Skip to main content
Log in

Menstrual Disorders in Athletes

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The various menstrual disorders in athletes may reflect different degrees of exposure to a disrupting factor or differences in the susceptibility of various women to disruption. The incidences of these disorders are not well documented, but they appear to be highest in aesthetic, endurance and weight-class sports, and at younger ages, higher training volumes and lower bodyweights. The morbid effects of these disorders include infertility, low bone mass, impaired endothelium-dependent vasodilation, and impaired skeletal muscle oxidative metabolism. The high incidences of menstrual disorders in athletes may derive in part from the self-selection of extraneously affected women into athletics, but many women acquire their menstrual disorders in athletics by failing to adequately increase dietary energy intake in compensation for exercise energy expenditure. Applied research is needed to develop effective dietary interventions that are acceptable to athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I
Fig. 5

Similar content being viewed by others

References

  1. Vollman RF. The menstrual cycle. Philadelphia (PA): WB Saunders Company, 1977

    Google Scholar 

  2. Matsumoto SN, Nogami Y, Ohkuri S. Statistical studies of menstruation: a criticism on the definition of normal menstruation. Gunma J Med Sci 1962; 11: 294–318

    Google Scholar 

  3. Speroff L, Glass RH, Kase NG. Clinical gynecologic endocrinology and infertility. 6th ed. Philadelphia (PA): Lippincott Williams & Wilkins, 1999

    Google Scholar 

  4. Jensen TK, Scheike T, Keiding N, et al. Fecundability in relation to body mass and menstrual cycle patterns. Epidemiology 1999; 10 (4): 422–8

    Article  PubMed  CAS  Google Scholar 

  5. De Souza MJ, Miller BE, Loucks AB, et al. High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab 1998; 83 (12): 4220–32

    Article  PubMed  Google Scholar 

  6. Loucks AB, Mortola JF, Girton L, et al. Alterations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axes in athletic women. J Clin Endocrinol Metab 1989; 68 (2): 402–11

    Article  PubMed  CAS  Google Scholar 

  7. Ellison PT, Lager C. Moderate recreational running is associated with lowered salivary progesterone profiles in women. Am J Obstet Gynecol 1986; 154: 1000–3

    PubMed  CAS  Google Scholar 

  8. Prior JC, Cameron K, Yuen BH, et al. Menstrual cycle changes with marathon training: anovulation and short luteal phase. Can J Appl Sport Sci 1982; 7 (3): 173–7

    PubMed  CAS  Google Scholar 

  9. Bonen A, Belcastro AN, Ling WY, et al. Profiles of selected hormones during menstrual cycles of teenage athletes. J Appl Physiol 1981; 50 (3): 545–51

    PubMed  CAS  Google Scholar 

  10. Practice Committee of the American Society for Reproductive Medicine. Current evaluation of amenorrhea. Fertil Steril 2004; 82 (1): 266–72

    Article  Google Scholar 

  11. Williams NI, Caston-Balderrama AL, Helmreich DL, et al. Longitudinal changes in reproductive hormones and menstrual cyclicity in cynomolgus monkeys during strenuous exercise training: abrupt transition to exercise-induced amenorrhea. Endocrinology 2001; 142 (6): 2381–9

    Article  PubMed  CAS  Google Scholar 

  12. Bullen BA, Skrinar GS, Beitins IZ, et al. Induction of menstrual disorders by strenuous exercise in untrained women. N Engl J Med 1985; 312 (21): 1349–53

    Article  PubMed  CAS  Google Scholar 

  13. Chen EC, Brzyski RG. Exercise and reproductive dysfunction. Fertil Steril 1999; 71 (1): 1–6

    Article  PubMed  CAS  Google Scholar 

  14. Bullen BA, Skrinar GS, Beitins IZ, et al. Endurance training effects on plasma hormonal responsiveness and sex hormone excretion. J Appl Physiol 1984; 56 (6): 1453–63

    PubMed  CAS  Google Scholar 

  15. Bonen A. Exercise-induced menstrual cycle changes: a functional, temporary adaptation to metabolic stress. Sports Med 1994; 17 (6): 373–92

    Article  PubMed  CAS  Google Scholar 

  16. Baker ER, Mathur RS, Kirk RF, et al. Female runners and secondary amenorrhea: correlation with age, parity, mileage, and plasma hormonal and sex-hormone-binding globulin concentrations. Fertil Steril 1981; 36 (2): 183–7

    PubMed  CAS  Google Scholar 

  17. Sanborn CF, Martin BJ, Wagner Jr WW. Is athletic amenorrhea specific to runners? Am J Obstet Gynecol 1982; 143 (8): 859–61

    PubMed  CAS  Google Scholar 

  18. Klentrou P, Plyley M. Onset of puberty, menstrual frequency, and body fat in elite rhythmic gymnasts compared with normal controls. Br J Sports Med 2003; 37 (6): 490–4

    Article  PubMed  CAS  Google Scholar 

  19. Burrows M, Nevill AM, Bird S, et al. Physiological factors associated with low bone mineral density in female endurance runners. Br J Sports Med 2003; 37 (1): 67–71

    Article  PubMed  CAS  Google Scholar 

  20. Rosetta L, Harrison GA, Read GF. Ovarian impairments of female recreational distance runners during a season of training. Ann Hum Biol 1998; 25 (4): 345–57

    Article  PubMed  CAS  Google Scholar 

  21. Bachmann GA, Kemmann E. Prevalence of oligomenorrhea and amenorrhea in a college population. Am J Obstet Gynecol 1982; 144 (1): 98–102

    PubMed  CAS  Google Scholar 

  22. Pettersson F, Fries H, Nillius SJ. Epidemiology of secondary amenorrhea I: incidence and prevalence rates. Am J Obstet Gynecol 1973; 117 (1): 80–6

    PubMed  CAS  Google Scholar 

  23. Singh KB. Menstrual disorders in college students. Am J Obstet Gynecol 1981; 140 (3): 299–302

    PubMed  CAS  Google Scholar 

  24. Dusek T. Influence of high intensity training on menstrual cycle disorders in athletes. Croat Med J 2001; 42 (1): 79–82

    PubMed  CAS  Google Scholar 

  25. Chumlea WC, Schubert CM, Roche AF, et al. Age at menarche and racial comparisons in US girls. Pediatrics 2003; 111 (1): 110–3

    Article  PubMed  Google Scholar 

  26. Beals KA, Manore MM. Disorders of the female athlete triad among collegiate athletes. Int J Sport Nutr Exerc Metab 2002; 12 (3): 281–93

    PubMed  Google Scholar 

  27. Otis CL, Drinkwater B, Johnson M, et al. American College of Sports Medicine position stand: the female athlete triad. Med Sci Sports Exerc 1997; 29 (5): i-ix

    Article  PubMed  CAS  Google Scholar 

  28. Bennell KL, Brukner PD. Epidemiology and site specificity of stress fractures. Clin Sports Med 1997; 16 (2): 179–96

    Article  PubMed  CAS  Google Scholar 

  29. Warren MP, Brooks-Gunn J, Fox RP, et al. Persistent osteopenia in ballet dancers with amenorrhea and delayed menarche despite hormone therapy: a longitudinal study. Fertil Steril 2003; 80 (2): 398–404

    Article  PubMed  Google Scholar 

  30. Cumming DC. Exercise-associated amenorrhea, low bone density, and estrogen replacement therapy. Arch Intern Med 1996; 156 (19): 2193–5

    Article  PubMed  CAS  Google Scholar 

  31. Rickenlund A, Carlstrom K, Ekblom B, et al. Effects of oral contraceptives on body composition and physical performance in female athletes. J Clin Endocrinol Metab 2004; 89 (9): 4364–70

    Article  PubMed  CAS  Google Scholar 

  32. Zanker CL, Swaine IL. Bone turnover in amenorrhoeic and eumenorrhoeic women distance runners. Scand J Med Sci Sports 1998; 8 (1): 20–6

    Article  PubMed  CAS  Google Scholar 

  33. Okano H, Mizunuma H, Soda M, et al. Effects of exercise and amenorrhea on bone mineral density in teenage runners. Endocr J 1995; 42 (2): 271–6

    Article  PubMed  CAS  Google Scholar 

  34. Myerson M, Gutin B, Warren MP, et al. Resting metabolic rate and energy balance in amenorrheic and eumenorrheic runners. Med Sci Sports Exerc 1991; 23: 15–22

    PubMed  CAS  Google Scholar 

  35. Loucks AB, Laughlin GA, Mortola JF, et al. Hypothalamic-pituitary-thyroidal function in eumenorrheic and amenorrheic athletes. J Clin Endocrinol Metab 1992; 75 (2): 514–8

    Article  PubMed  CAS  Google Scholar 

  36. Laughlin GA, Yen SSC. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab 1996; 81 (12): 4301–9

    Article  PubMed  CAS  Google Scholar 

  37. Compston JE. Sex steroids and bone. Physiol Rev 2001; 81 (1): 419–47

    PubMed  CAS  Google Scholar 

  38. Hoch AZ, Dempsey RL, Carrera GF, et al. Is there an association between athletic amenorrhea and endothelial cell dysfunction? Med Sci Sports Exerc 2003; 35 (3): 377–83

    Article  Google Scholar 

  39. Hoch AZ, Jurva J, Staton M, et al. Is endothelial dysfunction that is associated with athletic amenorrhea reversible? [abstract]. Med Sci Sports Exerc 2003; 35: S12

    Google Scholar 

  40. Harber VJ, Petersen SR, Chilibeck PD. Thyroid hormone concentrations and muscle metabolism in amenorrheic and eumenorrheic athletes. Can J Appl Physiol 1998; 23: 293–306

    Article  PubMed  CAS  Google Scholar 

  41. Reindollar RH, Lalwani SI. Abnormalities of female pubertal development. Endotext.com [online]. Available from URL: http://www.mdtext.com/female/female2/femaleframe2.htm [Accessed 2004 Dec 26]

  42. Malina RM. Menarche in athletes: a synthesis and hypothesis. Ann Hum Biol 1983; 10 (1): 1–24

    Article  PubMed  CAS  Google Scholar 

  43. Constantini NW, Warren MP. Menstrual dysfunction in swimmers: a distinct entity. J Clin Endocrinol Metab 1995; 80 (9): 2740–4

    Article  PubMed  CAS  Google Scholar 

  44. Rickenlund A, Carlstrom K, Ekblom B, et al. Hyperandrogenicity is an alternative mechanism underlying oligomenorrhea or amenorrhea in female athletes and may improve physical performance. Fertil Steril 2003; 79 (4): 947–55

    Article  PubMed  Google Scholar 

  45. Veldhuis JD, Evans WS, Demers LM, et al. Altered neuroendocrine regulation of gonadotropin secretion in women distance runners. J Clin Endocrinol Metab 1985; 61 (3): 557–63

    Article  PubMed  CAS  Google Scholar 

  46. Frisch RE, McArthur JW. Menstrual cycles: fatness as determinant of minimum weight for height necessary for their maintenance or onset. Science 1974; 185: 949–51

    Article  PubMed  CAS  Google Scholar 

  47. Bronson FH, Manning JM. The energetic regulation of ovulation: a realistic role for body fat. Biol Reprod 1991; 44 (6): 945–50

    Article  PubMed  CAS  Google Scholar 

  48. Baer JT. Endocrine parameters in amenorrheic and eumenorrheic adolescent female runners. Int J Sports Med 1993; 14 (4): 191–5

    Article  PubMed  CAS  Google Scholar 

  49. Chin NW, Chang FE, Dodds WG, et al. Acute effects of exercise on plasma catecholamines in sedentary and athletic women with normal and abnormal menses. Am J Obstet Gynecol 1987; 157 (4 Pt 1): 938–44

    PubMed  CAS  Google Scholar 

  50. De Souza MJ, Maresh CM, Abraham A, et al. Body compositions of eumenorrheic, oligomenorrheic and amenorrheic runners. J Appl Sport Sci Res 1988; 2 (1): 13–5

    Google Scholar 

  51. De Souza MJ, Maguire MS, Rubin KR, et al. Effects of menstrual phase and amenorrhea on exercise performance in runners. Med Sci Sports Exerc 1990; 22 (5): 575–80

    Article  PubMed  Google Scholar 

  52. Deuster PA, Kyle SB, Moser PB, et al. Nutritional intakes and status of highly trained amenorrheic and eumenorrheic women runners. Fertil Steril 1986; 46 (4): 636–43

    PubMed  CAS  Google Scholar 

  53. Dixon G, Eurman P, Stern BE, et al. Hypothalamic function in amenorrheic runners. Fertil Steril 1984; 42 (3): 377–83

    PubMed  CAS  Google Scholar 

  54. Drinkwater BL, Nilson K, Chesnut III CH, et al. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 1984; 311 (5): 277–81

    Article  PubMed  CAS  Google Scholar 

  55. Fisher EC, Nelson ME, Frontera WR, et al. Bone mineral content and levels of gonadotropins and estrogens in amenorrheic running women. J Clin Endocrinol Metab 1986; 62 (6): 1232–6

    Article  PubMed  CAS  Google Scholar 

  56. Harber VJ, Webber CE, Sutton JR, et al. The effect of amenorrhea on calcaneal bone density and total bone turnover in runners. Int J Sports Med 1991; 12 (5): 505–8

    Article  PubMed  CAS  Google Scholar 

  57. Jenkins PJ, Ibanez-Santos X, Holly J, et al. IGFBP-1: a metabolic signal associated with exercise-induced amenorrhoea. Neuroendocrinology 1993; 57 (4): 600–4

    Article  PubMed  CAS  Google Scholar 

  58. Linnell SL, Stager JM, Blue PW, et al. Bone mineral content and menstrual regularity in female runners. Med Sci Sports Exerc 1984; 16 (4): 343–8

    PubMed  CAS  Google Scholar 

  59. Loucks AB, Horvath SM. Exercise-induced stress responses of amenorrheic and eumenorrheic runners. J Clin Endocrinol Metab 1984; 59 (6): 1109–20

    Article  PubMed  CAS  Google Scholar 

  60. Marcus R, Cann C, Madvig P, et al. Menstrual function and bone mass in elite women distance runners: endocrine and metabolic features. Ann Intern Med 1985; 102 (2): 158–63

    PubMed  CAS  Google Scholar 

  61. Myburgh KH, Bachrach LK, Lewis B, et al. Low bone mineral density at axial and appendicular sites in amenorrheic athletes. Med Sci Sports Exerc 1993; 25 (11): 1197–202

    PubMed  CAS  Google Scholar 

  62. Myerson M, Gutin B, Warren MP, et al. Total body bone density in amenorrheic runners. Obstet Gynecol 1992; 79 (6): 973–8

    PubMed  CAS  Google Scholar 

  63. Sanborn CF, Albrecht BH, Wagner Jr WW. Athletic amenorrhea: lack of association with body fat. Med Sci Sports Exerc 1987; 19 (3): 207–12

    PubMed  CAS  Google Scholar 

  64. Snyder AC, Wenderoth MP, Johnston Jr CC, et al. Bone mineral content of elite lightweight amenorrheic oarswomen. Hum Biol 1986; 58 (6): 863–9

    PubMed  CAS  Google Scholar 

  65. Stacey E, Korkia P, Hukkanen MVJ, et al. Decreased nitric oxide levels and bone turnover in amenorrheic athletes with spinal osteopenia. J Clin Endocrinol Metab 1998; 83 (9): 3056–61

    Article  PubMed  CAS  Google Scholar 

  66. Thong FS, McLean C, Graham TE. Plasma leptin in female athletes: relationship with body fat, reproductive, nutritional, and endocrine factors. J Appl Physiol 2000; 88 (6): 2037–44

    PubMed  CAS  Google Scholar 

  67. Warren MP, Brooks-Gunn J, Fox RP, et al. Osteopenia in exercise-associated amenorrhea using ballet dancers as a model: a longitudinal study. J Clin Endocrinol Metab 2002; 87 (7): 3162–8

    Article  PubMed  CAS  Google Scholar 

  68. Waters DL, Qualls CR, Dorin R, et al. Increased pulsatility, process irregularity, and nocturnal trough concentrations of growth hormone in amenorrheic compared to eumenorrheic athletes. J Clin Endocrinol Metab 2001; 86 (3): 1013–9

    Article  PubMed  CAS  Google Scholar 

  69. Wilmore JH, Wambsgans KC, Brenner M, et al. Is there energy conservation in amenorrheic compared with eumenorrheic distance runners? J Appl Physiol 1992; 72 (1): 15–22

    PubMed  CAS  Google Scholar 

  70. Yahiro J, Glass AR, Fears WB, et al. Exaggerated gonadotropin response to luteinizing hormone-releasing hormone in amenorrheic runners. Am J Obstet Gynecol 1987; 156 (3): 586–91

    PubMed  CAS  Google Scholar 

  71. Selye H. The effect of adaptation to various damaging agents on the female sex organs in the rat. Endocrinology 1939; 25: 615–24

    Article  CAS  Google Scholar 

  72. Rivier C, Rivest S. Effect of stress on the activity of the hypothalamic-pituitary-gonadal axis: peripheral and central mechanisms. Biol Reprod 1991; 45: 523–32

    Article  PubMed  CAS  Google Scholar 

  73. Ding J-H, Scheckter CB, Drinkwater BL, et al. High serum cortisol levels in exercise-associated amenorrhea. Ann Intern Med 1988; 108: 530–4

    PubMed  CAS  Google Scholar 

  74. De Souza MJ, Maguire MS, Maresh CM, et al. Adrenal activation and the prolactin response to exercise in eumenorrheic and amenorrheic runners. J Appl Physiol 1991; 70 (6): 2378–87

    PubMed  Google Scholar 

  75. De Souza MJ, Luciano AA, Arce JC, et al. Clinical tests explain blunted cortisol responsiveness but not mild hypercortisolism in amenorrheic runners. J Appl Physiol 1994; 76 (3): 1302–9

    PubMed  Google Scholar 

  76. Manning JM, Bronson FH. Effects of prolonged exercise on puberty and luteinizing hormone secretion in female rats. Am J Physiol 1989; 257 (6 Pt 2): R1359–64

    Google Scholar 

  77. Manning JM, Bronson FH. Suppression of puberty in rats by exercise: effects on hormone levels and reversal with GnRH infusion. Am J Physiol 1991; 260 (4 Pt 2): R717–23

    Google Scholar 

  78. Loucks AB, Redman LM. The effect of stress on menstrual function. Trends Endocrinol Metab 2004; 15 (10): 466–71

    Article  PubMed  CAS  Google Scholar 

  79. Slentz CA, Davis JM, Settles DL, et al. Glucose feedings and exercise in rats: glycogen use, hormone responses, and performance. J Appl Physiol 1990; 69: 989–94

    PubMed  CAS  Google Scholar 

  80. Tabata I, Ogita F, Miyachi M, et al. Effect of low blood glucose on plasm CRF, ACTH, and cortisol during prolonged physical exercise. J Appl Physiol 1991; 71: 1807–12

    PubMed  CAS  Google Scholar 

  81. Laughlin GA, Yen SSC. Hypoleptinemia in women athletes: absence of a diurnal rhythm with amenorrhea. J Clin Endocrinol Metab 1997; 82 (1): 318–21

    Article  PubMed  CAS  Google Scholar 

  82. Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol 1998; 84 (1): 37–46

    PubMed  CAS  Google Scholar 

  83. Williams NI, Helmreich DL, Parfitt DB, et al. Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J Clin Endocrinol Metab 2001; 86 (11): 5184–93

    Article  PubMed  CAS  Google Scholar 

  84. Friedl KE, Moore RJ, Hoyt RW, et al. Endocrine markers of semistarvation in healthy lean men in a multistressor environment. J Appl Physiol 2000; 88 (5): 1820–30

    PubMed  CAS  Google Scholar 

  85. Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab 2003; 88 (1): 297–311

    Article  PubMed  CAS  Google Scholar 

  86. Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res 2004; 19 (8): 1231–40

    Article  PubMed  Google Scholar 

  87. Wade GN, Jones JE. Lessons from experimental disruption of estrous cycles and behaviors. Med Sci Sports Exerc 2003; 35: 1573–80

    Article  PubMed  CAS  Google Scholar 

  88. Wade GN, Schneider JE. Metabolic fuels and reproduction in female mammals. Neurosci Biobehav Rev 1992; 16 (2): 235–72

    Article  PubMed  CAS  Google Scholar 

  89. Schneider JE. Energy balance and reproduction. Physiol Behav 2004; 81 (2): 289–317

    Article  PubMed  CAS  Google Scholar 

  90. Wade GN, Schneider JE, Li HY. Control of fertility by metabolic cues. Am J Physiol 1996; 270 (1 Pt 1): E1–19

    Google Scholar 

  91. Wade GN, Jones JE. Neuroendocrinology of nutritional infertility. Am J Physiol Regul Integr Comp Physiol 2004; 287 (6): R1277–96

    Article  Google Scholar 

  92. Jenkins AB, Markovic TP, Fleury A, et al. Carbohydrate intake and short-term regulation of leptin in humans. Diabetologia 1997; 40 (3): 348–51

    Article  PubMed  CAS  Google Scholar 

  93. Mueller WM, Gregoire FM, Stanhope KL, et al. Evidence that glucose metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology 1998; 139 (2): 551–8

    Article  PubMed  CAS  Google Scholar 

  94. Griffin ML, South SA, Yankov VI, et al. Insulin-dependent diabetes mellitus and menstrual dysfunction. Ann Med 1994; 26 (5): 331–40

    Article  PubMed  CAS  Google Scholar 

  95. Welt CK, Chan JL, Bullen J, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 2004; 351 (10): 987–97

    Article  PubMed  CAS  Google Scholar 

  96. Gottsch ML, Clifton DK, Steiner RA. Galanin-like peptide as a link in the integration of metabolism and reproduction. Trends Endocrinol Metab 2004; 15 (5): 215–21

    Article  PubMed  CAS  Google Scholar 

  97. Szymanski LA, Schneider JE, Rao A, et al. Rapid restoration of luteinizing hormone pulses in refed chronically undernourished ewes occurs without alterations in plasma leptin concentrations. Soc Neurosci Abstr 2003; 33: 827.11

    Google Scholar 

  98. Williams NI, Lancas MJ, Cameron JL. Stimulation of luteinizing hormone secretion by food intake: evidence against a role for insulin. Endocrinology 1996; 137 (6): 2565–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grant DAMD-17-95-1-5053 from the US Army Medical Research and Material Command (Defense Women’s Health & Military Medical Readiness Research Program) and by the General Clinical Research Branch, Division of Research Resources, NIH grant M01 RR00034. The content of the information in this paper does not necessarily reflect the position or policy of the US Government and no official endorsement should be inferred. The authors have no conflicts of interest that are directly relevant to the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne B. Loucks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redman, L.M., Loucks, A.B. Menstrual Disorders in Athletes. Sports Med 35, 747–755 (2005). https://doi.org/10.2165/00007256-200535090-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200535090-00002

Keywords

Navigation