Skip to main content
Log in

Imaging of Lower Extremity Stress Fracture Injuries

  • Injury Clinic
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Stress reactions and stress fractures in the lower extremities occur frequently in military and athletic populations. As the clinical symptoms of stress fracture may mimic other less severe musculoskeletal injuries, the diagnosis of stress fracture can often be delayed. The following article reviews the characteristics, advantages and disadvantages of the various imaging tools available to detect stress fracture of the lower limbs in order to clarify their utility when diagnosing this condition. Plain radiography, the primary imaging tool for diagnosing suspected stress injuries, may not detect stress fracture injury until fracture healing is well underway. In some cases of suspected stress fracture, this delay in diagnosis can lead to catastrophic fracture and surgical intervention. Bone scintigraphy has long been recommended for the diagnosis of stress fracture, claiming that skeletal scintigraphy is 100% sensitive for the detection of stress fracture. However, there is a potential for a false negative examination and findings might be nonspecific as tumours or infections may mimic stress injury. In addition, bone scintigraphy involves ionizing radiation and it should not be used whenever there is an alternative. Computed tomography (CT) provides exquisitely fine osseous detail, but should be reserved only for specific indications because it also involves ionizing radiation. Magnetic resonance (MR) imaging, which is noninvasive, has no ionizing radiation, is more rapidly performed than bone scintigraphy, and should be the method of choice for stress fracture diagnosis whenever it is available. However, using MR imaging demands an experienced diagnostician in order to decrease reported false-positive injuries. The ultrasonography technique, which is being used increasingly in the evaluation of the musculoskeletal system has recently been shown to have some potential in the diagnosis of stress fracture; however, currently the imaging modalities are insufficient. The peripheral quantitative CT (pQCT) device, which has been developed to specifically assess skeletal status of the extremities, provides data on bone geometry, strength and density. However, the pQCT needs further evaluation prior to being considered for use in diagnosis stress changes in bone. This article reviews the utility of each of the imaging modalities currently available to detect stress fracture injuries of the lower extremities, as well as other utilization factors, which include exposure to ionizing radiation, the ability to detect early- and late-stage reactions in the bone and surrounding soft tissues, and the ability to differentiate between different types of bone lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I
Table II

Similar content being viewed by others

References

  1. Matheson GO, Clement DB, Mc Kenzie DC, et al. Stress fractures in athletes: a study of 320 cases. Am J Sports Med 1987; 15 (1): 46–58

    Article  PubMed  CAS  Google Scholar 

  2. Greaney RB, Gerber FH, Laughlin RL, et al. Distribution and natural history of stress fractures in U.S. marine recruits. Radiology 1983; 146 (2): 339–46

    PubMed  CAS  Google Scholar 

  3. Coady CM, Micheli LJ. Stress fractures in the pediatric athlete. Clin Sports Med 1997; 16 (2): 225–38

    Article  PubMed  CAS  Google Scholar 

  4. Daffner RH. Anterior tibial striations. AJR Am J Roentgenol 1984; 143 (3): 651–3

    Article  PubMed  CAS  Google Scholar 

  5. Arendt E, Agel J, Heikes C, et al. Stress injuries to bone in college athletes: a retrospective review of experience at a single institution. Am J Sports Med 2003; 31 (6): 959–68

    PubMed  Google Scholar 

  6. Anderson MW, Greenspan A. Stress fractures. Radiology 1996; 199 (1): 1–12

    PubMed  CAS  Google Scholar 

  7. Daffner RH, Pavlov H. Stress fractures: current concepts. AJR Am J Roentgenol 1992; 159 (2): 245–52

    PubMed  CAS  Google Scholar 

  8. Spitz DJ, Newberg AH. Imaging of stress fractures in the athlete. Radiol Clin North Am 2002; 40 (2): 313–31

    Article  PubMed  Google Scholar 

  9. Engber WD. Stress fractures of the medial tibial plateau. J Bone Joint Surg Am 1977; 59 (6): 767–9

    PubMed  CAS  Google Scholar 

  10. Sullivan D, Warren RF, Pavlov H, et al. Stress fractures in 51 runners. Clin Orthop Relat Res 1984; 187: 188–92

    PubMed  Google Scholar 

  11. Stafford SA, Rosenthal DI, Gebhardt MC, et al. MRI in stress fracture. AJR Am J Roentgenol 1986; 147 (3): 553–6

    Article  PubMed  CAS  Google Scholar 

  12. Mulligan ME. The ‘gray cortex’: an early sign of stress fracture. Skeletal Radiol 1995; 24 (3): 201–3

    Article  PubMed  CAS  Google Scholar 

  13. Monteleone Jr GP. Stress fractures in the athlete. Orthop Clin North Am 1995; 26 (3): 423–32

    PubMed  Google Scholar 

  14. Prather JL, Nusynowitz ML, Snowdy HA, et al. Scintigraphic findings in stress fractures. J Bone Joint Surg Am 1977; 59 (7): 869–74

    PubMed  CAS  Google Scholar 

  15. Soubrier M, Dubost JJ, Boisgard S, et al. Insufficiency fracture: a survey of 60 cases and review of the literature. Joint Bone Spine 2003; 70 (3): 209–18

    Article  PubMed  Google Scholar 

  16. Keene JS, Lash EG. Negative bone scan in a femoral neck stress fracture: a case report. Am J Sports Med 1992; 20 (2): 234–6

    Article  PubMed  CAS  Google Scholar 

  17. Sterling JC, Webb Jr RF, Meyers MC, et al. False negative bone scan in a female runner. Med Sci Sports Exerc 1993; 25 (2): 179–85

    PubMed  CAS  Google Scholar 

  18. Roub LW, Gumerman LW, Hanley Jr EN, et al. Bone stress: a radionuclide imaging perspective. Radiology 1979; 132 (2): 431–8

    PubMed  CAS  Google Scholar 

  19. Deutsch AL, Coel MN, Mink JH. Imaging of stress injuries to bone: radiography, scintigraphy, and MR imaging. Clin Sports Med 1997; 16 (2): 275–90

    Article  PubMed  CAS  Google Scholar 

  20. Zwas ST, Elkanovitch R, Frank G. Interpretation and classification of bone scintigraphic findings in stress fractures. J Nucl Med 1987; 28 (4): 452–7

    PubMed  CAS  Google Scholar 

  21. Hodler J, Steinert H, Zanetti M, et al. Radiographically negative stress related bone injury. MR imaging versus two—phase bone scintigraphy. Acta Radiol 1998; 39 (4): 416–20

    PubMed  CAS  Google Scholar 

  22. Gaeta M, Minutoli F, Scribano E, et al. CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology 2005; 235 (2): 553–61

    Article  PubMed  Google Scholar 

  23. Milgrom C, Chisin R, Giladi M, et al. Negative bone scans in impending tibial stress fractures: a report of three cases. Am J Sports Med 1984; 12 (6): 488–91

    Article  PubMed  CAS  Google Scholar 

  24. Wen DY, Propeck T, Singh A. Femoral neck stress injury with negative bone scan. J Am Board Fam Pract 2003; 16 (2): 170–4

    Article  PubMed  Google Scholar 

  25. Anderson MW, Ugalde V, Batt M, et al. Shin splints: MR appearance in a preliminary study. Radiology 1997; 204 (1): 177–80

    PubMed  CAS  Google Scholar 

  26. Matheson GO, Clement DB, Mc Kenzie DC, et al. Scintigraphic uptake of 99mTc at non—painful sites in athletes with stress fractures: the concept of bone strain. Sports Med 1987; 4 (1): 65–75

    Article  PubMed  CAS  Google Scholar 

  27. Nielsen MB, Hansen K, Holmer P, et al. Tibial periosteal reactions in soldiers: a scintigraphic study of 29 cases of lower leg pain. Acta Orthop Scand 1991; 62 (6): 531–4

    Article  PubMed  CAS  Google Scholar 

  28. Lee S, Anderson RB. Stress fractures of the tarsal navicular. Foot Ankle Clin 2004; 9 (1): 85–104

    Article  PubMed  Google Scholar 

  29. Saxena A, Fullem B. Navicular stress fractures: a prospective study on athletes. Foot Ankle Int 2006 Nov; 27 (11): 917–21

    Google Scholar 

  30. Kiuru MJ, Pihlajamaki HK, Ahovuo JA. Bone stress injuries. Acta Radiol 2004; 45 (3): 317–26

    Article  PubMed  CAS  Google Scholar 

  31. Groves AM, Cheow HK, Balan KK, et al. 16−Detector multislice CT in the detection of stress fractures: a comparison with skeletal scintigraphy. Clin Radiol 2005; 60 (10): 1100–5

    Article  PubMed  CAS  Google Scholar 

  32. Feydy A, Drape J, Beret E, et al. Longitudinal stress fractures of the tibia: comparative study of CT and MR imaging. Eur Radiol 1998; 8 (4): 598–602

    Article  PubMed  CAS  Google Scholar 

  33. Arendt EA, Griffiths HJ. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high—performance athletes. Clin Sports Med 1997; 16 (2): 291–306

    Article  PubMed  CAS  Google Scholar 

  34. Fredericson M, Bergman AG, Hoffman KL, et al. Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 1995; 23 (4): 472–81

    Article  PubMed  CAS  Google Scholar 

  35. Resnick D. The diagnosis of bone and joint disorders. 3rd ed. Philadelphia (PA): WB Saunders, 1995

    Google Scholar 

  36. Lee JK, Yao L. Stress fractures: MR imaging. Radiology 1988; 169 (1): 217–20

    PubMed  CAS  Google Scholar 

  37. Shin AY, Morin WD, Gorman JD, et al. The superiority of magnetic resonance imaging in differentiating the cause of hip pain in endurance athletes. Am J Sports Med 1996; 24 (2): 168–76

    Article  PubMed  CAS  Google Scholar 

  38. Devas MB. Stress fractures of the femoral neck. J Bone Joint Surg Br 1965; 47 (4): 728–38

    PubMed  CAS  Google Scholar 

  39. Yao L, Johnson C, Gentili A, et al. Stress injuries of bone: analysis of MR imaging staging criteria. Acad Radiol 1998; 5 (1): 34–40

    Article  PubMed  CAS  Google Scholar 

  40. Marx RG, Saint-Phard D, Callahan LR, et al. Stress fracture sites related to underlying bone health in athletic females. Clin J Sport Med 2001; 11 (2): 73–6

    Article  PubMed  CAS  Google Scholar 

  41. Shearman CM, Brandser EA, Parman LM, et al. Longitudinal tibial stress fractures: a report of eight cases and review of the literature. J Comput Assist Tomogr 1998; 22 (2): 265–9

    Article  PubMed  CAS  Google Scholar 

  42. Kiuru MJ, Pihlajamaki HK, Hietanen HJ, et al. MR imaging, bone scintigraphy, and radiography in bone stress injuries of the pelvis and the lower extremity. Acta Radiol 2002; 43 (2): 207–12

    Article  PubMed  CAS  Google Scholar 

  43. Aoki Y, Yasuda K, Tohyama H, et al. Magnetic resonance imaging in stress fractures and shin splints. Clin Orthop Relat Res 2004; 421: 260–7

    Article  PubMed  Google Scholar 

  44. Bergman AG, Fredericson M, Ho C, et al. Asymptomatic tibial stress reactions: MRI detection and clinical follow—up in distance runners. AJR Am J Roentgenol 2004; 183 (3): 635–8

    Article  PubMed  Google Scholar 

  45. Fredericson M, Moore W, Biswal S. Sacral stress fractures: magnetic resonance imaging not always definitive for early stage injuries: a report of 2 cases. Am J Sports Med 2007; 35 (5): 835–9

    Article  PubMed  Google Scholar 

  46. Engin G, Yekeler E, Guloglu R, et al. US versus conventional radiography in the diagnosis of sternal fractures. Acta Radiol 2000; 41 (3): 296–9

    Article  PubMed  CAS  Google Scholar 

  47. Griffith JF, Rainer TH, Ching AS, et al. Sonography compared with radiography in revealing acute rib fracture. AJR Am J Roentgenol 1999; 173 (6): 1603–9

    PubMed  CAS  Google Scholar 

  48. Bodner G, Stockl B, Fierlinger A, et al. Sonographic findings in stress fractures of the lower limb: preliminary findings. Eur Radiol 2005; 15 (2): 356–9

    Article  PubMed  Google Scholar 

  49. Howard CB, Lieberman N, Mozes G, et al. Stress fracture detected sonographically. AJR Am J Roentgenol 1992; 159 (6): 1350–1

    PubMed  CAS  Google Scholar 

  50. Caruso G, Lagalla R, Derchi L, et al. Monitoring of fracture calluses with color Doppler sonography. J Clin Ultrasound 2000; 28 (1): 20–7

    Article  PubMed  CAS  Google Scholar 

  51. Rawool NM, Goldberg BB, Forsberg F, et al. Power Doppler assessment of vascular changes during fracture treatment with low—intensity ultrasound. J Ultrasound Med 2003; 22 (2): 145–53

    PubMed  Google Scholar 

  52. Sievanen H, Koskue V, Rauhio A, et al. Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 1998; 13 (5): 871–82

    Article  PubMed  CAS  Google Scholar 

  53. Finestone A, Schlesinger T, Amir H, et al. Do physicians correctly estimate radiation risks from medical imaging? Arch Environ Health 2003; 58 (1): 59–61

    Article  PubMed  Google Scholar 

  54. Huda W, Gkanatsios NA. Radiation dosimetry for extremity radiographs. Health Phys 1998; 75 (5): 492–9

    Article  PubMed  CAS  Google Scholar 

  55. Natri A, Sievanen H, Parkkari J, et al. Spontaneous shaft fracture of the tibia in weightlifting: a case report with dual—energy X—ray absorptiometry and peripheral quantitative computed tomography measurements. Am J Sports Med 1999; 27 (2): 238–40

    PubMed  CAS  Google Scholar 

  56. Findlay SC, Eastell R, Ingle BM. Measurement of bone adjacent to tibial shaft fracture. Osteoporos Int 2002; 13 (12): 980–9

    Article  PubMed  CAS  Google Scholar 

  57. Jamsa T, Koivukangas A, Kippo K, et al. Comparison of radiographic and pQCT analyses of healing rat tibial fractures. Calcif Tissue Int 2000; 66 (4): 288–91

    Article  PubMed  CAS  Google Scholar 

  58. Augat P, Merk J, Genant HK, et al. Quantitative assessment of experimental fracture repair by peripheral computed tomography. Calcif Tissue Int 1997; 60 (2): 194–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Nogah Shabshin for providing the MR images presented in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Moran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, D.S., Evans, R.K. & Hadad, E. Imaging of Lower Extremity Stress Fracture Injuries. Sports Med 38, 345–356 (2008). https://doi.org/10.2165/00007256-200838040-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200838040-00005

Keywords

Navigation