Skip to main content
Log in

The Role of Metabolites of Antidepressants in the Treatment of Depression

  • Review Article
  • Drug Therapy
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

Recognition of the role of active metabolites in mediating therapeutic and/or adverse effects of many antidepressants is an important part of understanding the mechanisms of action of these medications. While virtually all antidepressants except lithium undergo extensive hepatic metabolism, the profile of activity of the resulting breakdown products varies considerably.

The metabolites of some antidepressants share the primary biochemical actions of their parent compounds and appear to contribute to the therapeutic efficacy of those medications. Examples of this are the tricyclic antidepressant (TCA) nor-triptyline, the selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) fluoxetine and the serotonin-noradrenaline (norepinephrine) reuptake inhibitor venlafaxine. Less commonly, the activity of the primary metabolite may differ from that of the parent drug. An example is clomipramine. This drug is a potent serotonin reuptake blocking TCA, but its demethyl-metabolites are noradrenaline reuptake inhibitors. On the other hand, a number of effective anti-depressants, including most of the SSRIs other than fluoxetine, lack active metabolites.

On the negative side, antidepressant metabolites may add to the adverse effect burden presented by their drugs of origin. At sufficiently high doses, the amphetamines resulting from the metabolism of some monoamine oxidase inhibitors, e.g. selegiline (deprenyl), may directly produce toxicity from the pharmacodynamic interaction with the parent antidepressant. While hydroxy-nortriptyline produces lesser anticholinergic effects than its parent compound, this metabolite may block the therapeutic action of nortriptyline when present in high concentrations. Excessive plasma concentrations of the major metabolite of amfebutamone (bupropion) have been associated with nonresponse and clinical worsening in some patients.

Amfebutamone also illustrates the importance of pharmacokinetic factors in determining the magnitude of the influence of metabolites on antidepressant action. Active metabolites that have long elimination half-lives may predominate over the parent compound in plasma and CSF, exerting considerable clinical impact. With several of the newer drugs, notably amfebutamone, venlafaxine and nefazodone, the presence of active metabolites with half-lives approaching 1 day suggests that once-daily administration may be sufficient.

The formation of most antidepressant metabolites is under strong genetic control and the metabolites themselves often exert effects on hepatic enzyme systems. This can lead to the possibility of drug-drug interactions. A key example is norfluoxetine, which is associated with potent inhibition of the cytochrome P450 isozyme 2D6 (and, consequently, reduced metabolism of drugs such as TCAs). This effect lasts for weeks even after fluoxetine discontinuation, due to the fact that norfluoxetine has a half-life of up to 2 weeks.

The clearance of most antidepressant metabolites is ultimately dependent on elimination by the kidneys. Therefore, these substances tend to accumulate in states of reduced renal function, including normal aging. The relative increase in TCA hydroxy-metabolite concentrations in the elderly may contribute to the cardiovascular and other toxicities of these antidepressants in this vulnerable patient population.

Attention to the existence and implications of active metabolites from the earliest stages of antidepressant drug development may help optimise the benefit: risk ratio of this valuable class of psychotropic medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rudorfer MV, Linnoila M, Potter WZ. Accidental antidepressants: search for specific action. In: Dahl SG, Gram LF, Paul SM, et al., editors. Clinical pharmacology in psychiatry. IV. Selectivity in psychotropic drug action: promises or problems? Heidelberg: Springer-Verlag, 1987: 157–66

    Google Scholar 

  2. Rudorfer MV, Potter WZ. Pharmacokinetics of antidepressants. In: Meltzer HY, editor. Psychopharmacology: the third generation of progress. New York: Raven Press, 1987: 1353–63

    Google Scholar 

  3. Hammer W, Sjöqvist F. Plasma levels of monomethylated tricyclic antidepressants during treatment with imipramine-like compounds. Life Sci 1967; 6: 1895–903

    PubMed  CAS  Google Scholar 

  4. Potter WZ, Calil HM, Sutfin T, et al. Active metabolites of imipramine and desipramine in man. Clin Pharmacol Ther 1982; 31: 393–401

    PubMed  CAS  Google Scholar 

  5. Caccia S, Garattini S. Pharmacokinetic and pharmacodynamic significance of antidepressant drug metabolites. Pharmacol Res 1992; 26: 317–29

    PubMed  CAS  Google Scholar 

  6. Rudorfer MV, Potter WZ. Antidepressants: a comparative review of the clinical pharmacology and therapeutic use of the ‘newer’ versus the ‘older’ drugs. Drugs 1989; 37: 713–38

    PubMed  CAS  Google Scholar 

  7. Potter WZ, Manji HK. Antidepressants, metabolites, and apparent drug resistance. Clin Neuropharmacol 1990; 13 Suppl. 1: S45–53

    PubMed  Google Scholar 

  8. Rudorfer MV, Manji HK, Potter WZ. Comparative tolerability profiles of the newer versus older antidepressants. Drug Saf 1994; 10: 18–46

    PubMed  CAS  Google Scholar 

  9. Potter WZ, Rudorfer MV, Manji HK. The pharmacologic treatment of depression. N Engl J Med 1991; 325: 633–42

    PubMed  CAS  Google Scholar 

  10. Potter WZ, Manji HK, Rudorfer MV. Tricyclics and tetracyclics. In: Schatzberg AF, Nemeroff CB, editors. The American Psychiatric Press textbook of psychopharmacology. Washington, DC: American Psychiatric Press, 1995: 141–60

    Google Scholar 

  11. Watkins PB. Role of cytochromes P450 in drug metabolism and hepatotoxicity. Semin Liver Dis 1990; 10: 235–50

    PubMed  CAS  Google Scholar 

  12. Harvey AT, Preskorn SH. Cytochrome P450 enzymes: interpretation of their interactions with selective serotonin reuptake inhibitors. Part I. J Clin Psychopharmacol 1996; 16: 273–85

    PubMed  CAS  Google Scholar 

  13. Shen WW, Lin K-M. Cytochrome P450 monooxygenases and interactions of psychotropic drugs. Int J Psychiatry Med 1991; 21: 47–56

    PubMed  CAS  Google Scholar 

  14. Shen WW Cytochrome P450 monooxygenases and interactions of psychotropic drugs: a five-year update. Int J Psychiatry Med 1995; 25: 271–84

    Google Scholar 

  15. Rudorfer MV, Lane EA, Chang W-H, et al. Desipramine pharmacokinetics in Chinese and Caucasian volunteers. Br J Clin Pharmacol 1984; 17: 433–40

    PubMed  CAS  Google Scholar 

  16. Träskman L, Åsberg M, Bertilsson L, et al. Plasma levels of chlorimipramine and its demethyl metabolite during treatment of depression. Clin Pharmacol Ther 1979; 26: 600–10

    PubMed  Google Scholar 

  17. Linnoila M, Insel T, Kilts C, et al. Plasma steady-state concentrations of hydroxylated metabolites of clomipramine. Clin Pharmacol Ther 1982; 32: 208–11

    PubMed  CAS  Google Scholar 

  18. Balant-Gorgia AE, Gex-Fabry M, Balant LP. Clinical pharmacokinetics of clomipramine. Clin Pharmacokinet 1991; 20: 447–62

    PubMed  CAS  Google Scholar 

  19. Shimoda K, Noguchi T, Ozeki Y, et al. Metabolism of clomipramine in a Japanese psychiatric population: hydroxylation, des-methylation, and glucuronidation. Neurospychopharmacology 1995; 12: 323–33

    CAS  Google Scholar 

  20. Young RC, Dhar AK, Kutt H, et al. Isomers of 10-hydroxynortriptyline in geriatric depression. Ther Drug Monit 1988; 10: 164–7

    PubMed  CAS  Google Scholar 

  21. Nordin C, Bertilsson L. Active hydroxymetabolites of anti-depressants: emphasis on E-10-hydroxy-nortriptyline. Clin Pharmacokinet 1995; 28: 26–40

    PubMed  CAS  Google Scholar 

  22. Shimoda K, Noguchi T, Morita S, et al. Interindividual variations of desmethylation and hydroxylation of amitriptyline in a Japanese psychiatric population. J Clin Psychopharmacol 1995; 15: 175–81

    PubMed  CAS  Google Scholar 

  23. Lancaster SG, Gonzalez JP. Dothiepin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1989; 38: 123–47

    PubMed  CAS  Google Scholar 

  24. Alvan G, Borga O, Lind M, et al. Concentrations of parent drug and major metabolites in plasma. Eur J Clin Pharmacol 1977; 11: 219–24

    PubMed  CAS  Google Scholar 

  25. Mellström B, Alvan G, Bertilsson L, et al. Nortriptyline formation after single oral and intramuscular doses of amitriptyline. Clin Pharmacol Ther 1982; 32: 664–7

    PubMed  Google Scholar 

  26. Golden RN, Gilmore JH, Carson SW. Antidepressant challenge tests: the interface of pharmacokinetics and pharmacodynamics. Psychopharmacol Bull 1991; 27: 611–7

    PubMed  CAS  Google Scholar 

  27. Dahl-Puustinen M-L, Åberg-Wistedt A, Bertilsson L. Glucuronidation of amitriptyline in man in vivo. Toxicology 1989; 65: 37–9

    CAS  Google Scholar 

  28. Ziegler VE, Fuller TA, Biggs JT. Nortriptyline and 10-hydroxynortriptyline plasma concentrations. J Pharm Pharmacol 1976; 28: 849–50

    PubMed  CAS  Google Scholar 

  29. Bertilsson L, Mellström B, Sjöqvist F. Pronounced inhibition of noradrenaline uptake by 10-hydroxy-metabolites of nortriptyline. Life Sci 1979; 25: 1285–92

    PubMed  CAS  Google Scholar 

  30. Bock J, Giller E, Gray S, et al. Steady-state plasma concentrations of cis- and trans-10-OH amitriptyline metabolites. Clin Pharmacol Ther 1982; 31: 609–16

    PubMed  CAS  Google Scholar 

  31. Young RC, Alexopoulos GS, Shamoian CA, et al. Plasma 10-hydroxynortriptyline in elderly depressed patients. Clin Pharmacol Ther 1984; 35: 540–4

    PubMed  CAS  Google Scholar 

  32. Nordin C, Bertilsson L, Siwers B. CSF and plasma levels of nortriptyline and its 10-hydroxy metabolite. Br J Pharmacol 1985; 20: 411–3

    CAS  Google Scholar 

  33. Edelbroek PM, Zitman FG, Knoppert-van der Klein EAM, et al. Therapeutic drug monitoring of amitriptyline: impact of age, smoking and contraceptives on drug and metabolite levels in bulimic women. Clin Chim Acta 1987; 165: 177–87

    PubMed  CAS  Google Scholar 

  34. Bertilsson L, Nordin C, Otani K, et al. Disposition of single oral doses of E-10-hydroxynortriptyline in healthy subjects, with some observations on pharmacodynamic effects. Clin Pharmacol Ther 1986; 40: 261–7

    PubMed  CAS  Google Scholar 

  35. Bertilsson L, Dahl-Puustinen M-L, Nordin C. E-10-hydroxynortriptyline: effects and disposition of a potential novel antidepressant. In: Dahl SG, Gram LF, editors. Clinical pharmacology in psychiatry. Berlin: Springer-Verlag, 1989: 52–9

    Google Scholar 

  36. Dahl-Puustinen M-L, Perry TL, Dumont E, et al. Stereoselective disposition of racemic E-10-hydroxynortriptyline in human beings. Clin Pharmacol Ther 1989; 45: 650–6

    PubMed  CAS  Google Scholar 

  37. Nordin C, Bertilsson L, Dahl-Puustinen M-L, et al. Treatment of depression with E-10-hydroxynortriptyline: a pilot study on biochemical effects and pharmacokinetics. Psychopharmacology 1991; 103: 287–90

    PubMed  CAS  Google Scholar 

  38. Potter WZ, Calil HM, Zavadil AP, et al. Steady-state concentrations of hydroxylated metabolites of tricyclic antidepressants in patients: relationship to clinical effect. Psychopharmacol Bull 1980; 16: 32–4

    Google Scholar 

  39. Wilens TE, Biederman J, Baldessarini RJ, et al. Developmental changes in serum concentrations of desipramine and 2-hydroxydesipramine during treatment with desipramine. J Am Acad Child Adolesc Psychiatry 1992; 31: 691–8

    PubMed  CAS  Google Scholar 

  40. Gram LF, Bjerre M, Kragh-Sorensen P, et al. Imipramine metabolites in blood of patients during therapy and after overdose. Clin Pharmacol Ther 1983; 33: 335–42

    PubMed  CAS  Google Scholar 

  41. Brosen K, Gram LF, Klysner R, et al. Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics. Eur J Pharmacol 1986; 30: 43–9

    CAS  Google Scholar 

  42. Sutfin T, Perini G, Molnar G, et al. Multiple-dose pharmacokinetics of imipramine and its major active and conjugated metabolites in depressed patients. J Clin Psychopharmacol 1988; 8: 48–53

    PubMed  CAS  Google Scholar 

  43. Cooke RG, Warsh JJ, Stancer HC, et al. The nonlinear kinetics of desipramine and 2-hydroxydesipramine in plasma. Clin Pharmacol Ther 1984; 36: 343–9

    PubMed  CAS  Google Scholar 

  44. Preskorn S, Irwin H. Toxicity of tricyclic antidepressants: kinetics, mechanism, intervention. A review. J Clin Psychiatry 1982; 43: 151–6

    PubMed  CAS  Google Scholar 

  45. Jarvis MR. Clinical pharmacokinetics of tricyclic antidepressant overdose. Psychopharmacol Bull 1991; 27: 541–50

    PubMed  CAS  Google Scholar 

  46. Nelson JC, Mazure C, Jatlow PI. Clinical implications of the pharmacokinetics of tricyclic antidepressant. In: Dahl SG, Gram LF, editors. Clinical pharmacology in psychiatry. Berlin: Springer-Verlag, 1989: 219–27

    Google Scholar 

  47. DeVane CL, Jusko W. Plasma concentration monitoring of hydroxylated metabolites of imipramine and desipramine. Drug Intell Clin Pharm 1981; 15: 263–6

    Google Scholar 

  48. Pollock BG, Perel JM. Hydroxy metabolites of tricyclic antidepressants: evaluation of relative cardiotoxicity. In: Dahl SG, Gram LF, editors. Clinical pharmacology in psychiatry. Berlin: Springer-Verlag, 1989: 232–6

    Google Scholar 

  49. Pollock BG. Recent developments in drug metabolism of relevance to psychiatrists. Harv Rev Psychiatry 1994; 2: 204–13

    PubMed  CAS  Google Scholar 

  50. Neilsen KK, Gram LF. Steady-state plasma levels of clomipramine and its metabolites: impact of sparteine/debrisoquine oxidation polymorphism. Eur J Pharmacol 1992; 43: 405–11

    Google Scholar 

  51. Balant-Gorgia AE, Balant LP, Genet C, et al. Importance of oxidative polymorphism and levomepromazine treatment on the steady-state blood concentrations of clomipramine and its major metabolites. Eur J Clin Pharmacol 1986; 31: 449–55

    PubMed  CAS  Google Scholar 

  52. Nelson DR, Koymans L, Kamataki T, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6: 1–42

    PubMed  CAS  Google Scholar 

  53. Rudorfer MV, Golden RN, Potter WZ. Second-generation antidepressants. Psychiatr Clin North Am 1984; 7: 519–34

    PubMed  CAS  Google Scholar 

  54. Rudorfer MV. Pharmacokinetics of psychotropic drugs in special populations. J Clin Psychiatry 1993; 54 Suppl. 9: 50–4

    PubMed  Google Scholar 

  55. Lin K-M, Poland RE. Ethnicity, culture, and psychopharmacology. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: the fourth generation of progress. New York: Raven Press Ltd., 1995: 1907–17

    Google Scholar 

  56. DeVane CL. Pharmacogenetics and drug metabolism of newer antidepressant agents. J Clin Psychiatry 1994; 55 Suppl. 12: 38–45

    Google Scholar 

  57. Skjelbo E, Brosen K, Hallas J, et al. The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther 1991; 49: 18–23

    PubMed  CAS  Google Scholar 

  58. Breyer-Pfaff U, Pfandl B, Nill K, et al. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochrome P450 isozymes. Clin Pharmacol Ther 1992; 52: 350–8

    PubMed  CAS  Google Scholar 

  59. Koyama E, Tanaka T, Chiba K, et al. Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4′-hydroxylation status in Japanese depressive patients. J Clin Psychopharmacol 1996; 16: 286–93

    PubMed  CAS  Google Scholar 

  60. Mellström B, Bertilsson L, Säwe J, et al. E- and Z-10-hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxlylation. Clin Pharmacol Ther 1981; 30: 189–93

    PubMed  Google Scholar 

  61. Jefferson JW. Tamoxifen-associated reduction in tricyclic anti-depressant levels in blood. J Clin Psychopharmacol 1995; 15: 223–4

    PubMed  CAS  Google Scholar 

  62. Ketter TA, Flockhart DA, Post RM, et al. The emerging role of cytochrome P450 3A in psychopharmacology. J Clin Psychopharmacol 1995; 15: 387–98

    PubMed  CAS  Google Scholar 

  63. Spina E, Pollicino AM, Avenoso A, et al. Fluvoxamine-induced alterations in plasma concentrations of imipramine and desipramine in depressed patients. Int J Clin Pharmacol Res 1993; 13: 167–71

    PubMed  CAS  Google Scholar 

  64. Spina E, Pollicino AM, Avenoso A, et al. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit 1993; 15: 243–6

    PubMed  CAS  Google Scholar 

  65. Preskorn SH. Pharmacokinetics of antidepressants: why and how they are relevant to treatment. J Clin Psychiatry 1993; 54 Suppl. 9: 14–34

    PubMed  Google Scholar 

  66. Sjöqvist F. Pharmacogenetics of antidepressants. In: Dahl SG, Gram LF, editors. Clinical pharmacology in psychiatry. Berlin: Springer-Verlag, 1989: 181–91

    Google Scholar 

  67. Bertilsson L, Aberg-Wistedt A, Gustafsson LL, et al. Extremely rapid hydroxylation of debrisoquine: a case report with implication for treatment with nortriptyline and other tricyclic antidepressants. Ther Drug Monit 1985; 7: 478–80

    PubMed  CAS  Google Scholar 

  68. Bertilsson L, Dahl M-L, Sjöqvist F, et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine [letter]. Lancet 1993; 341: 63

    PubMed  CAS  Google Scholar 

  69. Johansson I, Lundqvist E, Bertilsson L, et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 1993; 90: 11825–9

    PubMed  CAS  Google Scholar 

  70. Bertilsson L, Dahl M-L. Polymorphic drug oxidation: relevance to the treatment of psychiatric disorders. CNS Drugs 1996; 5: 200–23

    CAS  Google Scholar 

  71. Pollock BG, Perel JM, Altieri L, et al. Debrisoquine hydroxylation phenotyping in geriatric psychopharmacology. Psychopharmacol Bull 1992; 28: 163–8

    PubMed  CAS  Google Scholar 

  72. Foglia JP, Pollock BG, Kirshner M, et al. Plasma levels of citalopram enantiomers and metabolites in elderly patients. Psychopharmacol Bull 1997; 33: 109–12

    PubMed  CAS  Google Scholar 

  73. Dawkins K, Potter WZ. Gender differences in pharmacokinetics and pharmacodynamics of psychotropics: focus on women. Psychopharmacol Bull 1991; 27: 417–26

    PubMed  CAS  Google Scholar 

  74. Gex-Fabry M, Balant-Gorgia AE, Balant LP, et al. Clomipramine metabolism: model-based analysis of variability factors from drug monitoring data. Clin Pharmacokinet 1990; 19: 241–55

    PubMed  CAS  Google Scholar 

  75. Nordin C. CSF/plasma ratio of 10-hydroxynortriptyline is influenced by sex and body height. Psychopharmacology 1993; 113: 222–4

    PubMed  CAS  Google Scholar 

  76. Ben Musa A, Smith CS. Neonatal effects of maternal clomipramine therapy [abstract]. Arch Dis Child 1979; 54: 405

    Google Scholar 

  77. Schimmell MS, Katz EZ, Shaag Y, et al. Toxic neonatal effects following maternal clomipramine therapy. Clin Toxicol 1991; 29: 479–84

    CAS  Google Scholar 

  78. Rudorfer MV. Challenges in medication clinical trials. Psychopharmacol Bull 1993; 29: 35–44

    PubMed  CAS  Google Scholar 

  79. Vitiello B, Jensen PS. Developmental perspectives in pediatric psychopharmacology. Psychopharmacol Bull 1995; 31: 75–81

    PubMed  CAS  Google Scholar 

  80. Young RC. Hydroxylated metabolites of antidepressants. Psychopharmacol Bull 1991; 27: 521–32

    PubMed  CAS  Google Scholar 

  81. Wisner KL, Perel JM, Foglia JP. Serum clomipramine and metabolite levels in four nursing mother-infant pairs. J Clin Psychiatry 1995; 56: 17–20

    PubMed  CAS  Google Scholar 

  82. Wisner KL, Perel JM. Serum nortriptyline levels in nursing mothers and their infants. Am J Psychiatry 1991; 148: 1234–6

    PubMed  CAS  Google Scholar 

  83. Brixen-Rasmussen L, Halgrener J, Jorgensen A. Amitriptyline and nortriptyline excretion in human breast milk. Psychopharmacology 1982; 76: 94–5

    PubMed  CAS  Google Scholar 

  84. Breyer-Pfaff U, Entenmann A, Gaertner HJ. Secretion of amitriptyline and metabolites into breast milk. Am J Psychiatry 1995; 152: 812–3

    PubMed  CAS  Google Scholar 

  85. Matheson J, Pande H, Alersten AR. Respiratory depression caused by N-desmethyldoxepin in breast milk [letter]. Lancet 1985; 2: 1124

    PubMed  CAS  Google Scholar 

  86. Kemp J, Ilett KF, Booth J. Excretion of doxepin and N-desmethyldoxepin in human milk. Br J Clin Pharmacol 1985; 20: 479–84

    Google Scholar 

  87. Buist A, Janson H. Effect of exposure to dothiepin and northiaden in breast milk on child development. Br J Psychiatry 1995; 167: 370–3

    PubMed  CAS  Google Scholar 

  88. Shoaf SE, Linnoila M. Interaction of ethanol and smoking on the pharmacokinetics and pharmacodynamics of psychotropic medications. Psychopharmacol Bull 1991; 27: 577–94

    PubMed  CAS  Google Scholar 

  89. Spina E, Perucca E. Newer and older antidepressants: a comparative review of drug interactions. CNS Drugs 1994; 2: 479–97

    Google Scholar 

  90. Fleischmann R, Remmer H, Starz U. Induction of cytochrome P-448 iso-enzymes and related glucuronyltransferases in the human liver by cigarette smoking. Eur J Clin Pharmacol 1986; 30: 475–80

    PubMed  CAS  Google Scholar 

  91. Mellström B, Säwe J, Bertilsson L, et al. Amitriptyline metabolism: association with debrisoquine hydroxylation in non-smokers. Clin Pharmacol Ther 1986; 39: 369–71

    PubMed  Google Scholar 

  92. Perry PJ, Browne JL, Prince RA, et al. Effects of smoking on nortriptyline plasma concentrations in depressed patients. Ther Drug Monit 1986; 8: 279–84

    PubMed  CAS  Google Scholar 

  93. Preskorn SH. Clinical pharmacology of selective serotonin re-uptake inhibitors. Caddo (OK): Professional Communications, Inc., 1996

    Google Scholar 

  94. Preskorn SH, Alderman J, Chung M, et al. Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine. J Clin Psychopharmacol 1994; 14: 90–8

    PubMed  CAS  Google Scholar 

  95. Bergstrom RF, Peyton AL, Lemberger L. Quantification and mechanism of the fluoxetine and tricyclic antidepressant interaction. Clin Pharmacol Ther 1992; 51: 239–48

    PubMed  CAS  Google Scholar 

  96. Geller B, Cooper TB, Graham DL, et al. Pharmacokinetically designed, double-blind, placebo-controlled study of nortriptyline in 6-to-12-year olds with major depressive disorder. J Am Acad Child Adolesc Psychiatry 1992; 31: 34–44

    PubMed  CAS  Google Scholar 

  97. Hazell P, O’Connell D, Heathcote D. Efficacy of tricyclic drugs in treating child and adolescent depression: a meta-analysis. BMJ 1995; 310: 897–901

    PubMed  CAS  Google Scholar 

  98. Geller B. Psychopharmacology of children and adolescents: pharmacokinetics and relationships of plasma/serum levels to response. Psychopharmacol Bull 1991; 27: 401–9

    PubMed  CAS  Google Scholar 

  99. Preskorn SH, Bupp SJ, Weller EB, et al. Plasma levels of imipramine and metabolites in 68 hospitalized children. J Am Acad Child Adolesc Psychiatry 1989; 28: 373–5

    PubMed  CAS  Google Scholar 

  100. Donnelly M, Zametkin AJ, Rapoport JL, et al. Treatment of childhood hyperactivity with desipramine: plasma drug concentration, cardiovascular effects, plasma and urinary cate-cholamine levels, and clinical response. Clin Pharmacol Ther 1986; 39: 72–81

    PubMed  CAS  Google Scholar 

  101. Lane EA. Renal function and the disposition of antidepressants and their metabolites. Psychopharmacol Bull 1991; 27: 533–40

    PubMed  CAS  Google Scholar 

  102. Kitanaka I, Ross RJ, Cutler NR, et al. Altered hydroxydesipramine concentrations in elderly depressed patients. Clin Pharmacol Ther 1982; 31: 51–5

    PubMed  CAS  Google Scholar 

  103. Nelson JC, Atillasoy E, Mazure C, et al. Hydroxydesipramine in the elderly. J Clin Psychopharmacol 1988; 8: 428–33

    PubMed  CAS  Google Scholar 

  104. Young RC, Alexopoulos GS, Dhar AK, et al. 10-hydroxynortriptyline and renal function in elderly depressives. Biol Psychiatry 1987; 22: 1283–7

    PubMed  CAS  Google Scholar 

  105. Schneider LS, Cooper TB, Suckow RF, et al. Relationship of hydroxynortriptyline to nortriptyline concentration and creatinine clearance in depressed elderly outpatients. J Clin Psychopharmacol 1990; 10: 333–7

    PubMed  CAS  Google Scholar 

  106. Åsberg M, Cronholm B, Sjöqvist F, et al. Relationship between plasma levels and therapeutic effect of nortriptyline. BMJ 1971; 3: 331–4

    PubMed  Google Scholar 

  107. Ng Ying Kin NMK, Klitgaard N, Nair NPV, et al. Clinical relevance of serum nortriptyline and 10-hydroxy-nortriptyline measurements in the depressed elderly: a multicenter pharmacokinetic and pharmacodynamic study. Neuropsychopharmacology 1996; 15: 1–6

    Google Scholar 

  108. Dawling S, Lynn K, Rosser R, et al. Nortriptyline metabolism in chronic renal failure: metabolite elimination. Clin Pharmacol Ther 1982; 32: 322–9

    PubMed  CAS  Google Scholar 

  109. Lieberman JA, Cooper TB, Suckow RF, et al. Tricyclic antidepressant and metabolite levels in chronic renal failure. Clin Pharmacol Ther 1985; 37: 301–7

    PubMed  CAS  Google Scholar 

  110. Potter WZ, Lane EA, Rudorfer MV. Hydroxy metabolite concentrations: role of renal clearance. In: Gram LF, Usdin E, Dahl SG, et al. editors. Clinical pharmacology in psychiatry: bridging the experimental-therapeutic gap. London: Macmillan Press, 1983: 203–16

    Google Scholar 

  111. Potter WZ, Calil HM, Manian A, et al. Hydroxylated metabolites of tricyclic antidepressants. Biol Psychiatry 1979; 14: 601–13

    PubMed  CAS  Google Scholar 

  112. Javaid JI, Perel JM, Davis JM. Inhibition of biogenic amine uptake by imipramine, desipramine, 2 OH-imipramine and 2 OH-desipramine in rat brain. Life Sci 1979; 24: 21–8

    PubMed  CAS  Google Scholar 

  113. Potter WZ, Rudorfer MV, Lane EA. Active metabolites of antidepressants: pharmacodynamics and relevant pharmacokinetics. In: Usdin E, Bertilsson L, Sjöqvist F, editors. Frontiers in biochemical and pharmacological research in depression. New York: Raven Press, 1984: 373–90

    Google Scholar 

  114. Nunez R, Perel JM. Comparative neurotransmitter reuptake and anticholinergic potencies of the 8-hydroxy metabolites of clomipramine. Psychopharmacol Bull 1995; 31: 217–21

    PubMed  CAS  Google Scholar 

  115. Potter WZ, Calil HM. Metabolites of tricyclic antidepressants: biological activity and clinical implications. In: Usdin E, editor. Clinical pharmacology in psychiatry. New York: Elsevier North Holland Inc., 1981: 311–24

    Google Scholar 

  116. Potter WZ, Rudorfer MV, Linnoila M. New clinical studies support a role of norepinephrine in antidepressant action. In: Barchas JD, Bunney Jr WE, editors. Perspectives in psychopharmacology: a collection of papers in honor of Earl Usdin. New York: Alan R. Liss Inc., 1988: 495–513

    Google Scholar 

  117. Nordin C, Bertilsson L, Siwers B. Clinical and biochemical effects during treatment with nortriptyline: the role of 10-hydroxynortriptyline. Clin Pharmacol Ther 1987; 42: 10–9

    PubMed  CAS  Google Scholar 

  118. Malmgren R, Åberg-Wistedt A, Bertilsson L. Serotonin uptake inhibition during treatment of depression with nortriptyline caused by parent drug and not by 10-hydroxymetabolites. Psychopharmacology 1987; 92: 169–72

    PubMed  CAS  Google Scholar 

  119. Snyder SH, Yamamura HI. Antidepressants and the muscarinic acetylcholine receptor. Arch Gen Psychiatry 1977; 34: 236–9

    PubMed  CAS  Google Scholar 

  120. Richelson E, Nelson AL. Antagonism by antidepressants of neurotransmitter receptors of normal human brain in vitro. J Pharmacol Toxicol Methods 1984; 230: 94–102

    CAS  Google Scholar 

  121. Wagner A, Ekqvist B, Bertilsson L, et al. Weak binding of 10-hydroxymetabolites of nortriptyline to rat brain muscarinic acetylcholine receptors. Life Sci 1984; 35: 1379–83

    PubMed  CAS  Google Scholar 

  122. Nilvebrant L, Nordin C. Affinity of nortriptyline and its E-10-hydroxy metabolite for muscarinic receptors. Pharmacol Toxicol 1991; 68: 64–7

    PubMed  CAS  Google Scholar 

  123. El-Fakahany E, Richelson E. Antagonism by antidepressants of muscarinic acetylcholine receptors of human brain. Br J Pharmacol 1983; 78: 97–102

    PubMed  CAS  Google Scholar 

  124. Jandhyala BS, Steenberg ML, Perel JM, et al. Effects of several tricyclic antidepressants on the hemodynamics and myocardial contractility of anesthetized dogs. Eur J Pharmacol 1977; 42: 403–10

    PubMed  CAS  Google Scholar 

  125. Wilkerson RD. Antiarrhythmic effects of tricyclic antidepressant drugs in ouabain-induced arrhythmias in the dog. J Pharmacol Exp Ther 1978; 206: 666–74

    Google Scholar 

  126. Pollock BG, Everett G, Perel JM. Comparative cardiotoxicity of nortriptyline and its isomeric 10-hydroxymetabolites. Neuropsychopharmacology 1992; 6: 1–10

    PubMed  CAS  Google Scholar 

  127. Nierenberg AA, Cole JO. Antidepressant adverse drug reactions. J Clin Psychiatry 1991; 52 Suppl. 6: 40–7

    PubMed  Google Scholar 

  128. Rudorfer MV, Young RC. Anticholinergic effects and plasma desipramine levels. Clin Pharmacol Ther 1980; 28: 703–6

    PubMed  CAS  Google Scholar 

  129. Lancaster SG, Gonzalez JP. Lofepramine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1989; 37: 123–40

    PubMed  CAS  Google Scholar 

  130. Nordin C, Bertilsson L, Otani K, et al. Little anticholinergic effect of E-10-hydroxynortriptyline compared with nortriptyline in healthy subjects. Clin Pharmacol Ther 1987; 41: 97–102

    PubMed  CAS  Google Scholar 

  131. Glassman AH, Roose SP, Bigger Jr JT. The safety of tricyclic antidepressants in cardiac patients: risk-benefit reconsidered. JAMA 1993; 269: 2673–5

    PubMed  CAS  Google Scholar 

  132. Rudorfer MV, Young RC. Desipramine: cardiovascular effects and plasma levels. Am J Psychiatry 1980; 137: 984–6

    PubMed  CAS  Google Scholar 

  133. Preskorn SH, Fast GA. Therapeutic drug monitoring for antidepressants: efficacy, safety, and cost effectiveness. J Clin Psychiatry 1991; 52 Suppl. 6: 23–33

    PubMed  Google Scholar 

  134. Bluhm RE, Wilkinson GR, Shelton R, et al. Genetically determined drug-metabolizing activity and desipramine-associated cardiotoxicity: a case report. Clin Pharmacol Ther 1993; 53: 89–95

    PubMed  CAS  Google Scholar 

  135. Amitai Y, Erickson T, Kennedy EJ, et al. Tricyclic antidepressants in red cells and plasma: correlation with impaired intraventricular conduction in acute overdose. Clin Pharmacol Ther 1993; 54: 219–27

    PubMed  CAS  Google Scholar 

  136. Biederman J, Baldessarini RJ, Goldblatt A, et al. A naturalistic study of 24-hour electrocardiographic recording and echocardiographic findings in children and adolescents treated with desipramine. J Am Acad Child Adolesc Psychiatry 1993; 32: 805–13

    PubMed  CAS  Google Scholar 

  137. Wilens TE, Biederman J, Baldessarini RJ, et al. Electrocardiographic effects of desipramine and 2-hydroxydesipramine in children, adolescents, and adults treated with desipramine. J Am Acad Child Adolesc Psychiatry 1993; 32: 798–804

    PubMed  CAS  Google Scholar 

  138. Nelson JC, Jatlow PI, Bock J. Major adverse reactions during desipramine treatment: relationship to drug plasma concentrations, concomitant antipsychotic treatment and patient characteristics. Arch Gen Psychiatry 1982; 39: 1055–61

    PubMed  CAS  Google Scholar 

  139. Cutler NR, Zavadil A, Linnoila M, et al. Effects of chronic desipramine on plasma norepinephrine concentrations and cardiovascular parameters in elderly depressed women: a preliminary report. Biol Psychiatry 1984; 19: 549–56

    PubMed  CAS  Google Scholar 

  140. Kutcher SP, Reid K, Dubbin JD, et al. Electrocardiogram changes and therapeutic desipramine and 2-hydroxy-desipramine concentrations in elderly depressives. Br J Psychiatry 1986; 148: 676–9

    PubMed  CAS  Google Scholar 

  141. Young RC, Alexopoulos GS, Shamoian CA, et al. Heart failure associated with high plasma 10-hydroxynortriptyline levels. Am J Psychiatry 1984; 141: 432–3

    PubMed  CAS  Google Scholar 

  142. Young RC, Alexopoulos GS, Kent E, et al. Plasma 10-hydroxynortriptyline and ECG changes in elderly depressed patients. Am J Psychiatry 1985; 142: 866–8

    PubMed  CAS  Google Scholar 

  143. Schneider LS, Cooper TB, Severson JA, et al. Electrocardiographic changes with nortriptyline and 10-hydroxynortriptyline in elderly depressed outpatients. J Clin Psychopharmacol 1988; 8: 402–8

    PubMed  CAS  Google Scholar 

  144. McCue RE, Georgotas A, Nagachandran N, et al. Plasma levels of nortriptyline and 10-hydroxynortriptyline and treatment-related electrocardiographic changes in the elderly depressed. J Psychiatr Res 1989; 23: 73–9

    PubMed  CAS  Google Scholar 

  145. Calvo B, García MJ, Pedraz JL, et al. Pharmacokinetics of amoxapine and its active metabolites. Int J Clin Pharmacol Ther Toxicol 1985; 23: 180–5

    PubMed  CAS  Google Scholar 

  146. Anton Jr RF, Burch Jr EA. Amoxapine versus amitriptyline combined with perphenazine in the treatment of psychotic depression. Am J Psychiatry 1990; 147: 1203–8

    PubMed  Google Scholar 

  147. Gelenberg AJ, Cooper DS, Doller JC, et al. Galactorrhea and hyperprolactinemia associated with amoxapine therapy: report of a case. JAMA 1979; 242: 1900–1

    PubMed  CAS  Google Scholar 

  148. Lydiard RB, Gelenberg AJ. Amoxapine: an antidepressant with some neuroleptic properties? Pharmacotherapy 1981; 1: 163–78

    PubMed  CAS  Google Scholar 

  149. Huang CC. Persistent tardive dyskinesia associated with amoxapine therapy. Am J Psychiatry 1986; 143: 1069–70

    PubMed  CAS  Google Scholar 

  150. Taylor NE, Schwartz HI. Neuroleptic malignant syndrome following amoxapine overdose. J Nerv Ment Dis 1988; 176: 249–51

    PubMed  CAS  Google Scholar 

  151. Golden RN, Bebchuk JM, Leatherman ME. Trazodone and other antidepressants. In: Schatzberg AF, Nemeroff CB, editors. The American Psychiatric Press textbook of psychopharmacology. Washington, DC: American Psychiatric Press, Inc., 1995: 195–213

    Google Scholar 

  152. Litovitz TL, Troutman WG. Amoxapine overdose. JAMA 1983; 250: 1069–71

    PubMed  CAS  Google Scholar 

  153. Cassidy SL, Henry JA. Fatal toxicity of antidepressant drugs in overdose. BMJ 1987; 295: 1021–4

    PubMed  CAS  Google Scholar 

  154. Dessain EC, Schatzberg AF, Woods BT, et al. Maprotiline treatment in depression: a perspective on seizures. Arch Gen Psychiatry 1986; 43: 86–90

    PubMed  CAS  Google Scholar 

  155. Robinson DS, Cooper TB, Howard D, et al. Amitriptyline and hydroxylated metabolite plasma levels in depressed outpatients. J Clin Psychopharmacol 1985; 5: 83–8

    PubMed  CAS  Google Scholar 

  156. Nordin C, Siwers B, Benitez J, et al. Plasma concentrations of nortriptyline and its 10-hydroxy metabolite in depressed patients: relationship to the debrisoquine hydroxylation metabolic ratio. Br J Clin Pharmacol 1985; 19: 832–5

    PubMed  CAS  Google Scholar 

  157. Young RC, Alexopoulos GS, Shindledecker R, et al. Plasma 10-hydroxynortriptyline and therapeutic response in geriatric depression. Neuropsychopharmacology 1988; 1: 213–5

    PubMed  CAS  Google Scholar 

  158. Potter WZ, Scheinin M, Golden RN, et al. Selective antidepressants and cerebrospinal fluid: lack of specificity on norepinephrine and serotonin metabolites. Arch Gen Psychiatry 1985; 42: 1171–7

    PubMed  CAS  Google Scholar 

  159. Nelson JC, Bock JL, Jatlow P. Clinical implications of 2-hydroxydesipramine plasma concentrations. Clin Pharmacol Ther 1983; 33: 183–9

    PubMed  CAS  Google Scholar 

  160. Kutcher SP, Shulman KI, Reed K. Desipramine plasma concentration and therapeutic response in elderly depressives: a naturalistic pilot study. Can J Psychiatry 1986; 31: 752–4

    PubMed  CAS  Google Scholar 

  161. Amersterdam JD, Brunswick DJ, Potter WZ, et al. Desipramine and 2-hydroxydesipramine plasma levels in endogenous depressed patients: lack of correlation with therapeutic response. Arch Gen Psychiatry 1985; 42: 361–4

    Google Scholar 

  162. Nelson JC, Mazure C, Jatlow PI. Antidepressant activity of 2-hydroxydesipramine. Clin Pharmacol Ther 1988; 88: 283–8

    Google Scholar 

  163. Bock JL, Nelson JC, Gray S, et al. Desipramine hydroxylation: variability and effect of antipsychotic drugs. Clin Pharmacol Ther 1983; 33: 322–8

    PubMed  CAS  Google Scholar 

  164. Leonard BE. The comparative pharmacology of new antidepressants. J Clin Psychiatry 1993; 54: 3–15

    PubMed  Google Scholar 

  165. Tollefson GD. Selective serotonin reuptake inhibitors. In: Schatzberg AF, Nemeroff CB, editors. The American Psychiatric Press textbook of psychopharmacology. Washington, DC: American Psychiatric Press Inc., 1995: 161–82

    Google Scholar 

  166. Milne RJ, Goa KL. Citalopram: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs 1991; 41: 450–77

    PubMed  CAS  Google Scholar 

  167. Palmer KJ, Benfield P. Fluvoxamine: an overview of its pharmacological properties and review of its therapeutic potential in non-depressive disorders. CNS Drugs 1994; 1: 57–87

    CAS  Google Scholar 

  168. van Harten J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin Pharmacokinet 1993; 24: 203–20

    PubMed  Google Scholar 

  169. Goodnick PJ. Pharmacokinetics of second generation antidepressants: fluoxetine. Psychopharmacol Bull 1991; 27: 503–12

    PubMed  CAS  Google Scholar 

  170. DeVane CL. Pharmacokinetics of the selective serotonin reuptake inhibitors. J Clin Psychiatry 1992; 53 Suppl. 2: 13–20

    Google Scholar 

  171. Wong DT, Bymaster FP, Reid LR, et al. Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuropsychopharmacology 1993; 8: 337–44

    PubMed  CAS  Google Scholar 

  172. Torok-Both GA, Baker GB, Coutts RT, et al. Simultaneous determination of fluoxetine and norfluoxetine enantiomers in biological samples by gas chromatography with electron-capture detection. J Chromatography 1992; 579: 99–106

    CAS  Google Scholar 

  173. Pato MT, Murphy DL, DeVane CL. Sustained plasma concentrations of fluoxetine and/or norfluoxetine four and eight weeks after fluoxetine discontinuation. J Clin Psychopharmacol 1991; 11: 224–5

    PubMed  CAS  Google Scholar 

  174. Copian JD, Gorman JM. Detectable levels of fluoxetine metabolites after discontinuation: an unexpected serotonin syndrome [letter]. Am J Psychiatry 1993; 150: 837

    Google Scholar 

  175. Feireraband R. Benign course in a child with a massive fluoxetine overdose. J Fam Pract 1995; 41: 289–91

    Google Scholar 

  176. Stevens JC, Wrighton SA. Interaction of the enantiomers of fluoxetine with human liver cytochromes P450. J Pharm Exp Ther 1993; 266: 964–71

    CAS  Google Scholar 

  177. Bergstrom RF, Lemberger L, Faird NA, et al. Clinical pharmacology and pharmacokinetics of fluoxetine: a review. Br J Psychiatry 1988; 153 Suppl. 3: 47–50

    Google Scholar 

  178. Schenker S, Bergstrom RF, Wolen RL, et al. Fluoxetine disposition and elimination in cirrhosis. Clin Pharmacol Ther 1988; 44: 353–9

    PubMed  CAS  Google Scholar 

  179. Aronoff GR, Bergstrom RF, Pottratz ST, et al. Fluoxetine kinetics and protein binding in normal and impaired renal function. Clin Pharmacol Ther 1984; 36: 138–44

    PubMed  CAS  Google Scholar 

  180. Renshaw PF, Guimaraes AR, Fava M, et al. Accumulation of fluoxetine and norfluoxetine in human brain during therapeutic administration. Am J Psychiatry 1992; 149: 1592–4

    PubMed  CAS  Google Scholar 

  181. Miner CM, Davidson JRT, Potts NLS, et al. Brain fluoxetine measurements using fluorine magnetic resonance spectros-copy in patients with social phobia. Biol Psychiatry 1995; 38: 696–8

    PubMed  CAS  Google Scholar 

  182. Preskorn S. Targeted pharmacotherapy in depression management: comparative pharmacokinetics of fluoxetine, paroxetine and sertraline. Int Clin Psychopharmacol 1994; 9 Suppl. 3: 13–9

    PubMed  Google Scholar 

  183. Bolden-Watson C, Richelson E. Blockade by newly-developed antidepressants of biogenic amine uptake into rat brain synaptosomes. Life Sci 1993; 52: 1023–9

    PubMed  CAS  Google Scholar 

  184. Baumann P, Nil R, Souche A, et al. A double-blind, placebocontrolled study of citalopram with and without lithium in the treatment of therapy-resistant depressive patients: a clinical, pharmacokinetic, and pharmacogenetic investigation. J Clin Psychopharmacol 1996; 16: 307–14

    PubMed  CAS  Google Scholar 

  185. Hyttel J, Bogeso KP, Perregaard J, et al. The pharmacological effect of citalopram resides in S(+)-enantiomer. J Neural Transm Gen Sect 1992; 88: 157–60

    PubMed  CAS  Google Scholar 

  186. Rochat B, Amey M, Baumann P. Analysis of enantiomers of citalopram and its demethylated metabolites in plasma of depressive patients using chiral reverse-phase liquid chromatography. Ther Drug Monit 1995; 17: 273–9

    PubMed  CAS  Google Scholar 

  187. Bloomer JC, Woods FR, Haddock RE, et al. The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br J Clin Pharmacol 1992; 33: 521–3

    PubMed  CAS  Google Scholar 

  188. Sindrup SH, Brosen K, Gram LF. Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: nonlinearity and relation to the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 288–95

    PubMed  CAS  Google Scholar 

  189. Dechant KL, Clissold SP. Paroxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs 1991; 41: 225–53

    PubMed  CAS  Google Scholar 

  190. Nemeroff CB. The clinical pharmacology and use of paroxetine, a new selective serotonin reuptake inhibitor. Pharmacotherapy 1994; 14: 127–38

    PubMed  CAS  Google Scholar 

  191. Perucca E, Gatti G, Spina E. Clinical pharmacokinetics of fluvoxamine. Clin Pharmacokinet 1994; 27: 175–90

    PubMed  CAS  Google Scholar 

  192. Spigset O, Carleborg L, Hedenmalm K, et al. Effect of cigarette smoking on fluvoxamine pharmacokinetics in humans. Clin Pharmacol Ther 1995; 58: 399–403

    PubMed  CAS  Google Scholar 

  193. Kelly MW, Perry PJ, Holstad SG, et al. Serum fluoxetine and norfluoxetine concentrations and antidepressant response. Ther Drug Monit 1989; 11: 165–70

    PubMed  CAS  Google Scholar 

  194. Burke WJ, Hendricks SE, McArthur-Campbell D, et al. Fluoxetine and norfluoxetine serum concentrations and clinical response in weekly versus daily dosing. Psychopharmacol Bull 1996; 32: 27–32

    PubMed  CAS  Google Scholar 

  195. Keck Jr PE, McElroy SL. Ratio of plasma fluoxetine to norfluoxetine concentrations and associated sedation. J Clin Psychiatry 1992; 53: 127–9

    PubMed  Google Scholar 

  196. Spencer MJ. Fluoxetine (FLX) neonatal toxicity. Pediatrics 1993; 92: 721–2

    PubMed  CAS  Google Scholar 

  197. Goldstein DJ. Effects of third trimester fluoxetine exposure on the newborn. J Clin Psychopharmacol 1995; 15: 417–20

    PubMed  CAS  Google Scholar 

  198. Altshuler LL, Burt VK, McMullen M, et al. Breastfeeding and sertraline: a 24-hour analysis. J Clin Psychiatry 1995; 56: 243–5

    PubMed  CAS  Google Scholar 

  199. Winn SS, Stowe ZN, Landry JC, et al. Sertraline in breast milk and nursing infants [abstract NR72]. 148th Annual Meeting of the American Psychiatric Association: 1995 May 20–25; Miami

    Google Scholar 

  200. Kent LSW, Laidlaw JDD. Suspected congenital sertraline dependence. Br J Psychiatry 1995; 167: 412–3

    PubMed  CAS  Google Scholar 

  201. Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996; 153: 311–20

    PubMed  CAS  Google Scholar 

  202. Preskorn SH, Janicak PG, Davis JM, et al. Advances in the pharmacotherapy of depressive disorders. In: Janicak PG, editor. Principles and practice of psychopharmacotherapy. Update vol. 1, no. 2. Baltimore: Williams & Wilkins, 1995: 1–24

    Google Scholar 

  203. Von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Psychopharmacol 1995; 15: 125–31

    Google Scholar 

  204. Hartter S, Wetzel H, Hammes E, et al. Inhibition of antidepressant demethylation and hydroxylation by fluvoxamine in depressed patients. Psychopharmacology 1993; 110: 301–8

    Google Scholar 

  205. Sindrup SH, Brosen K, Gram LF, et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 278–87

    PubMed  CAS  Google Scholar 

  206. Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Clin Pharmacol 1994; 46: 35–9

    PubMed  CAS  Google Scholar 

  207. Holliday SM, Benfield P. Venlafaxine: a review of its pharmacology and therapeutic potential in depression. Drugs 1995; 49: 280–94

    PubMed  CAS  Google Scholar 

  208. Muth EA, Moyer JA, Haskins JT, et al. Biochemical, neurophysiological, and behavioral effects of WY-45, 233 and other identified metabolites of the antidepressant venlafaxine. Drug Dev Res 1991; 23: 191–9

    CAS  Google Scholar 

  209. Howell SR, Husbands GEM, Scatina JA, et al. Metabolic disposition of 14C-venlafaxine in mouse, rat, dog, rhesus monkey and man. Xenobiotica 1993; 23: 349–59

    PubMed  CAS  Google Scholar 

  210. Klamerus KJ, Maloney K, Rudolph R, et al. Introduction of a composite parameter to the pharmacokinetics of venlafaxine and its active O-desmethyl metabolite. J Clin Pharmacol 1992; 32: 716–24

    PubMed  CAS  Google Scholar 

  211. Troy SM, Schultz RW, Parker VD, et al. The effect of renal disease on the disposition of venlafaxine. Clin Pharmacol Ther 1994; 56: 14–21

    PubMed  CAS  Google Scholar 

  212. Taylor DP, Hyslop DK, Riblet A. Trazodone, a new non-tricyclic antidepressant without anticholinergic activity. Biochem Pharmacol 1980; 29: 2149–50

    PubMed  CAS  Google Scholar 

  213. Caccia S, Ballabio M, Samanin R, et al. (-)-m-Chlorophenylpiperazine, a central 5-hydroxytryptamine agonist, is a metabolite of trazodone. J Pharm Pharmacol 1981; 33: 477–8

    PubMed  CAS  Google Scholar 

  214. Mueller EA, Murphy DL, Sunderland T. Further studies of the putative serotonin agonist, m-chlorophenylpiperazine: evidence for a serotonin receptor mediated mechanism of action in humans. Psychopharmacology 1986; 89: 388–91

    PubMed  CAS  Google Scholar 

  215. Murphy DL, Lesch KP, Aulahk CS, et al. Serotonin-selective arylpiperazines with neuroendocrine, behavioral, temperature, and cardiovascular effects in humans. Pharmacol Rev 1992; 43: 527–52

    Google Scholar 

  216. Seibyl JP, Krystal JH, Price JH, et al. Effects of ritanserin on the behavioral, neuroendocrine, and cardiovascular responses to meta chlorophenylpiperazine in healthy human subjects. Psychiatry Res 1991; 38: 227–36

    PubMed  CAS  Google Scholar 

  217. Kahn RS, Wetzler S. m-Chlorophenylpiperazine as a probe of serotonin function. Biol Psychiatry 1991; 30: 1139–66

    PubMed  CAS  Google Scholar 

  218. Charney DS, Woods SW, Goodman WK, et al. Serotonin function in anxiety. Psychopharmacology 1987; 92: 14–24

    PubMed  CAS  Google Scholar 

  219. Murphy DL, Mueller EA, Hill JL, et al. Comparative anxiogenic, neuroendocrine, and other physiologic effects of m-chlorophenylpiperazine given intravenously or orally to healthy volunteers. Psychopharmacology 1989; 98: 275–82

    PubMed  CAS  Google Scholar 

  220. Kalus O, Wetzler S, Kahn RS, et al. A dose-response study of intravenous m-chlorophenylpiperazine in normal subjects. Psychopharmacology 1992; 106: 388–90

    PubMed  CAS  Google Scholar 

  221. Stein DJ, Hollander E, Cohen L, et al. Serotonergic responsivity in trichotillomania: neuroendrocrine effects of m-chlorophenylpiperazine. Biol Psychiatry 1995; 37: 414–6

    PubMed  CAS  Google Scholar 

  222. Krystal JH, Seibyl JP, Price LH, et al. m-Chlorophenylpiperazine effects in neuroleptic-free schizophrenic patients: evidence implicating serotonergic systems in the positive symptoms of schizophrenia. Arch Gen Psychiatry 1993; 50: 624–35

    PubMed  CAS  Google Scholar 

  223. Krystal JH, Webb E, Cooney NL, et al. Serotonergic and noradrenergic dysregulaüon in alcoholism: m-chlorophenylpiperazine and yohimbine effects in recently detoxified alcoholics and healthy comparison subjects. Am J Psychiatry 1996; 153: 83–92

    PubMed  CAS  Google Scholar 

  224. Anand A, Charney DS, Delgado PL, et al. Neuroendocrine and behavioral responses to intravenous m-chlorophenylpiperazine (mCPP) in depressed patients and healthy comparison subjects. Am J Psychiatry 1994; 151: 1626–30

    PubMed  CAS  Google Scholar 

  225. Zohar J, Insel TR, Zohar-Kadouch RC, et al. Serotonergic responsivity in obsessive-compulsive disorder: effects of chronic clomipramine treatment. Arch Gen Psychiatry 1988; 45: 167–72

    PubMed  CAS  Google Scholar 

  226. Hollander E, DeCaria C, Gully R, et al. Effects of chronic fluoxetine treatment on behavioral and neuroendocrine responses to meta-chloro-phenylpiperazine in obsessive-compulsive disorder. Psychiatry Res 1991; 36: 1–17

    PubMed  CAS  Google Scholar 

  227. Pigott TA, Hill JL, Grady TA, et al. A comparison of the behavioral effects of oral versus intravenous mCPP administration in OCD patients and the effects of metergoline prior to IV mCPP. Biol Psychiatry 1993; 33: 3–14

    PubMed  CAS  Google Scholar 

  228. Barbhaiya RH, Shukla UA, Natarajan CS, et al. Single- and multiple-dose pharmacokinetics of nefazodone in patients with hepatic cirrhosis. Clin Pharmacol Ther 1995; 58: 390–8

    PubMed  CAS  Google Scholar 

  229. Kroboth PD, Folan MM, Lush RM, et al. Coadministration of nefazodone and benzodiazepines. I. Pharmacodynamic assessment. J Clin Psychopharmacol 1995; 15: 306–19

    PubMed  CAS  Google Scholar 

  230. Barbhaiya RH, Shukla UA, Kroboth PD, et al. Coadministration of nefazodone and benzodiazepines. II. A pharmacokinetic interaction study with triazolam. J Clin Psychopharmacol 1995; 15: 320–6

    PubMed  CAS  Google Scholar 

  231. Greene DS, Salazar DE, Dockens RC, et al. Coadministration of nefazodone and benzodiazepines. III. A pharmacokinetic interaction study of alprazolam. J Clin Psychopharmacol 1995; 15: 399–408

    PubMed  CAS  Google Scholar 

  232. Greene DS, Salazar DE, Dockens RC, et al. Coadministration of nefazodone and benzodiazepines. IV. A pharmacokinetic interaction study with lorazepam. J Clin Psychopharmacol 1995; 15: 409–16

    PubMed  CAS  Google Scholar 

  233. Franc JE, Duncan GF, Farmen RH, et al. High-performance liquid Chromatographic method for the determination of nefazodone and its metabolites in human plasma using laboratory robotics. J Chromatogr B Biomed Appl 1991; 570: 129–38

    CAS  Google Scholar 

  234. Mayol RF, Cole CA, Luke GM, et al. Characterization of the metabolites of the antidepressant drug nefazodone in human urine and plasma. Drug Metab Dispos 1994; 22: 304–11

    PubMed  CAS  Google Scholar 

  235. Golden RN, Rudorfer MV, Sherer MA, et al. Bupropion in depression. I. Biochemical effects and clinical response. Arch Gen Psychiatry 1988; 45: 139–43

    PubMed  CAS  Google Scholar 

  236. Cooper BR, Wang CM, Cox RF, et al. Evidence that the acute behavioral and electrophysiological effects of bupropion (Wellbutrin) are mediated by a noradrenergic mechanism. Neuropsychopharmacology 1994; 11: 133–41

    PubMed  CAS  Google Scholar 

  237. Ascher JA, Cole JO, Colin JN, et al. Bupropion: a review of its mechanism of antidepressant activity. J Clin Psychiatry 1995; 56: 395–401

    PubMed  CAS  Google Scholar 

  238. Golden RN, James SP, Sherer MA, et al. Psychoses associated with bupropion treatment. Am J Psychiatry 1985; 142: 1459–62

    PubMed  CAS  Google Scholar 

  239. Golden RN. Antidepressant profiles of bupropion and three metabolites: clinical and pre-clinical studies [letter]. Pharmacopsychiatry 1991; 24: 68

    PubMed  CAS  Google Scholar 

  240. Laizure SC, DeVane CL, Stewart JT, et al. Pharmacokinetics of bupropion and its major basic metabolites in normal subjects after a single dose. Clin Pharmacol Ther 1985; 38: 586–9

    PubMed  CAS  Google Scholar 

  241. Golden RN, DeVane CL, Laizure SC, et al. Bupropion in depression. II. The role of metabolites in clinical outcome. Arch Gen Psychiatry 1988; 45: 145–9

    PubMed  CAS  Google Scholar 

  242. DeVane CL, Laizure SC, Stewart JT, et al. Disposition of bupropion in healthy volunteers and subjects with alcoholic liver disease. J Clin Psychopharmacol 1990; 10: 328–32

    Google Scholar 

  243. Sachs GS, Lafer B, Stoll AL, et al. A double-blind trial of bupropion versus desipramine for bipolar depression. J Clin Psychiatry 1994; 55: 391–3

    PubMed  CAS  Google Scholar 

  244. Ketter TA, Jenkins JB, Schroeder DH, et al. Carbamazepine but not valproate induces bupropion metabolism. J Clin Psychopharmacol 1995; 15: 327–33

    PubMed  CAS  Google Scholar 

  245. Goodnick PJ. Pharmacokinetics of second generation antidepressants: bupropion. Psychopharmacol Bull 1991; 27: 513–9

    PubMed  CAS  Google Scholar 

  246. Golden RN, Markey SP, Risby ED, et al. Antidepressants reduce whole-body norepinephrine turnover while enhancing 6-hydroxymelatonin output. Arch Gen Psychiatry 1988; 45: 150–4

    PubMed  CAS  Google Scholar 

  247. Nixon AL, Long WH, Puopolo PR, et al. Bupropion metabolites produce false-positive urine amphetamine results. Clin Chem 1995; 41: 955–6

    PubMed  CAS  Google Scholar 

  248. Rudorfer MV. Monoamine oxidase inhibitors: reversible and irreversible. Psychopharmacol Bull 1992; 28: 45–57

    PubMed  CAS  Google Scholar 

  249. Thase ME, Trivedi MH, Rush AJ. MAOIs in the contemporary treatment of depression. Neuropsychopharmacology 1995; 12: 185–219

    PubMed  CAS  Google Scholar 

  250. Mallinger AG, Smith E. Pharmacokinetics of monoamine oxidase inhibitors. Psychopharmacol Bull 1991; 27: 493–502

    PubMed  CAS  Google Scholar 

  251. Baker GB, Coutts RT. Metabolism of monoamine oxidase inhibitors. Neuropsychopharmacology 1989; 13: 395–403

    CAS  Google Scholar 

  252. Karoum F, Chuang L-W, Eisler T, et al. Metabolism of (-) deprenyl to amphetamine and methamphetamine may be responsible for deprenyl’s therapeutic benefit: a biochemical assessment. Neurology 1982; 32: 503–9

    PubMed  CAS  Google Scholar 

  253. Mallinger AG, Edwards DJ, Himmelhoch JM, et al. Pharmacokinetics of tranylcypromine in patients who are depressed: relationship to cardiovascular effects. Clin Pharmacol Ther 1986; 40: 444–50

    PubMed  CAS  Google Scholar 

  254. Mallinger AG, Himmelhoch JM, Thase ME, et al. Plasma tranylcypromine: relationship to pharmacokinetic variables and clinical antidepressant actions. J Clin Psychopharmacol 1990; 10: 176–83

    PubMed  CAS  Google Scholar 

  255. Reynolds GP, Rausch WD, Riederer P. Effects of tranylcypromine stereoisomers on monoamine oxidation in man. Br J Clin Pharmacol 1980; 9: 521–3

    PubMed  CAS  Google Scholar 

  256. Keck PE, Carter WP, Nierenberg AA, et al. Acute plasma drug metabolite, norepinephrine, and MHPG levels. J Clin Psychiatry 1991; 52: 250–4

    PubMed  Google Scholar 

  257. Youdim MBH, Aronson JK, Blau K, et al. Tranylcypromine (Paniate) overdose: measurement of tranylcypromine concentrations and MAO inhibitory activity and identification. Psychol Med 1979; 9: 377–82

    PubMed  CAS  Google Scholar 

  258. Jefferson JW. Is tranylcypromine really metabolized to amphetamine? J Clin Psychiatry 1992; 53: 450–1

    PubMed  CAS  Google Scholar 

  259. Brady KT, Lydiard RB, Kellner C. Tranylcypromine abuse. Am J Psychiatry 1991; 148: 1268–9

    PubMed  CAS  Google Scholar 

  260. Briggs NC, Jefferson JW, Koenecke FH. Tranylcypromine addiction: a case report and review. J Clin Psychiatry 1990; 51: 426–9

    PubMed  CAS  Google Scholar 

  261. Vartzopoulos D, Krull F. Dependence on monoamine oxidase inhibitors in high dose. Br J Psychiatry 1991; 158: 856–7

    PubMed  CAS  Google Scholar 

  262. Keck PE, Pope HG, Nierenberg AA. Autoinduction of hypertensive reactions by tranylcypromine? J Clin Psychopharmacol 1989; 9: 48–51

    PubMed  Google Scholar 

  263. Finberg JPM. Pharmacology of reversible and selective inhibitors of monoamine oxidase type A. Acta Psychiatr Scand 1995; 91 Suppl. 386: 8–13

    Google Scholar 

  264. Potter WZ, Murphy DL, Wehr TA, et al. Clorgyline: a new treatment for refractory rapid cycling disorder. Arch Gen Psychiatry 1982; 39: 505–10

    PubMed  CAS  Google Scholar 

  265. Sunderland T, Cohen RM, Molchan S, et al. High-dose selegiline in treatment-resistant older depressive patients. Arch Gen Psychiatry 1994; 51: 607–15

    PubMed  CAS  Google Scholar 

  266. Heinonen EH, Anttila MI, Lammintausta RAS. Pharmacokinetic aspects of 1-deprenyl (selegiline) and its metabolites. Clin Pharmacol Ther 1994; 56: 742–9

    PubMed  CAS  Google Scholar 

  267. Reynolds GP, Riederer P, Sandier M, et al. Amphetamine and 2-phenylethylamine in post-mortem Parkinsonian brain after (-)deprenyl administration. J Neural Transm Park Dis Dement Sect 1978; 43: 271–7

    CAS  Google Scholar 

  268. Reynolds GP, Blau EK, Sandler M, et al. Deprenyl is metabolized to methamphetamine and amphetamine in man. Br J Clin Pharmacol 1978; 6: 542–4

    PubMed  CAS  Google Scholar 

  269. Schoerlin MP, Mayersohn M, Hoevls B, et al. Cimetidine alters the disposition kinetics of the monoamine oxidase-A inhibitor moclobemide. Clin Pharmacol Ther 1991; 49: 32–8

    PubMed  CAS  Google Scholar 

  270. Dingemanse J, Kneer J, Fotteler B, et al. Switch in treatment from tricyclic antidepressants to moclobemide: a new generation monoamine oxidase inhibitor. J Clin Psychopharmacol 1995; 15: 41–8

    PubMed  CAS  Google Scholar 

  271. Schoerlin MP, Mayersohn M, Korn A, et al. Disposition kinetics of moclobemide, a monoamine oxidase-A enzyme inhibitor: single and multiple dosing in normal subjects. Clin Pharmacol Ther 1987; 42: 395–404

    PubMed  CAS  Google Scholar 

  272. Fitton A, Faulds D, Goa KL. Moclobemide: a review of its pharmacological properties and therapeutic use in depressive illness. Drugs 1992; 43: 561–96

    PubMed  CAS  Google Scholar 

  273. Gram LF, Guentert TW, Grange S, et al. Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: a panel study. Clin Pharmacol Ther 1995; 57: 670–7

    PubMed  CAS  Google Scholar 

  274. Pons G, Schoerlin MP, Tarn YK, et al. Moclobemide excretion in human breast milk. Br J Clin Pharmacol 1990; 29: 27–31

    PubMed  CAS  Google Scholar 

  275. Schoerlin MP, Horber FF, Frey FJ, et al. Disposition kinetics of moclobemide, a new MAO-A inhibitor, in subjects with impaired renal function. J Clin Pharmacol 1990; 30: 272–84

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudorfer, M.V., Potter, W.Z. The Role of Metabolites of Antidepressants in the Treatment of Depression. CNS Drugs 7, 273–312 (1997). https://doi.org/10.2165/00023210-199707040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199707040-00003

Keywords

Navigation