PubMed  CAS  Google Scholar 

  58. Takata Y, Kitami Y, Yang ZH, et al. Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-δ and peroxisome proliferator-activated receptor-β. Circ Res 2002; 91(5): 427–33.

    Article  PubMed  CAS  Google Scholar 

  59. Tannock LR, Little PJ, Tsoi C, et al. Thiazolidinediones reduce the LDL binding affinity of non-human primate vascular cell proteoglycans. Diabetologia 2004; 47(5): 837–43.

    Article  PubMed  CAS  Google Scholar 

  60. Eto K, Ohya Y, Nakamura Y, et al. Comparative actions of insulin sensitizers on ion channels in vascular smooth muscle. Eur J Pharmacol 2001; 423(1): 1–7.

    Article  PubMed  CAS  Google Scholar 

  61. Nakamura Y, Ohya Y, Onaka U, et al. Inhibitory action of insulin-sensitizing agents on calcium channels in smooth muscle cells from resistance arteries of guinea-pig. Br J Pharmacol 1998; 123(4): 675–82.

    Article  PubMed  CAS  Google Scholar 

  62. Wu SN, Ho LL, Li HF, et al. Regulation of Ca (2+)-activated K+ currents by ciglitazone in rat pituitary GH3 cells. J Investig Med 2000; 48(4): 259–69.

    PubMed  CAS  Google Scholar 

  63. Ogihara T, Rakugi H, Ikegami H, et al. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens 1995; 8(3): 316–20.

    Article  PubMed  CAS  Google Scholar 

  64. Ghazzi MN, Perez JE, Antonucci TK, et al. Cardiac and glycemie benefits of troglitazone treatment in NIDDM: the Troglitazone Study Group. Diabetes 1997; 46(3): 433–9.

    Article  PubMed  CAS  Google Scholar 

  65. Nolan JJ, Ludvik B, Beerdsen P, et al. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994; 331(18): 1188–93.

    Article  PubMed  CAS  Google Scholar 

  66. Negro R, Dazzi D, Hassan H, et al. Pioglitazone reduces blood pressure in nondipping diabetic patients. Minerva Endocrinol 2004; 29(1): 11–7.

    PubMed  CAS  Google Scholar 

  67. Gerber P, Lubben G, Heusler S, et al. Effects of pioglitazone on metabolic control and blood pressure: a randomised study in patients with type 2 diabetes mellitus. Curr Med Res Opin 2003; 19(6): 532–9.

    Article  PubMed  CAS  Google Scholar 

  68. Bennett SM, Agrawal A, Elasha H, et al. Rosiglitazone improves insulin sensitivity, glucose tolerance and ambulatory blood pressure in subjects with impaired glucose tolerance. Diabet Med 2004; 21(5): 415–22.

    Article  PubMed  CAS  Google Scholar 

  69. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med 2004; 351(11): 1106–18.

    Article  PubMed  Google Scholar 

  70. Diep QN, El Mabrouk M, Cohn JS, et al. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor-β. Circulation 2002; 105(19): 2296–302.

    Article  PubMed  CAS  Google Scholar 

  71. Iglarz M, Touyz RM, Amiri F, et al. Effect of peroxisome proliferator-activated receptor-α and -β activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler Thromb Vasc Biol 2003; 23(1): 45–51.

    Article  PubMed  CAS  Google Scholar 

  72. Ryan MJ, Didion SP, Mathur S, et al. PPAR (β) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension 2004; 43(3): 661–6.

    Article  PubMed  CAS  Google Scholar 

  73. Calnek DS, Mazzella L, Roser S, et al. Peroxisome proliferator-activated receptor β ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 2003; 23(1): 52–7.

    Article  PubMed  CAS  Google Scholar 

  74. Fukunaga Y, Itoh H, Doi K, et al. Thiazolidinediones, peroxisome proliferatoractivated receptor β agonists, regulate endothelial cell growth and secretion of vasoactive peptides. Atherosclerosis 2001; 158(1): 113–9.

    Article  PubMed  CAS  Google Scholar 

  75. Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thronibin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999; 85(5): 394–402.

    Article  PubMed  CAS  Google Scholar 

  76. Sugawara A, Takeuchi K, Uruno A, et al. Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-β in vascular smooth muscle cells. Endocrinology 2001; 142(7): 3125–34.

    Article  PubMed  CAS  Google Scholar 

  77. Song J, Walsh MF, Igwe R, et al. Troglitazone reduces contraction by inhibition of vascular smooth muscle cell Ca2+ currents and not endothelial nitric oxide production. Diabetes 1997; 46(4): 659–64.

    Article  PubMed  CAS  Google Scholar 

  78. Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARβ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999; 402(6764): 880–3.

    PubMed  CAS  Google Scholar 

  79. Savage DB, Agostini M, Barroso I, et al. Digenic inheritance of severe insulin resistance in a human pedigree. Nat Genet 2002; 31(4): 379–84.

    PubMed  CAS  Google Scholar 

  80. Tsai YS, Kim HJ, Takahashi N, et al. Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARβ. J Clin Invest 2004; 114(2): 240–9.

    PubMed  CAS  Google Scholar 

  81. Barak Y, Nelson MC, Ong ES, et al. PPAR β is required for placental, cardiac, and adipose tissue development. Mol Cell 1999; 4(4): 585–95.

    Article  PubMed  CAS  Google Scholar 

  82. Kubota N, Terauchi Y, Miki H, et al. PPAR β mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999; 4(4): 597–609.

    Article  PubMed  CAS  Google Scholar 

  83. He W, Barak Y, Hevener A, et al. Adipose-specific peroxisome proliferatoractivated receptor β knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 2003; 100(26): 15712–7.

    Article  PubMed  CAS  Google Scholar 

  84. Norris AW, Chen L, Fisher SJ, et al. Muscle-specific PPARβ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest 2003; 112(4): 608–18.

    PubMed  CAS  Google Scholar 

  85. Hevener AL, He W, Barak Y, et al. Muscle-specific PPARβ deletion causes insulin resistance. Nat Med 2003; 9(12): 1491–7.

    Article  PubMed  CAS  Google Scholar 

  86. Mazzone T. Strategies in ongoing clinical trials to reduce cardiovascular disease in patients with diabetes mellitus and insulin resistance. Am J Cardiol 2004; 93(HA): 27C–31C.

    Article  PubMed  CAS  Google Scholar 

  87. Gilling L, Suwattee P, DeSouza C, et al. Effects of the thiazolidinediones on cardiovascular risk factors. Am J Cardiovasc Drugs 2002; 2(3): 149–56.

    Article  PubMed  CAS  Google Scholar 

  88. McDonnell DP. Selective estrogen receptor modulators (SERMs): a first step in the development of perfect hormone replacement therapy regimen. J Soc Gynecol Investig 2000; 7(1 Suppl.): S10–5.

    Article  PubMed  CAS  Google Scholar 

  89. Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARβ-modulating activity. Hypertension 2004; 43(5): 993–1002.

    Article  PubMed  CAS  Google Scholar 

  90. Schupp M, Janke J, Clasen R, et al. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-y activity. Circulation 2004; 109(17): 2054–7.

    Article  PubMed  CAS  Google Scholar 

  91. Chakrabarti R, Vikramadithyan RK, Misra P, et al. Ragaglitazar: a novel PPAR α PPAR β agonist with potent lipid-lowering and insulin-sensitizing efficacy in animal models. Br J Pharmacol 2003; 140(3): 527–37.

    Article  PubMed  CAS  Google Scholar 

  92. Bayes M, Rabasseda X, Prous JR. Gateways to clinical trials. Methods Find Exp Clin Pharmacol 2004; 26(7): 587–612.

    PubMed  CAS  Google Scholar 

  93. Keen HL, Ryan MJ, Beyer A, et al. Gene expression profiling of potential PPARβ target genes in mouse aorta. Physiol Genomics 2004; 18(1): 33–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr C.D. Sigmund has received grants from the NIH (NS24621 and HL55006). Dr C.M. Halabi has received funding from an institutional training grant (NRSA T32 6M08629).

The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curt D. Sigmund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halabi, C.M., Sigmund, C.D. Peroxisome Proliferator-Activated Receptor-β and its Agonists in Hypertension and Atherosclerosis. Am J Cardiovasc Drugs 5, 389–398 (2005). https://doi.org/10.2165/00129784-200505060-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200505060-00006

Keywords

Navigation