Skip to main content
Log in

Sulpiride

A Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Efficacy in Schizophrenia

  • Drug Evaluation
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Synopsis

Sulpiride is a benzamide derivative, structurally distinct from other standard antipsychotics, which binds selectively to central and peripheral dopamine D2-and D3-receptors. In animals, sulpiride displays neuropharmacological and behavioural actions that are variously considered predictive of typical and atypical antipsychotic activity. Atypical properties include a lack of sedative and cataleptogenic effects and failure to antagonise apomorphine-induced stereotypy. In common with other dopamine D2-receptor antagonists, sulpiride has a pronounced prolactin-stimulating effect.

Sulpiride displays an apparent spectrum of clinical activity which differs from that of conventional antipsychotics, with sedative effects predominating at higher doses and activating effects at lower doses. Antipsychotic activity occurs over a dosage range of 400 to 3200 mg/day, with negative symptoms responding best to low dosages (≤ 800 mg/day) and positive symptoms to higher dosages ≥ 1200 mg/day). In terms of its global antipsychotic efficacy, sulpiride compares similarly with most conventional antipsychotics. Extrapyramidal effects (akathisia, acute dystonia and parkinsonism) have been associated with sulpiride, occurring in 12.8% of patients receiving doses ≤ 1200 mg/day; tardive dyskinesia appears to be rare. Male impotence, galactorrhoea and amenorrhoea are presumably related to the hyperprolactinaemic effect of the drug.

As a disinhibiting antipsychotic, sulpiride is indicated for the treatment of acute and chronic schizophrenia with prominent autistic and affective symptoms. The wide therapeutic dose range and lack of sedative effect of low dose sulpiride may be beneficial in maintenance therapy of remitted schizophrenic outpatients. With its relatively low propensity to cause extrapyramidal symptoms and tardive dyskinesia, sulpiride also offers advantages in the treatment of schizophrenic patients who are intolerant of conventional antipsychotics.

Pharmacodynamic Properties

In contrast to the classical antipsychotic drugs such as haloperidol and chlorprom-azine, sulpiride shows selective affinity for the dopamine D2- and D3-receptor subgroups, with little affinity for other brain receptors. Peripheral dopamine receptors in blood vessels and gastrointestinal smooth muscle are also antagonised by sulpiride. Pharmacodynamic properties distinguishing sulpiride as an atypical antipsychotic include lack of inhibition of dopamine-induced stimulation of adenylate cyclase, induction of weak catalepsy, weak antagonism of apomorphine-induced locomotion and lack of inhibition of apomorphine-induced behaviour in animal models. In humans, disinhibitory properties and lack of sedation are noted. As with other dopamine D2-receptor antagonists, sulpiride has a pronounced stimulatory effect on prolactin release from the pituitary gland.

Sulpiride has stereoselective properties, and S-sulpiride appears to be the more active of the 2 enantiomers. However, racemic sulpiride is usually used for the treatment of schizophrenia.

Pharmacokinetic Properties

The low oral bioavailability of sulpiride is probably due to its incomplete absorption from the gastrointestinal tract. Food tends to decrease the gastrointestinal absorption of sulpiride, as do drugs which increase gastric pH. Distribution and elimination follow linear pharmacokinetics. Sulpiride has low lipid solubility and penetrates the cerebrospinal fluid poorly. Very little metabolism occurs and renal clearance is high, resulting in accumulation of sulpiride in patients with renal dysfunction.

The relationship between plasma sulpiride concentration and clinical efficacy is equivocal.

Therapeutic Efficacy

Dose-finding studies suggest that sulpiride is partially selective towards the negative symptoms of schizophrenia at low dosages (400 to 1000 mg/day), with more overt activity against positive symptoms being apparent at higher dosages (>1000 mg/day). The activating or disinhibitory effect ascribed to low dose sulpiride may be offset at higher doses by a possible deactivating effect.

The antipsychotic efficacy of sulpiride 400 to 1400 mg/day has been established in a limited number of double-blind placebo-controlled comparisons of ≤ 3 months’ duration in patients with chronic schizophrenia. In patients with prominent negative symptoms, sulpiride 400 mg/day improved affective blunting, poverty of speech and socially detrimental behaviour. When used prophylactically in remitted schizophrenic outpatients, sulpiride 100 to 600 mg/day extended the duration of remission and reduced the relapse rate over a 1-year period.

In controlled clinical trials of 1 to 4 month’ duration, sulpiride ≤ 3200 mg/day (usually ≤ 1200 mg/day) has shown comparable overall antipsychotic activity to bromperidol 7 to 36 mg/day, chlorpromazine 150 to 600 mg/day, haloperidol 3 to 40 mg/day, perphenazine 4 to 48 mg/day, trifluoperazine 15 to 45 mg/day and zuclopenthixol 25 to 150 mg/day in patients with acute or chronic schizophrenia. A moderate to marked improvement in global psychotic morbidity was reported in ≈ 30 to 50% of chronic schizophrenic patients receiving sulpiride in these trials.

In hospitalised patients with either acute schizophrenic episodes or chronic schizophrenia, sulpiride 300 to 1200 mg/day tended to produce a greater improvement in global psychotic morbidity than chlorpromazine 150 to 600 mg/day. Although sulpiride was as active as chlorpromazine against positive psychotic symptoms in patients with acute schizophrenic episodes, it proved superior to the latter in ameliorating autistic symptoms. In hospitalised patients with paranoid or hebephrenic schizophrenia, the antipsychotic action of sulpiride 100 to 2300 (mean 1000) mg/day appeared to be more rapid and wider-ranging than that of haloperidol 0.5 to 10.5 (mean 5.0) mg/day, encompassing depressive and anxious as well as hostile-paranoid symptoms. Among patients with chronic schizophrenia and prominent negative symptoms of apathy and anergia, the response rates to sulpiride 300 to 1200 mg/day and perphenazine 12 to 48 mg/day were comparable; sulpiride, however, appeared to have the more rapid onset of action. Among patients with schizophrenic and schizoaffective psychoses, sulpiride 200 to 1800 mg/day was reported to show greater activity than perphenazine 8 to 80 mg/day against symptoms of depression, somatic concerns and psychomotor retardation.

Tolerability

Extrapyramidal symptoms, believed to depend on the extent of dopamine D2-receptor occupancy, occurred in 12.8% of 2851 patients receiving sulpiride in 65 clinical studies. Tardive dyskinesia and neuroleptic malignant syndrome have rarely been associated with sulpiride therapy. Endocrine effects have been reported less often than expected from the pharmacodynamic data.

Sulpiride has a low toxicity profile on overdose. Caution is advised in patients receiving sulpiride in conjunction with alcohol (ethanol), levodopa, antihypertensive agents or central depressants.

Dosage and Administration

The dosage of sulpiride is adjusted according to the most prominent psychiatric symptoms in patients with acute or chronic psychosis: 200 to 600 mg/day in patients with predominantly negative symptoms and 800 to 1600 mg/day in those with mainly positive symptoms. Dosage adjustment is required in patients with severe renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carpenter WT, Buchanan RW. Schizophrenia. N Engl J Med 1994; 330: 681–90

    PubMed  Google Scholar 

  2. Seeman P, Niznik HB. Dopamine receptors and transporters in Parkinson’s disease and schizophrenia. FASEB J 1990; 4: 2737–44

    PubMed  CAS  Google Scholar 

  3. Seeman P, Guan H-C, Van Tol HHM. Dopamine D4 receptors elevated in schizophrenia. Nature 1993; 365: 441–5

    PubMed  CAS  Google Scholar 

  4. Schmidt CJ, Kehne JH, Carr AA, et al. Contribution of serotonin neurotoxins to understanding psychiatric disorders: the role of 5-HT2 receptors in schizophrenia and antipsychotic activity. J Clin Psychopharmacol 1993; 8 Suppl. 2: 25–32

    Google Scholar 

  5. Widerlöv E, Lindström LH, Besev G, et al. Subnormal CSF levels of neurotensin in a subgroup of schizophrenic patients: normalization after neuroleptic treatment. Am J Psychiatry 1982; 139: 1122–6

    PubMed  Google Scholar 

  6. Lindström LH, Widerlöv E, Bisette G, et al. Reduced CSF neurotensin concentration in drug-free schizophrenic patients. Schizophr Res 1988; 1: 55–9

    PubMed  Google Scholar 

  7. Garver DL, Bissette G, Yao JK, et al. Relation of CSF neurotensin concentrations to symptoms and drug response of psychotic patients. Am J Psychiatry 1991; 148: 484–8

    PubMed  CAS  Google Scholar 

  8. Levant B, Bissette G, Widerlöv E, et al. Alterations in regional brain neurotensin concentrations produced by atypical antipsychotic drugs. Regul Pept 1991; 32: 193–201

    PubMed  CAS  Google Scholar 

  9. O’Connor SE, Brown RA. The pharmacology of sulpiride - a dopamine receptor antagonist. Gen Pharmacol 1982; 13: 185–93

    PubMed  Google Scholar 

  10. Sunahara RK, Guan H-C, O’Dowd BF, et al. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 1991; 350: 614–9

    PubMed  CAS  Google Scholar 

  11. Sokoloff P, Giros B, Martres M-P, et al. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 1990; 347: 146–51

    PubMed  CAS  Google Scholar 

  12. Sokoloff P, Andrieux M, Besancon R, et al. Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol 1992; 225: 331–7

    PubMed  CAS  Google Scholar 

  13. Van Tol HHM, Bunzow JR, Guan H-C, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350: 610–4

    PubMed  Google Scholar 

  14. Seeman P, Van Tol HHM. Dopamine D4 receptors bind inactive (+)-aporphines, suggesting neuroleptic role. Sulpiride not stereoselective. Eur J Pharmacol 1993; 233: 173–4

    PubMed  CAS  Google Scholar 

  15. Malmberg Å, Jackson DM, Eriksson A, et al. Unique binding characteristics of antipsychotic agents interacting with human dopamine D2A, D2B, and D3 receptors. Mol Pharmacol 1993; 43: 749–54

    PubMed  CAS  Google Scholar 

  16. Pedersen UB, Norby B, Jensen AA, et al. Characteristics of stably expressed human dopamine D1a and D1b receptors: atypical behavior of the dopamine D1b receptor. Eur J Pharmacol 1994; 267: 85–93

    PubMed  CAS  Google Scholar 

  17. De Keyser J. Subtypes and localization of dopamine receptors in human brain. Neurochem Int 1993; 22: 83–93

    PubMed  Google Scholar 

  18. Jenner P, Marsden CD. Multiple dopamine receptors in brain and the pharmacological action of substituted benzamide drugs. Acta Psychiatr Scand 1984; 69: 109–23

    Google Scholar 

  19. Seeman P. Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 1992; 7: 261–84

    PubMed  CAS  Google Scholar 

  20. Jenner P, Marsden CD. The substituted benzamides — a novel class of dopamine antagonists. Life Sci 1979; 25: 479–86

    PubMed  CAS  Google Scholar 

  21. Jenner P, Theodorou A, Marsden CD. Specific receptors for substituted benzamide drugs in brain. Adv Biochem Psychopharmacol 1982; 35: 109–41

    PubMed  CAS  Google Scholar 

  22. Spano PF, Govoni S, Trabucchi M. Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system. Adv Biochem Psychopharmacol 1978; 19: 155–65

    PubMed  CAS  Google Scholar 

  23. Trabucci M, Longoni R, Fresia P, et al. Sulpiride: a study of the effects on dopamine receptors in rat neostriatum and limbic forebrain. Life Sci 1975; 17: 1551–6

    Google Scholar 

  24. Woodruff GN, Freedman SB, Poat JA. Why does sulpiride not block the effect of dopamine on the dopamine-sensitive adenylate cyclase? [letter]. J Pharm Pharmacol 1980; 32: 802–3

    PubMed  CAS  Google Scholar 

  25. Motohashi N, Takashima M, Mataga N, et al. Effects of sulpiride and oxypertine on the dopaminergic system in the rat striatum. Neuropsychobiology 1992; 25: 29–33

    PubMed  CAS  Google Scholar 

  26. Ossowska K, Karcz M, Wardas J, et al. Striatal and nucleus accumbens D1/D2 dopamine receptors in neuroleptic catalepsy. Eur J Pharmacol 1990; 182: 327–34

    PubMed  CAS  Google Scholar 

  27. Honda F, Satoh Y, Shimomura K, et al. Dopamine receptor blocking activity of sulpiride in the central nervous system. Jpn J Pharmacol 1977; 27: 397–411

    PubMed  CAS  Google Scholar 

  28. Jenner P, Marsden CD. The mode of action of sulpiride as an atypical antidepressant agent. Adv Biochem Psychopharmacol 1982; 32: 85–103

    PubMed  CAS  Google Scholar 

  29. Serra G, Forgione A, D’Aquila PS, et al. Possible mechanism of antidepressant effect of L-sulpiride. Clin Neuropharmacol 1990; 13 Suppl. 1: S76–S83

    PubMed  Google Scholar 

  30. Ögren SO, Hall H, Köhler C, et al. Remoxipride, a new potential antipsychotic compound with selective anti-dopaminergic actions in the rat brain. Eur J Pharmacol 1984; 102: 459–74

    PubMed  Google Scholar 

  31. Fujiwara H. Comparative studies of sulpiride and classical neuroleptics on induction of catalepsy, locomotor activity, and brain dopamine metabolism in mice. Pharmacol Biochem Behav 1992; 41: 301–8

    PubMed  CAS  Google Scholar 

  32. Csernansky JG, Wrona CT, Bardgett ME, et al. Subcortical dopamine and serotonin turnover during acute and subchronic administration of typical and atypical neuroleptics. Psychopharmacology 1993; 110: 145–51

    PubMed  CAS  Google Scholar 

  33. Imazu Y, Kobayashi K, Shohmori T. Comparative study of sulpiride and haloperidol on dopamine turnover in the rat brain. Neurochem Res 1989; 14: 459–64

    PubMed  CAS  Google Scholar 

  34. Suaud-Chagny M-F, Buda M, Gonon FG. Pharmacology of electrically evoked dopamine release studied in the rat olfactory tubercle by in vivo electrochemistry. Eur J Pharmacol 1989; 164: 273–83

    PubMed  CAS  Google Scholar 

  35. Yamada S, Yokoo H, Nishi S, et al. Modulation of (-)-sulpiride-induced increase in electrically-evoked release of dopa mine from rat striatal slices. J Pharm Pharmacol 1993; 45: 479–81

    PubMed  CAS  Google Scholar 

  36. Baptista T, Hernandez L, Hoebel BG. Systemic sulpiride increases dopamine metabolites in the lateral hypothalamus. Pharmacol Biochem Behav 1990; 37: 227–9

    PubMed  CAS  Google Scholar 

  37. Rogue P, Hanauer A, Zwiller J, et al. Up-regulation of dopamine D2 receptor mRNA in rat striatum by chronic neuroleptic treatment. Eur J Pharmacol Mol Pharmacol 1991; 207: 165–8

    CAS  Google Scholar 

  38. Memo M, Pizzi M, Nisoli E, et al. Repeated administration of (-)sulpiride and SCH 23390 differentially up-regulate D-1 and D-2 dopamine receptor function in rat mesostriatal areas but not in cortical-limbic brain regions. Eur J Pharmacol 1987; 138: 45–51

    PubMed  CAS  Google Scholar 

  39. Stefanini E, Frau M, Gessa GL. Increase in D2 dopamine receptors in the substantia nigra after chronic (-)-sulpiride treatment. Brain Res 1991; 555: 340–2

    PubMed  CAS  Google Scholar 

  40. Satoh H, Kuwaki T, Shirakawa K, et al. Effect of long-term dosing with tiapride on brain dopamine receptors and metabolism in rats. Comparative study with sulpiride and haloperidol. Jpn J Pharmacol 1987; 44: 393–403

    PubMed  CAS  Google Scholar 

  41. Jenner P, Hall MD, Murugaiah K, et al. Repeated administration of sulpiride for three weeks produces behavioural and biochemical evidence for cerebral dopamine receptor supersensitivity. Biochem Pharmacol 1982; 31: 325–8

    PubMed  CAS  Google Scholar 

  42. Prosser ES, Pruthi R, Csernansky JG. Differences in the time course of dopaminergic supersensitivity following chronic administration of haloperidol, molindone, or sulpiride. Psychopharmacology 1989; 99: 109–16

    PubMed  CAS  Google Scholar 

  43. Bogdanov MB, Guinetdinov RR, Valdman AV. Atypical neuroleptics clozapine, raclopride and sulpiride decrease striatal in vivo serotonin release in awake rats [abstract no. P79]. Eur Neuropsychopharmacol 1992; 2: 349

    Google Scholar 

  44. Bardgett ME, Wrona CT, Newcomer JW, et al. Subcortical excitatory amino acid levels after acute and subchronic administration of typical and atypical neuroleptics. Eur J Pharmacol 1993; 230: 245–50

    PubMed  CAS  Google Scholar 

  45. Levant B, Nemeroff CB. Further studies on the modulation of regional brain neurotensin concentrations by antipsychotic drugs: focus on haloperidol and BMY 14802. J Pharmacol Exp Ther 1992; 262: 348–55

    PubMed  CAS  Google Scholar 

  46. Costall B, Naylor RJ. Detection of the neuroleptic properties of clozapine, sulpiride and thioridazine. Psychopharmacologia 1975; 43: 69–74

    PubMed  CAS  Google Scholar 

  47. Moore S, Kenyon P. Atypical antipsychotics, clozapine and sulpiride do not antagonise amphetamine-induced stereotyped locomotion. Psychopharmacology 1994; 114: 123–30

    PubMed  CAS  Google Scholar 

  48. Puech AJ, Simon P, Boissier J-R. Antagonism by sulpiride of three apomorphine-induced effects in rodents. Eur J Pharmacol 1976; 36: 439–41

    PubMed  CAS  Google Scholar 

  49. Robertson A, Macdonald C. Opposite effects of sulpiride and metoclopramide on amphetamine-induced stereotypy. Eur J Pharmacol 1985; 109: 81–9

    PubMed  CAS  Google Scholar 

  50. Montanaro N, Dall’Olio R, Gandolfi O, et al. Differential enhancement of behavioural sensitivity to apomorphine following chronic treatment of rats with (-)-sulpiride and haloperidol. Eur J Pharmacol 1982; 81: 1–9

    PubMed  CAS  Google Scholar 

  51. Ridley RM, Scraggs PR, Baker HF. The effects of metoclopramide, sulpiride, and the stereoisomers of baclofen on amphetamine-induced behavior in the marmoset. Biol Psychiatry 1980; 15: 265–74

    PubMed  CAS  Google Scholar 

  52. Rubinstein M, Gershanik O, Stefano FJE. Postsynaptic bimodal effect of sulpiride on locomotor activity induced by pergolide in catecholamine-depleted mice. Naunyn Schmiedebergs Arch Pharmacol 1988; 337: 115–7

    PubMed  CAS  Google Scholar 

  53. Chandler CJ, Starr BS, Starr MS. Differential behavioural interactions between the dopamine D-1 antagonist SCH 23390 and the dopamine D-2 antagonists metoclopramide and sulpiride in nonhabituated mice. Pharmacol Biochem Behav 1990; 35: 285–9

    PubMed  CAS  Google Scholar 

  54. Ahlenius S. Effects of the local application of 3-PPP and sulpiride enantiomers into the nucleus accumbens or into the ventral tegmental area on rat locomotor activity: evidence for the functional importance of somatodendritic autoreceptors. Naunyn Schmiedebergs Arch Pharmacol 1992; 345: 516–22

    PubMed  CAS  Google Scholar 

  55. Redolat R, Carrasco MC, Simón VM. Effects of sulpiride and raclopride on active avoidance in mice. Med Sci Res 1994; 22: 177–9

    CAS  Google Scholar 

  56. Ögren SO, Archer T. Effects of typical and atypical antipsychotic drugs on two-way active avoidance. Relationship to DA receptor blocking profile. Psychopharmacology 1994; 114: 383–91

    PubMed  Google Scholar 

  57. Redolat R, Brain PF, Simón VM. Sulpiride has an antiaggressive effect in mice without markedly depressing motor activity. Neuropharmacology 1991; 30: 41–6

    PubMed  CAS  Google Scholar 

  58. Martin-López M, Puigcerver A, Vera F, et al. Sulpiride shows an antiaggressive specific effect after acute treatment in male mice. Med Sci Res 1993; 21: 595–6

    Google Scholar 

  59. Navarro JF, Martín-López M, Puigcerver A. Tolerance to sulpiride antiaggressive activity after repeated administration to mice. Med Sci Res 1994; 22: 449–50

    CAS  Google Scholar 

  60. Pich EM, Samanin R. Disinhibitory effects of buspirone and low doses of sulpiride and haloperidol in two experimental anxiety models in rats: possible role of dopamine. Psychopharmacology 1986; 89: 125–30

    PubMed  CAS  Google Scholar 

  61. Bruhwyler J, Chleide E, Liegeois JF, et al. Anxiolytic potential of sulpiride, clozapine and derivatives in the open-field test. Pharmacol Biochem Behav 1990; 36: 57–61

    PubMed  CAS  Google Scholar 

  62. Ståhle L, Ungerstedt U. On the selectivity and specificity of the antagonism of apomorphine-induced suppression of exploration by sulpiride. Psychopharmacology 1989; 99: 75–9

    PubMed  Google Scholar 

  63. Vaccheri A, Dall’Olio R, Gandolfi O, et al. Involvement of different dopamine receptors in rat diphasic motility response to apomorpine. Psychopharmacology 1986; 89: 265–8

    PubMed  CAS  Google Scholar 

  64. Montanaro N, Vaccheri A, Dall’Olio R, et al. Time course of rat motility response to apomorphine: a simple model for studying preferential blockade of brain dopamine receptors mediating sedation. Psychopharmacology 1983; 81: 214–9

    PubMed  CAS  Google Scholar 

  65. Kawashima K, Araki H, Aihara H, et al. Effects of minaprine and sulpiride injected into the amygdaloid nucleus on the duration of immobility in rats forced to swim. Jpn J Pharmacol 1990; 53: 411–3

    PubMed  CAS  Google Scholar 

  66. Miller JD, Brizzee KR. The anti-emetic properties of L-sulpiride in a ground-based model of space motion sickness. Life Sci 1987; 41: 1815–22

    PubMed  CAS  Google Scholar 

  67. Baptista T, Parada M, Hernandez L. Long term administration of some antipsychotic drugs increases body weight and feeding in rats. Are D2 dopamine receptors involved? Pharmacol Biochem Behav 1987; 27: 399–405

    PubMed  CAS  Google Scholar 

  68. Shimizu H, Shimomura Y, Uehara Y, et al. Involvement of sex hormone in body weight gain by selective D2-receptor antagonist sulpiride. Exp Clin Endocrinol 1990; 96: 25–9

    PubMed  CAS  Google Scholar 

  69. Baptista T, Teneud L, Hernández L. Enhancement of amphetamine anorexia after chronic administration of sulpiride in rats. Pharmacol Biochem Behav 1993; 45: 45–9

    PubMed  CAS  Google Scholar 

  70. Pizzolato G, Soncrant TT, Larson DM, et al. Stimulatory effect of the D2 antagonist sulpiride on glucose utilization in dopaminergic regions of rat brain. J Neurochem 1987; 49: 631–8

    PubMed  CAS  Google Scholar 

  71. Oosterveld WJ, Norré M. Action du sulpiride sur 1e Système vestibulaire. Ars Med 1974; 3: 551–63

    Google Scholar 

  72. Härnryd C, Bjerkenstedt L, Gullberg B, et al. Time course for effects of sulpiride and chlorpromazine on monoamine metabolite and prolactin levels in cerebrospinal fluid from schizophrenic patients. Acta Psychiatr Scand 1984; Suppl. 311: 75–92

    Google Scholar 

  73. Bjerkenstedt L, Härnryd C, Sedval G. Effect of sulpiride on monoaminergic mechanisms in psychotic women. Psychopharmacology 1979; 64: 135–9

    PubMed  CAS  Google Scholar 

  74. Alfredsson G, Härnryd C, Wiesel F-A. Effects of sulpiride and chlorpromazine on autistic and positive psychotic symptoms in schizophrenic patients — relationship to drug concentrations. Psychopharmacology 1985; 85: 8–13

    PubMed  CAS  Google Scholar 

  75. Scarone S, Spoto G, Penati G, et al. A study of the EEG sleep patterns and the sleep and dream experience of a group of schizophrenic patients treated with sulpiride. Arzneimittel Forschung 1976; 26: 1626–8

    PubMed  CAS  Google Scholar 

  76. Alfredsson G, Härnryd C, Wiesel F-A. Effects of sulpiride and chlorpromazine on depressive symptoms in schizophrenic patients — relationship to drug concentrations. Psychopharmacology 1984; 84: 237–41

    PubMed  CAS  Google Scholar 

  77. Aschoff JC, Becker W, Weinert D. Computer analysis of eye movements: evaluation of the state of alertness and vigilance after sulpiride medication. J Pharmacol Clinique 1975; 2: 93–7

    CAS  Google Scholar 

  78. Bartfai A, Wiesel F-A. Effect of sulpiride on vigilance in healthy subjects. Int J Psychophysiol 1986; 4: 1–5

    PubMed  CAS  Google Scholar 

  79. McClelland GR, Cooper SM, Pilgrim AJ. A comparison of the central nervous system effects of haloperidol, chlorpromazine and sulpiride in normal volunteers. Br J Clin Pharmacol 1990; 30: 795–803

    PubMed  CAS  Google Scholar 

  80. Alberts JL, François F, Josserand F. Study of side effects reported in patients under Dogmatil [in Frenchl. Sem Hop 1985; 61: 1351–7

    Google Scholar 

  81. Aylward M, Maddock J, Dewland PM, et al. Sulpiride in depressive illness. A controlled clinical comparison of sulpiride and amitriptyline in patients with primary depressive illness. Adv Biol Psychiat 1981; 7: 154–65

    Google Scholar 

  82. Gullo L, Nesticó V, Ferrini L, et al. Stimulation of pancreatic secretion by sulpiride. Dig Dis Sci 1980; 25: 653–5

    PubMed  CAS  Google Scholar 

  83. Vonbahr C, Wiesel FA, Movin G, et al. Neuroendocrine responses to single oral doses of remoxipride and sulpiride in healthy female and male volunteers. Psychopharmacology 1991; 103: 443–8

    CAS  Google Scholar 

  84. McMurdo MET, Howie PW, Lewis M, et al. Prolactin response to low dose sulpiride. Br J Clin Pharmacol 1987; 24: 133–7

    PubMed  CAS  Google Scholar 

  85. Kaneko Y, Yamamoto Y, Kitamura Y, et al. Effect of sulpiride on plasma prolactin in healthy volunteers and depressed patients. Neuropsychobiology 1986; 15: 155–9

    PubMed  CAS  Google Scholar 

  86. Ruiz W, Ortega E, Mendoza C, et al. Effects of sulpiride on levels of FSH, LH and steroid hormones. Rev Esp Fisiol 1984; 40: 243–8

    PubMed  CAS  Google Scholar 

  87. Costa G, Frisina N, De Pasquale R. Increased aldosterone secretion induced by sulpiride. Clin Endocrinol 1980; 13: 1–7

    CAS  Google Scholar 

  88. L’Hermite M, Denayer P, Golstein J, et al. Acute endocrine profile of sulpiride in the human. Clin Endocrinol 1978; 9: 195–204

    Google Scholar 

  89. Abou Samra AB, Pugeat M, Dechaud H, et al. Acute dopaminergic blockade by sulpiride stimulates β-endorphin secretion in pregnant women. Clin Endocrinol 1984; 21: 583–8

    CAS  Google Scholar 

  90. Guitelman A, Aparicio NJ, Mancini A, et al. Release of prolactin during pregnancy: effect of sulpiride. Fertil Steril 1978; 30: 42–4

    PubMed  CAS  Google Scholar 

  91. Mielke DH, Gallant DM, Kessler C. An evaluation of a unique new antipsychotic agent, sulpiride: effects on serum prolactin and growth hormone levels. Am J Psychiatry 1977; 134: 1371–5

    PubMed  CAS  Google Scholar 

  92. Christie JE, Whalley LJ, Hunter R, et al. Sulpiride treatment of acute mania with a comparison of the effects on plasma hormone concentrations of lithium and sulpiride treatment. J Affect Disord 1989; 16: 115–20

    PubMed  CAS  Google Scholar 

  93. Ebert D, Kaschka W, Stegbauer P, et al. Prolactin response to sulpiride before and after sleep deprivation in depression. Biol Psychiatry 1993; 33: 666–9

    PubMed  CAS  Google Scholar 

  94. Mazzarella G, Mastronardi P, Cafiero T, et al. Antiemetic effect of L-sulpiride in obstetric patients. Curr Ther Res 1988; 43: 255–61

    Google Scholar 

  95. Lanfranchi GA, Bazzocchi G, Marzio L, et al. Inhibition of postprandial colonic motility by sulpiride in patients with irritable colon. Eur J Clin Pharmacol 1983; 24: 769–72

    PubMed  CAS  Google Scholar 

  96. De Rossi S, Cosmacini G, Cosmacini P. (-)Sulpiride in the radiologic examination of the gastrointestinal tract. Curr Ther Res 1990; 47: 707–16

    Google Scholar 

  97. Caldara R, Romussi M, Ferrari C. Inhibition of gastrin secretion by sulpiride treatment in duodenal ulcer patients. Gastroenterology 1978; 74: 221–3

    PubMed  CAS  Google Scholar 

  98. Caldara R, Masci E, Cambielli M, et al. Effect of sulpiride isomers on gastric acid and gastrin secretion in healthy man. Eur J Clin Pharmacol 1983; 25: 319–22

    PubMed  CAS  Google Scholar 

  99. Dinelli CA, Gironi A, Lomazzi A, et al. Effect of sulpiride on serum gastrin in duodenal ulcer. Arzneimittel Forschung 1976; 26: 421–4

    PubMed  CAS  Google Scholar 

  100. Wik G, Wiesel F-A, Sjögren I, et al. Effects of sulpiride and chlorpromazine on regional cerebral glucose metabolism in schizophrenic patients as determined by positron emission tomography. Psychopharmacology 1989; 97: 309–18

    PubMed  CAS  Google Scholar 

  101. Bertoni R. Double blind test of the action of sulpiride in post traumatic vertigo following head injuries [in French]. Sem Hop 1972; 48: 633–43

    PubMed  CAS  Google Scholar 

  102. Buckland PR, O’Donovan MC, McGuffin P. Lack of effect of chronic antipsychotic treatment on dopamine D5 receptor mRNA level. Eur Neuropsychopharmacol 1992; 2: 405–9

    PubMed  CAS  Google Scholar 

  103. Rupniak NMJ, Mann S, Hall MD, et al. Differential effects of continuous administration for 1 year of haloperidol or sulpiride on striatal dopamine function in the rat. Psychopharmacology 1984; 84: 503–11

    PubMed  CAS  Google Scholar 

  104. Dall’Olio R, Gandolfi O, Roncada P, et al. Repeated treatment with (-)-sulpiride plus a low dose of SCH 23390 displays wider neuroleptic activity without inducing dopaminergic supersensitivity. Psychopharmacology 1990; 100: 560–2

    PubMed  Google Scholar 

  105. Rupniak NMJ, Kilpatrick G, Hall MD, et al. Differential alterations in striatal dopamine receptor sensitivity induced by repeated administration of clinically equivalent doses of haloperidol, sulpiride or clozapine in rats. Psychopharmacology 1984; 84: 512–9

    PubMed  CAS  Google Scholar 

  106. Agnati LF, Cortelli P, De Camillis E, et al. Effects of sulpiride isomers on the control of anterior pituitary secretion in normal man. Neurosci Lett 1979; 15: 289–94

    PubMed  CAS  Google Scholar 

  107. Kamizono A, Inotsume N, Fukushima S, et al. Disposition of enantiomers of sulpiride in humans and rats. Biopharm Drug Dispos 1993; 14: 475–81

    PubMed  CAS  Google Scholar 

  108. Bressolle F, Bres J, Fauré-Jeantis A. Absolute bioavailability, rate of absorption, and dose proportionality of sulpiride in humans. J Pharm Sci 1992; 81: 26–32

    PubMed  CAS  Google Scholar 

  109. Imondi AR, Alam AS, Brennan JJ, et al. Metabolism of sulpiride in man and rhesus monkeys. Arch Int Pharmacodyn Ther 1978; 232: 79–91

    PubMed  CAS  Google Scholar 

  110. Lenhard G, Kieferndorf U, Berner G, et al. The importance of pharmacokinetic data on sulpiride: results of a bioequivalence study of two sulpiride 200 mg preparations following oral administration. Int J Clin Pharmacol Ther Toxicol 1991; 29: 231–7

    PubMed  CAS  Google Scholar 

  111. Wiesel F-A, Alfredsson G, Ehrnebo M, et al. The pharmacokinetics of intravenous and oral sulpiride in healthy human subjects. Eur J Clin Pharmacol 1980; 17: 385–91

    PubMed  CAS  Google Scholar 

  112. Alfredsson G, Bjerkenstedt L, Edman G, et al. Relationships between drug concentrations in serum and CSF, clinical effects and monoaminergic variables in schizophrenic patients treated with sulpiride or chlorpromazine. Acta Psychiatr Scand 1984; Suppl. 311:49–74

    CAS  Google Scholar 

  113. Alam AS, Imondi AR, Udinsky J, et al. Bioavailability of l4C-sulpiride in dogs. Arch Int Pharmacodyn Ther 1979; 242: 4–13

    PubMed  CAS  Google Scholar 

  114. Gouda MW, Hikal AH, Babhair SA, et al. Effect of sucralfate and antacids on the bioavailability of sulpride in humans. Int J Pharm 1984; 22: 257–63

    CAS  Google Scholar 

  115. Bres J, Bressolle F. Pharmacokinetics of sulpiride in humans after intravenous and intramuscular administrations. J Pharm Sci 1991; 80: 1119–24

    PubMed  CAS  Google Scholar 

  116. Shinkuma D, Hamaguchi T, Kobayashi M, et al. Effects of food intake and meal size on the bioavailability of sulpiride in two dosage forms. Int J Clin Pharmacol Ther Toxicol 1990; 28: 440–2

    PubMed  CAS  Google Scholar 

  117. Shinkuma D, Hamaguchi T, Kobayashi M, et al. Effects of food intake on the bioavailability of sulpiride from AEA® film-coated tablet having a pH-dependent dissolution characteristic in normal or drug-induced achlorhydric subjects. Int J Clin Pharmacol Ther Toxicol 1991; 29: 303–9

    PubMed  CAS  Google Scholar 

  118. Shinkuma D, Hamaguchi T, Kobayashi M, et al. The bioavailability of sulpiride taken as a film-coated tablet with sodium bicarbonate, Cimetidine, natural orange juice or hydrochloric acid. Int J Clin Pharmacol Ther Toxicol 1989; 27: 499–502

    PubMed  CAS  Google Scholar 

  119. Imondi AR, Alam A, Brennan JJ, et al. Sulpiride metabolism in rhesus monkeys and man [abstract]. Fed Proc 1977; 36: 1031

    Google Scholar 

  120. Bressolle F, Bres J, Mourad G. Pharmacokinetics of sulpiride after intravenous administration in patients with impaired renal function. Clin Pharmacokinet 1989; 17: 367–73

    PubMed  CAS  Google Scholar 

  121. Baldessarini RJ, Cohen BM, Teicher MH. Significance of neuroleptic dose and plasma level in the pharmacological treatment of psychoses. Arch Gen Psychiatry 1988; 45: 79–91

    PubMed  CAS  Google Scholar 

  122. Salminen JK, Lehtonen V, Allonen H, et al. Sulpiride in depression: plasma levels and effects. Curr Ther Res 1980; 27: 109–15

    Google Scholar 

  123. Shima S. Relationship between plasma level and therapeutic effect of sulpiride. Keio J Med 1986; 35: 198–202

    PubMed  CAS  Google Scholar 

  124. Wiesel F-A, Alfredsson G, Jönsson E. Dose finding and serum concentrations of neuroleptics in the treatment of schizophrenic patients. Psychopharmacology 1989; 7: 303–10

    CAS  Google Scholar 

  125. Meyers C, Vranckx C, Eigen K. Psychosomatic disorders in general practice: comparisons of treatment with flupenthixol, diazepam and sulpiride. Pharmatherapeutica 1985; 4: 244–50

    PubMed  CAS  Google Scholar 

  126. Kawakami K, Sasaki D, Sohma M, et al. Experience with Dogmatyl (sulpiride), a psycho-behavioral regulator, in psychosomatic disease and neuroses. II. Results of a double blind study [in Japanese]. Med Treatment 1974; 7: 69–78

    Google Scholar 

  127. Nishida K, Namba T, Kato G, et al. A comparison of a new tranquilizer, sulpiride, and oxazolam on psychosomatic diseases, neurosis and masked depression using double blind method [in Japanese]. J Med Soc Toho Univ 1974; 21: 267–78

    Google Scholar 

  128. Toru M, Moriya H, Yamamoto K, et al. A double-blind comparison of sulpiride with chlordiazepoxide in neurosis. Folia Psychiatr Neurol Jpn 1976; 30: 153–64

    PubMed  CAS  Google Scholar 

  129. Altamura AC, Mauri MC, Regazzetti G, et al. L-sulpiride in the treatment of somatoform disorders: a double blind study vs racemic sulpiride [in Italian]. Minerva Psichiatr 1991; 32: 25–9

    PubMed  CAS  Google Scholar 

  130. Mindham RHS, Jerram TC, Cole HL, et al. A comparison of sulpiride, dothiepin, diazepam and placebo in the treatment of depressed out-patients. J Psychopharmacol 1991; 5: 259–62

    PubMed  CAS  Google Scholar 

  131. Niskanen P, Tamminen T, Viukari M. Sulpiride vs. amitriptyline in the treatment of depression. Curr Ther Res 1975; 17: 281–4

    PubMed  CAS  Google Scholar 

  132. Bruynooghe F, Geerts S, van Maele G, et al. Treatment of reactive depression with sulpiride. Double-blind study with sulpiride and amitriptyline involving interindividual comparison [in German]. Fortschr Med 1992; 110: 498–502

    PubMed  CAS  Google Scholar 

  133. Guelfi JD, Dreyfus J-F, Lacassin J, et al. Etude controlee a double insu comparant tianeptine et sulpiride. In: Perris C, Struwe G, Jansson B, editors. Biological psychiatry 1981: proceedings of the World Congress of Biological Psychiatry; 1981 Jul 3; Stockholm. Amsterdam: North-Holland Biomedical Press, 1981: 605–8

    Google Scholar 

  134. Poinso Y, Gouvernet J, Sambuc R. A multicentre double-blind trial of sulpiride versus toloxatone in patients with reactive depressions and somatization receiving non-specialized care [in French]. Sem Hop 1988; 64: 1201–5

    Google Scholar 

  135. Takayuki S, Kazuhiko S, Takeshi K, et al. Depressive condition and double blind study of anti-depressant drug (sulpiride) for tinnitus patients [in Japanese]. Audiology 1990; 33: 303–9

    Google Scholar 

  136. Standish-Barry HMAS, Bouras N, Bridges PK, et al. A randomized double-blind group comparative study of sulpiride and amitriptyline in affective disorder. Psychopharmacology 1983; 81: 258–60

    PubMed  CAS  Google Scholar 

  137. Semette D. Etude clinique de l’action du Dogmatil sur les vertiges par 1a methode du double aveugle. J Fr Otorhinolaryngol 1972; 21: 75–6

    CAS  Google Scholar 

  138. Albernaz PLM, Ganança MM. Vertigens e sulpiride. Rev Bras Med 1972; 29: 213–4

    Google Scholar 

  139. Bacalu A, Lerner A, Korczyn AD. Sulpiride: drug of choice in Tourette syndrome? [Abstract no. 230S] Neurology 1991; 41 Suppl. 1: 181

    Google Scholar 

  140. George MS, Trimble MR, Robertson MM. Fluvoxamine and sulpiride in comorbid obsessive-compulsive disorder and Gilles de la Tourette syndrome. Hum Psychopharm 1993; 8: 327–34

    Google Scholar 

  141. Robertson MM, Schneiden V, Lees AJ. Management of Gilles de la Tourette syndrome using sulpiride. Clin Neuropharmacol 1990; 13: 229–35

    PubMed  CAS  Google Scholar 

  142. Schwartz M, Moguillansky L, Lanyi G, et al. Sulpiride in tardive dyskinesia. J Neurol Neurosurg Psychiatry 1990; 53: 800–2

    PubMed  CAS  Google Scholar 

  143. Zarebinski JM, Royds JNA. Sulpiride in tardive dyskinesia [letter]. S Afr Med J 1990; 78: 374–5

    PubMed  CAS  Google Scholar 

  144. Casey DE, Gerlach J, Simmelsgaard H. Sulpiride in tardive dyskinesia. Psychopharmacology 1979; 66: 73–7

    PubMed  CAS  Google Scholar 

  145. Quinn N, Marsden CD. A double blind trial of sulpiride in Huntington’s disease and tardive dyskinesia. J Neurol Neurosurg Psychiatry 1984; 47: 844–7

    PubMed  CAS  Google Scholar 

  146. Patti F, Drago F, Marano P, et al. Effect of sulpiride on chronicabstinence syndrome in addicted patients. Clin Neuropharmacol 1986; 9: 469–76

    PubMed  CAS  Google Scholar 

  147. Tiihonen J, Ryynanen OP, Kauhanen J, et al. Citalopram in the treatment of alcoholism: a double-blind placebo-controlled trial [abstract]. Proceedings of the 9th World Congress of Psychiatry; 1993 Jun 6-12: Rio de Janeiro

  148. Vandereycken W. Neuroleptics in the short-term treatment of anorexia nervosa. A double-blind placebo-controlled study with sulpiride. Br J Psychiatry 1984; 144: 288–92

    PubMed  CAS  Google Scholar 

  149. Spitzer RL, Endicott J. Schedule for affective disorders and schizophrenia (SADS). 3rd ed. New York: New York State Psychiatric Institute, Biometrics Research, 1977

    Google Scholar 

  150. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 3rd ed. Washington, DC: American Psychiatric Association, 1980

    Google Scholar 

  151. Overall JE, Gorham DR. The brief psychiatric rating scale. Psychol Rep 1962; 10: 799–812

    Google Scholar 

  152. Guy W. ECDEU assessment manual for psychopharmacology. DHEW Publication no. (ADM)76-338.

  153. Honigfeld G, Gillis RV, Klett CJ. NOSIE-30: a treatment-sensitive ward behaviour scale. Psychol Rep 1966; 19: 180–2

    PubMed  CAS  Google Scholar 

  154. Johnstone EC, Owens DCG, Frith CD. Institutionalisation and the outcome of functional psychoses. Br J Psychiatry 1985; 146: 36–44

    PubMed  CAS  Google Scholar 

  155. Andreasen NC. Scale for the assessment of negative symptoms (SANS). Iowa City: University of Iowa, 1983

    Google Scholar 

  156. Asberg M, Montgomery SA, Perris C, et al. CPRS — a comprehensive psychopathological rating scale. Acta Psychiatr Scand 1978; Suppl. 271: 5–27

    Google Scholar 

  157. Krawiecka M, Goldberg D, Vaughan M. A standardised psychiatric assessment for rating chronic psychotic patients. Acta Psychiatr Scand 1977; 55: 299–308

    PubMed  CAS  Google Scholar 

  158. Simpson GM, Angus JWS. A rating scale for extrapyramidal side effects. Acta Psychiatr Scand 1970; Suppl. 212: 11–9

    CAS  Google Scholar 

  159. National Institute of Mental Health. Development of a dyskinetic movement scale. Early Clinical Drug Evaluation Unit Interco. 4: 3-6

  160. Rao VAR, Bailey J, Bishop M, et al. A clinical and pharmacodynamic evaluation of sulpiride. Psychopharmacology 1981; 73: 77–80

    PubMed  CAS  Google Scholar 

  161. Mielke DH, Gallant DM, Roniger JJ, et al. Sulpiride: evaluation of antipsychotic activity in schizophrenic patients. Dis Nerv Syst 1977; 38: 569–71

    PubMed  CAS  Google Scholar 

  162. Petit M, Zann M, Lesieur P, et al. The effect of sulpiride on negative symptoms of schizophrenia [letter]. Br J Psychiatry 1987; 150: 270–1

    PubMed  CAS  Google Scholar 

  163. Haase HJ, Floru L, Ulrich F. Klinisch-neuroleptische Untersuchung des N-[(1-Äthyl-pyrrolidin-2-yl)-methyl]-2-methoxy-5-sulfamoyl-Benzamid-Neuroleptikums Sulpirid (Dogmatil) an akut erkrankten Schizophrenen. Int Pharmacopsychiatr 1974; 9: 77–94

    CAS  Google Scholar 

  164. Petit M, Zann M, Colonna L. Antiautistic or disinhibitory effects of low dosages of sulpiride (versus high dosages): a controlled study in hebephrenic patients [in French]. L’Encéphale 1984; 10: 25–8

    PubMed  CAS  Google Scholar 

  165. Bellomo LE, Fernandez H. Investigatión a doble ensayo ciego de 1a sulpirida en pacientes psicóticos. Minerv Psiquiatr Argentina 1972; 1: 29–50

    Google Scholar 

  166. Blanco JM, Sanchez C, Diaz JA, et al. Ensayo clínico con dogmatil y placebo en esquizofrenicos crónicos estudio de 89 enfermes con applicación de 1a escala de Harris, Letemendia y Willems. Arch Neurobiol 1972; 35: 3–22

    Google Scholar 

  167. Soni SD, Mallik A, Schiff A. Sulpiride in negative schizophrenia: a placebo-controlled double-blind assessment. Hum Psychopharm 1990; 5: 233–8

    Google Scholar 

  168. Yamagami S, Hirayama E, Okuno M, et al. A single-blind evaluation of bromperidol and sulpiride in the treatment of schizophrenic patients [in Japanese]. Yakuri to Chiryo 1991; 19: 4667–77

    Google Scholar 

  169. Härnryd C, Bjerkenstedt L, Björk K, et al. Clinical evaluation of sulpiride in schizophrenic patients — a double-blind comparison with chlorpromazine. Acta Psychiatr Scand 1984; Suppl. 311: 7–30

    Google Scholar 

  170. Toru M, Shimazono Y, Miyasaka M, et al. A double-blind comparison of sulpiride with chlorpromazine in chronic schizophrenia. J Clin Pharmacol 1972; 12: 221–9

    CAS  Google Scholar 

  171. Cassano GB, Castrogiovanni P, Conti L, et al. Sulpiride versus haloperidol in schizophrenia: a double-blind comparative trial. Curr Ther Res 1975; 17: 189–201

    PubMed  CAS  Google Scholar 

  172. Gerlach J, Behnke K, Heltberg J, et al. Sulpiride and haloperidol in schizophrenia: a double-blind cross-over study of therapeutic effect, side effects and plasma concentrations. Br J Psychiatry 1985; 147: 283–8

    PubMed  CAS  Google Scholar 

  173. Asada S, Ishimaru T, Kubo S, et al. Étude des effets cliniques du sulpiride et de 1a perphénazine chez 82 schizophrènes par 1a méthode du double aveugle. Encéphale 1976; 2: 73–83

    PubMed  CAS  Google Scholar 

  174. Lepola U, Koskinen T, Rimon R, et al. Sulpiride and perphenazine in schizophrenia: a double-blind clinical trial. Acta Psychiatr Scand 1989; 80: 92–6

    PubMed  CAS  Google Scholar 

  175. Edwards JG, Alexander JR, Alexander MS, et al. Controlled trial of sulpiride in chronic schizophrenic patients. Br J Psychiatry 1980; 137: 522–9

    PubMed  CAS  Google Scholar 

  176. Mahadevan K, Gadhvi HM, Suri AK, et al. A multicentre comparison of oral zuclopenthixol dihydrochloride and oral sulpiride in the treatment of acute schizophrenia. Br J Clin Res 1991; 2: 13–20

    Google Scholar 

  177. Nishikawa T, Tanaka M, Tsuda A, et al. Prophylactic effects of neuroleptics in symptom-free schizophrenics: a comparative dose-response study of timiperone and sulpiride. Biol Psychiatry 1989; 25: 861–6

    PubMed  CAS  Google Scholar 

  178. Svestka J, Rysánek R, Cesková E, et al. Cross-over comparison of the therapeutic effects of sulpiride and perphenazine in schizophrenic and schizoaffective psychoses. Act Nerv Super 1989; 31: 35–6

    CAS  Google Scholar 

  179. Linazasoro G, Martí Massó JF, Olasagasti B. Acute dystonia induced by sulpiride. Clin Neuropharmacol 1991; 14: 463–4

    PubMed  CAS  Google Scholar 

  180. Dinan TG, O’Keane V. Acute extrapyramidal reactions following lithium and sulpiride co-administration: two case reports. Hum Psychopharm 1991; 6: 67–9

    Google Scholar 

  181. Spina E, Sturiale V, Valvo S, et al. Prevalence of acute dystonic reactions associated with neuroleptic treatment with and without anticholinergic prophylaxis. Int Clin Psychopharmacol 1993; 8: 21–4

    PubMed  CAS  Google Scholar 

  182. Farde L, Nordström A-L, Wiesel F-A, et al. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 1992; 49: 538–44

    PubMed  CAS  Google Scholar 

  183. Achiron A, Zoldan Y, Melamed E. Tardive dyskinesia induced by sulpiride. Clin Neuropharmacol 1990; 13: 248–52

    PubMed  CAS  Google Scholar 

  184. Miller LG, Jankovic J. Sulpiride-induced tardive dystonia. Mov Disord 1990; 5: 83–4

    PubMed  CAS  Google Scholar 

  185. Eapen V, Katona CLE, Barnes TRE. Sulpiride-induced tardive dyskinesia in a person with Gilles-de-la-Tourette syndrome. J Psychopharmacol 1993; 7: 290–2

    PubMed  CAS  Google Scholar 

  186. Herraiz J, Cano A, Roquer J. Late dyskinesia due to sulpiride [in Spanish]. Med Clin 1991; 97: 235–6

    CAS  Google Scholar 

  187. Peet M, Collier J. Use of carbamazepine in psychosis after neuroleptic malignant syndrome. Br J Psychiatry 1990; 156: 579–81

    PubMed  CAS  Google Scholar 

  188. Kashihara K, Ishida K. Neuroleptic malignant syndrome due to sulpiride [letter]. J Neurol Neurosurg Psychiatry 1988; 51: 1109

    PubMed  CAS  Google Scholar 

  189. Kiyatake I, Yamaji K, Shirato I, et al. A case of neuroleptic malignant syndrome with acute renal failure after the discontinuation of sulpiride and maprotiline. Jpn J Med 1991; 30: 387–91

    PubMed  CAS  Google Scholar 

  190. Weizman A, Maoz B, Treves I, et al. Sulpiride-induced hyperprolactinemia and impotence in male psychiatric outpatients. Prog Neuropsych Biol Psychiatry 1985; 9: 193–8

    CAS  Google Scholar 

  191. Terao T, Yoshimura R, Terao M, et al. Restless legs syndrome induced by psychotropics. Ann Clin Psychiatry 1992; 4: 127–30

    Google Scholar 

  192. Melzer E, Knobel B. Severe cholestatic jaundice due to sulpiride. Isr J Med Sci 1987; 23: 1259–60

    PubMed  CAS  Google Scholar 

  193. Kanno Y, Sounohara M, Morishita S, et al. A case of severe antidepressants-induced agranulocytosis [in Japanese]. Igaku Yakugaku 1993; 30: 1290–4

    Google Scholar 

  194. Levkovitz H, Abramovitch Y, Nitzan I. Leukocytosis related to the therapeutic dosage of sulpiride. Biol Psychiatry 1994; 35: 963

    PubMed  CAS  Google Scholar 

  195. Seppälä T. Effect of chlorpromazine or sulpiride and alcohol on psychomotor skills related to driving. Arch Int Pharmacodyn Ther 1976; 223: 311–23

    PubMed  Google Scholar 

  196. Synthélabo Pharmacie. Sulpiride prescribing information. Paris, France, 1994

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: M.E. Bardgett, Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; J. Bres, Faculty of Pharmacy, University of Montpellier I, Montpellier, France; D. Ebert, Psychiatrische Universitätsklinik Erlangen, Erlangen, Germany; J.G. Edwards, Department of Psychiatry, University of Southampton, Royal South Hants Hospital, Southampton, England; M. Maitre, Centre de Neurochimie, Centre National de 1a Recherche Scientifique, Strasbourg, France; R. Oretti, Department of Psychological Medicine, University of Wales College of Medicine, Cardiff, Wales; P. Seeman, Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada; T. Silverstone, Department of Psychological Medicine, University of Otago School of Medicine, Dunedin, New Zealand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagstaff, A.J., Fitton, A. & Benfield, P. Sulpiride. CNS Drugs 2, 313–333 (1994). https://doi.org/10.2165/00023210-199402040-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199402040-00007

Keywords

Navigation