Skip to main content
Log in

Airline Chair-Rest Deconditioning

Induction of Immobilisation Thromboemboli?

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Air passenger miles will likely double by year 2020. The altered and restrictive environment in an airliner cabin can influence haematological homeostasis in passengers and crew. Flight-related deep venous thromboemboli (DVT) have been associated with at least 577 deaths on 42 of 120 airlines from 1977 to 1984 (25 deaths/million departures), whereas many such cases go unreported. However, there are four major factors that could influence formation of possible flight-induced DVT: sleeping accommodations (via sitting immobilisation); travellers’ medical history (via tissue injury); cabin environmental factors (via lower partial pressure of oxygen and lower relative humidity); and the more encompassing chair-rest deconditioning (C-RD) syndrome. There is ample evidence that recent injury and surgery (especially in deconditioned hospitalised patients) facilitate thrombophlebitis and formation of DVT that may be exacerbated by the immobilisation of prolonged air travel.

In the healthy flying population, immobilisation factors associated with prolonged (>5 hours) C-RD such as total body dehydration, hypovolaemia and increased blood viscosity, and reduced venous blood flow (pooling) in the legs may facilitate formation of DVT. However, data from at least four case-controlled epidemiological studies did not confirm a direct causative relationship between air travel and DVT, but factors such as a history of vascular thromboemboli, venous insufficiency, chronic heart failure, obesity, immobile standing position, more than three pregnancies, infectious disease, long-distance travel, muscular trauma and violent physical effort were significantly more frequent in DVT patients than in controls. Thus, there is no clear, direct evidence yet that prolonged sitting in airliner seats, or prolonged experimental chair-rest or bed-rest deconditioning treatments cause DVT in healthy people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Table III

Similar content being viewed by others

References

  1. Bergau L. Medical guidelines for air travel. Aviat Space Environ Med 1996; 67: B1–B16

    Google Scholar 

  2. Sarvesvaran R. Sudden natural deaths associated with commercial air travel. Med Sci Law 1986; 26: 35–8

    PubMed  CAS  Google Scholar 

  3. Cummins RO, Chapman PJC, Chamberlain DA, et al. In-flight deaths during commercial air travel: how big is the problem? JAMA 1988; 259: 1983–8

    PubMed  CAS  Google Scholar 

  4. Cheung B, Duflou J. Pre-existing pulmonary thromboembolic disease in passengers with the ‘economy class syndrome’. Aviat Space Environ Med 2001; 72: 747–9

    PubMed  CAS  Google Scholar 

  5. Ferrari E, Baudouy M, Cerboni P, et al. Clinical epidemiology of venous thromboembolic disease: results of a French multicentre registry. Eur Heart J 1997; 18: 685–91

    PubMed  CAS  Google Scholar 

  6. Mohler SR. Blood clotting presents serious medical problems for passengers and crews, especially on long flights. Hum Factors Aviat Med 1997; 44: 1–4

    Google Scholar 

  7. Virchow R. Gesammelte Abhandlungen zur Wissenschaftlichen Medicin. Frankfurt A.M.: Vellag von Meidinger Sohn & Comp, 1856

    Google Scholar 

  8. Simpson K. Shelter deaths from pulmonary embolism. Lancet 1940; II: 744

    Google Scholar 

  9. Homans J. Thrombosis of the deep leg veins due to prolonged sitting. N Engl J Med 1954; 250: 148–9

    PubMed  CAS  Google Scholar 

  10. Lamb LE, Johnson RL, Stevens PM, et al. Cardiovascular deconditioning from space cabin simulator confinement. Aerosp Med 1964; 35: 420–8

    PubMed  CAS  Google Scholar 

  11. Lamb LE, Johnson RL, Stevens PM. Cardiovascular deconditioning during chair rest. Aerosp Med 1964; 35: 646–9

    PubMed  CAS  Google Scholar 

  12. Lamb LE, Stevens PM, Johnson RL. Hypokinesia secondary to chair rest from 4 to 10 days. Aerosp Med 1965; 36: 755–63

    PubMed  CAS  Google Scholar 

  13. Dexter L. The chair and venous thrombosis. Trans Am Clin Climatol Assoc 1972; 84: 1–15

    Google Scholar 

  14. Symington IS, Stack BHR. Pulmonary thromboembolism after travel. Br J Dis Chest 1977; 71: 138–40

    PubMed  CAS  Google Scholar 

  15. Arfvidsson B, Eklof B, Kistner RL, et al. Risk factors for venous thromboembolism following prolonged air travel. Hematol Oncol Clin North Am 2000; 14: 391–400

    PubMed  CAS  Google Scholar 

  16. Eklof B, Kistner RL, Masuda EM, et al. Venous thromboembolism in association with prolonged air travel. Dermatol Surg 1996; 22: 637–41

    PubMed  CAS  Google Scholar 

  17. Bagshaw M, and the Air Transport Medicine Committee, Aerospace Medical Association. Traveller’s thrombosis: a review of deep vein thrombosis associated with travel. Aviat Space Environ Med 2001; 72: 848–51

    PubMed  CAS  Google Scholar 

  18. Kesteven PLJ. Traveller’s thrombosis. Chest 1999; 115: 440–4

    Google Scholar 

  19. Gibbs NM. Venous thrombosis of the lower limbs with particular reference to bed-rest. Br J Surg 1957; 45: 209–36

    PubMed  CAS  Google Scholar 

  20. Kovacevich GJ, Gaich SA, Lavin JP, et al. The prevalence of thromboembolic events among women with extended bed rest prescribed as part of the treatment for premature labor or preterm premature rupture of membranes. Am J Obstet Gynecol 2000; 182: 1089–92

    PubMed  CAS  Google Scholar 

  21. Samama MM. An epidemiologic study of risk factors for deep vein thrombosis in medical outpatients. Arch Intern Med 2000; 160: 3415–20

    PubMed  CAS  Google Scholar 

  22. Nordstrom M, Lindblad B, Bergqvist D, et al. A prospective study of the incidence of deep-vein thrombosis within a defined urban population. J Intern Med 1992; 232: 155–60

    PubMed  CAS  Google Scholar 

  23. Hansson PO, Welin L, Tibblin G, et al. Deep vein thrombosis and pulmonary embolism in the general population. Arch Intern Med 1997; 157: 1665–70

    PubMed  CAS  Google Scholar 

  24. Kierkegaard A. Size of the thrombus in acute deep vein thrombosis and the significance of patients’ age and sex. Acta Chir Scand 1981; 147: 259–61

    PubMed  CAS  Google Scholar 

  25. Tardy B, Page Y, Zeni F, et al. Phlébite du transport: 16 observations. Presse Med 1993; 22: 811–4

    PubMed  CAS  Google Scholar 

  26. Ribier G, Zizka V, Cysique J, et al. Accidents thromboemboliques veineux après un voyage aérien: étude rétrospective de 40 cas recensés à la Martinique. Rev Med Intern 1997; 18: 601–4

    CAS  Google Scholar 

  27. Mercer A, Brown JD. Venous thromboembolism associated with air travel: a report of 33 patients. Aviat Space Environ Med 1998; 69: 154–7

    PubMed  CAS  Google Scholar 

  28. Simon R. Die Reisethrombose: ein mögliches Risiko auf Langstreckenreisen. Wien Klin Wochenschr 1999; 111: 596–602

    PubMed  CAS  Google Scholar 

  29. Clerel M, Caillard G. Syndrome thrombo-embolique de la station assise prolongée et vols de longue durée: l’expérience du service médical d’urgence d’aéroports de Paris. Bull Acad Natl Med 1999; 183: 985–1001

    PubMed  CAS  Google Scholar 

  30. Ferrari E, Chevallier T, Chapelier A, et al. Travel as a risk factor for venous thromboembolic disease: a case-control study. Chest 1999; 115: 440–4

    PubMed  CAS  Google Scholar 

  31. Kraaijenhagen RA, Haverkamp D, Koopman MMW, et al. Travel and risk of venous thrombosis. Lancet 2000; 356: 1492–3

    PubMed  CAS  Google Scholar 

  32. Hirsh J, O’Donnell MJ. Venous thromboembolism after long flights: are airlines to blame? Lancet 2001; 357: 1461–2

    PubMed  CAS  Google Scholar 

  33. Scurr JH, Machin SJ, Bailey-King S, et al. Frequency and prevention of symptomless deep-vein thrombosis in long-haul flights: a randomised trial. Lancet 2001; 357: 1485–9

    PubMed  CAS  Google Scholar 

  34. Benigni JP, Sadoun S, Demagny A, et al. Voyage aérien et contention. Phlebologie 1998; 51: 205–12

    Google Scholar 

  35. Belcaro G, Geroulakos G, Nicolaides HAN, et al. Venous thromboembolism from air travel: the LONFLIT study. Angiology 2001; 52: 369–74

    PubMed  CAS  Google Scholar 

  36. Belcaro G, Cesarone MR, Shah SS, et al. Prevention of edema, flight microangiopathy and venous thrombosis in long flights with elastic stockings: a randomized trial: the LONFLIT 4 Concorde Edema-SSL Study. Angiology 2002; 53: 635–45

    PubMed  Google Scholar 

  37. Belcaro G, Cesarone MR, Nicolaides AN, et al. Prevention of venous thrombosis with elastic stockings during long-haul flights: the LONFLIT 5 JAP study. Clin Appl Thromb Hemost 2003; 9: 197–201

    PubMed  CAS  Google Scholar 

  38. Cesarone MR, Belcaro G, Nicolaides AN, et al. Prevention of venous thrombosis in long-haul flights with Flite Tabs: the LONFLIT-FLITE randomized, controlled trial. Angiology 2003; 54: 531–9

    PubMed  CAS  Google Scholar 

  39. Burch GE, Ansari AU. Bed rest, diet, nursing, and environment. Am Heart J 1969; 77: 1–4

    PubMed  CAS  Google Scholar 

  40. Greenleaf JE, Greenleaf CJ, Van Derveer D, et al. Adaptation to prolonged bedrest in man: a compendium of research. Washington, DC: NASA, 1976. Report no. TM X-3307

    Google Scholar 

  41. Greenleaf JE, Silverstein L, Bliss J, et al. Physiological responses to prolonged bed rest and fluid immersion in man: a compendium of research (1974–1980). Moffett Field (CA): NASA, 1982. Report no. TM 81324

    Google Scholar 

  42. Luu PB, Ortiz V, Barnes PR, et al. Physiological responses to prolonged bed rest in humans: a compendium of research (1981–1988). Moffett Field (CA): NASA, 1990. Report no. TM 102249

    Google Scholar 

  43. Cottrell JJ. Altitude exposures during aircraft flight: flying higher. Chest1988; 93: 81–4

    PubMed  CAS  Google Scholar 

  44. Thibeault C. Cabin air quality. Aviat Space Environ Med 1997; 68: 80–2

    PubMed  CAS  Google Scholar 

  45. Cottrell JJ, Lebovitz BL, Fennell RG, et al. Inflight arterial saturation: continuous monitoring by pulse oximetry. Aviat Space Environ Med 1995; 66: 126–30

    PubMed  CAS  Google Scholar 

  46. Ekblom B, Greenleaf CJ, Greenleaf JE, et al. Temperature regulation during continuous and intermittent exercise in man. Acta Physiol Scand 1971; 81: 1–10

    PubMed  CAS  Google Scholar 

  47. Greenleaf JE, Farrell PA, Loomis JL, et al. Sodium chloride-citrate beverages attenuate hypovolemia in men resting 12h at 2800 m altitude. Aviat Space Environ Med 1998; 69: 936–43

    PubMed  CAS  Google Scholar 

  48. Hoyt RW, Honig A. Body fluid and energy metabolism at high altitude. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology: environmental physiology: V. The terrestrial altitude environment. New York: Oxford University Press, 1996: 1277–89

    Google Scholar 

  49. Lyons TP, Muza SR, Rock PB, et al. The effect of altitude preacclimatization on acute mountain sickness during reexposure. Aviat Space Environ Med 1995; 66: 957–62

    PubMed  CAS  Google Scholar 

  50. Greenleaf JE, Bernauer EM, Adams WC, et al. Fluid-electrolyte shifts and V̇O?2max in man at simulated altitude (2,287 m). J Appl Physiol 1978; 44: 652–8

    PubMed  CAS  Google Scholar 

  51. Dill DB, Braithwaite K, Adams WC, et al. Blood volume of middle-distance runners: effect of 2,300-m altitude and comparison with non-athletes. Med Sci Sports Exerc 1974; 6: 1–7

    CAS  Google Scholar 

  52. Dill DB, Horvath SM, Dahms TE, et al. Hemoconcentration at altitude. J Appl Physiol 1969; 27: 514–8

    PubMed  CAS  Google Scholar 

  53. Hannon JP, Chinn KSK, Shields JL. Effects of acute high-altitude exposure on body fluids. Fed Proc 1969; 28: 1178–84

    PubMed  CAS  Google Scholar 

  54. Blume FD, Boyer SJ, Braverman LE, et al. Impaired osmoregulation at high altitude: studies on Mt Everest. JAMA 1984; 252: 524–6

    PubMed  CAS  Google Scholar 

  55. Harber MJ, Williams JD, Morton JJ. Antidiuretic hormone excretion at high altitude. Aviat Space Environ Med 1981; 52: 38–40

    PubMed  CAS  Google Scholar 

  56. Brahmachari HD, Malhotra MS, Ramachandran K, et al. Progressive changes in plasma cortisol, antidiuretic hormone and urinary volume of normal lowlanders during short stay at high altitude. Indian J Exp Biol 1973; 11: 454–5

    PubMed  CAS  Google Scholar 

  57. Burrill MW, Freeman S, Ivy AC. Sodium, potassium, and chloride excretion of human subjects exposed to a simulated altitude of eighteen thousand feet. J Biol Chem 1945; 157: 297–302

    CAS  Google Scholar 

  58. Colice GL, Ramirez G. Effect of hypoxemia on the renin-angiotensin-aldosterone system in humans. J Appl Physiol 1985; 58: 724–30

    PubMed  CAS  Google Scholar 

  59. Koller EA, Buhrer A, Felder L, et al. Altitude diuresis: endocrine and renal responses to acute hypoxia of acclimatized and non-acclimatized subjects. Eur J Appl Physiol 1991; 62: 228–34

    CAS  Google Scholar 

  60. Lawrence DL, Skatrud JB, Shenker Y. Effect of hypoxia on atrial natriuretic factor and aldosterone regulation in humans. Am J Physiol Endocrinol Metab 1990; 258: E243–8

    CAS  Google Scholar 

  61. Kawashima A, Kubo K, Matsuzawa Y, et al. Hypoxia-induced ANP secretion in subjects susceptible to high-altitude pulmonary edema. Respir Physiol 1992; 89: 309–17

    PubMed  CAS  Google Scholar 

  62. Milledge JS, Catley DM. Renin, aldosterone, and converting enzyme during exercise and acute hypoxia in humans. J Appl Physiol 1982; 52: 320–3

    PubMed  CAS  Google Scholar 

  63. Epstein M, Saruta T. Effects of an hyperoxic hypobaric environment on renin-aldosterone in normal man. J Appl Physiol 1973; 34: 49–52

    PubMed  CAS  Google Scholar 

  64. Galster WA, Morrison PR. Effects of high altitude exposure on components of blood and urine in mountaineers. Int J Biometeorol 1974; 18: 23–32

    PubMed  CAS  Google Scholar 

  65. Hackett PH, Rennie D, Grover RF, et al. Acute mountain sickness and the edemas of high altitude: a common pathogenesis? Respir Physiol 1981; 46: 383–90

    PubMed  CAS  Google Scholar 

  66. Greenleaf JE, Hinghofer-Szalkay H, Rössler A, et al. Plasma sodium-osmotic dissociation and hormonal interaction with drinking-induced hypervolemia at 2800 m altitude. Aviat Space Environ Med 2001; 72: 522–8

    PubMed  CAS  Google Scholar 

  67. Gove PB. Webster’s third new international dictionary of the English language unabridged. Springfield (MA): Merriam-Webster Inc., 1986

    Google Scholar 

  68. Fortney SM, Schneider VS, Greenleaf JE. The physiology of bed rest. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology: environmental physiology III. the gravitational environment. New York: Oxford University Press, 1996: 889–939

    Google Scholar 

  69. Greenleaf JE. Intensive exercise training during bed rest attenuates deconditioning. Med Sci Sports Exerc 1997; 29: 207–15

    PubMed  CAS  Google Scholar 

  70. Greenleaf JE. Importance of fluid homeostasis for optimal adaptation to exercise and environmental stress: acceleration. In: Gisolfi CV, Lamb DR, editors. Perspectives in exercise science and sports medicine. Carmel (IN): Benchmark Press, 1990: 309–46

    Google Scholar 

  71. Gretebeck RJ, Greenleaf JE. Utility of ground-based simulations of weightlessness. In: Lane HW, Schoeller DA, editors. Nutrition in spaceflight and weighlessness models. Boca Raton (FL): CRC Press, 2000: 69–96

    Google Scholar 

  72. Greenleaf JE, Bernauer EM, Juhos LT, et al. Effects of exercise on fluid exchange and body composition in man during 14-day bed rest. J Appl Physiol 1977; 43: 126–32

    PubMed  CAS  Google Scholar 

  73. Harrison TR. Abuse of rest as a therapeutic measure for patients with cardiovascular disease. JAMA 1944; 125: 1075–7

    Google Scholar 

  74. Taylor HL, Henschell A, Brožek J, et al. Effects of bed rest on cardiovascular function and work performance. J Appl Physiol 1949; 2: 223–39

    PubMed  CAS  Google Scholar 

  75. Greenleaf JE, Shiraki K, Sagawa S, et al. Is the Gauer-Henry reflex important for immersion diuresis in men? Aviat Space Environ Med 1999; 70: 1201–5

    PubMed  CAS  Google Scholar 

  76. Shvartz E, Reibold RC, White RT, et al. Hemodynamic responses in orthostasis following 5 hours of sitting. Aviat Space Environ Med 1982; 53: 226–31

    PubMed  CAS  Google Scholar 

  77. Winkel J, Jørgensen K. Swelling of the foot, its vascular volume and systemic hemoconcentration during long-term constrained sitting. Eur J Appl Physiol1986; 55: 162–6

    CAS  Google Scholar 

  78. Greenleaf JE, Shvartz E, Kravik S, et al. Fluid shifts and endocrine responses during chair rest and water immersion in man. J Appl Physiol 1980; 48: 79–88

    PubMed  CAS  Google Scholar 

  79. Winkel J, Jørgensen K. Evaluation of foot swelling and lower-limb temperatures in relation to leg activity during long-term seated office work. Ergonomics 1986; 29: 313–28

    PubMed  CAS  Google Scholar 

  80. Greenleaf JE, Vernikos J, Wade CE, et al. Effect of leg exercise training on vascular volumes during 30 days of 6° head-down bed rest. J Appl Physiol 1992; 72: 1887–94

    PubMed  CAS  Google Scholar 

  81. Guell A, Gharrib C, Fanjaud G, et al. Effects of antiorthostatic position at −4° on hydromineral balance. Physiologist 1982; 25: S71–2

    Google Scholar 

  82. Noskov VB, Kozyrevskaya GI, Morukov BV, et al. Body position during hypokinesia, and fluid-electrolyte metabolism. Kosm Biol Aviakosm Med 1985; 19: 31–4

    PubMed  CAS  Google Scholar 

  83. Wright HP, Osborn SB. Effect of posture on venous velocity, measured with 24NaCl. Br Heart J 1952; 14: 325–30

    PubMed  CAS  Google Scholar 

  84. Carruthers M, Arguelles AE, Mosovich A. Man in transit: biochemical and physiological changes during intercontinental flights. Lancet 1976; I: 977–81

    Google Scholar 

  85. Rodahl K, Birkhead NC, Blizzard JJ, et al. Physiological changes during prolonged bed rest. In: Blix G, editor. Nutrition and physical activity. Uppsala: Almqvist & Wiksells, 1967: 107–13

    Google Scholar 

  86. Convertino VA, Greenleaf JE, Bernauer EM. Role of thermal and exercise factors in the mechanism of hypervolemia. J Appl Physiol 1980; 48: 657–64

    PubMed  CAS  Google Scholar 

  87. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 1993; 73: 1–78

    PubMed  CAS  Google Scholar 

  88. Granger HJ, Laine GA, Barnes GE, et al. Dynamics and control of transmicrovascular fluid exchange. In: Staub NC, Taylor AE, editors. Edema. New York: Raven Press, 1984: 189–228

    Google Scholar 

  89. Guyton AC, Granger HJ, Taylor AE. Interstitial fluid pressure. Physiol Rev 1971; 51: 527–63

    PubMed  CAS  Google Scholar 

  90. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol (Lond) 1896; 19: 312–26

    CAS  Google Scholar 

  91. Fadnes HO, Reed RK, Aukland K. Mechanisms regulating interstitial fluid volume. Lymphology 1978; 11: 165–9

    PubMed  CAS  Google Scholar 

  92. Pollack AA, Wood EH. Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J Appl Physiol 1948; 1: 649–62

    Google Scholar 

  93. Mellander S, Oberg B, Odelram H. Vascular adjustments to increased transmural pressure in cat and man with special reference to shifts in capillary fluid transfer. Acta Physiol Scand 1964; 61: 34–48

    PubMed  CAS  Google Scholar 

  94. Henriksen O, Sejrsen P, Paaske WP, et al. Effect of chronic sympathetic denervation upon the transcapillary filtration rate induced by venous stasis. Acta Physiol Scand 1983; 117: 171–6

    PubMed  CAS  Google Scholar 

  95. Sejrsen P, Henriksen O, Paaske WP. Effect of orthostatic blood pressure changes upon capillary filtration-absorption rate in the human calf. Acta Physiol Scand 1981; 111: 287–91

    PubMed  CAS  Google Scholar 

  96. Lundvall J, Länne T. Evidence for a much higher transcapillary hydrodynamic conductivity in the human forearm and lower leg than previously believed. Acta Physiol Scand 1988; 134: 453–4

    PubMed  CAS  Google Scholar 

  97. Noddeland H. Influence of body posture on transcapillary pressures in human subcutaneous tissue. Scand J Clin Lab Invest 1982; 42: 131–8

    PubMed  CAS  Google Scholar 

  98. Noddeland H, Winkel J. Effects of leg activity and ambient barometric pressure on foot swelling and lower-limb skin temperature during 8h of sitting. Eur J Appl Physiol 1988; 57: 409–14

    CAS  Google Scholar 

  99. Stick C, Grau H, Witzleb E. On the edema-preventing effect of the calf muscle pump. Eur J Appl Physiol 1989; 59: 39–47

    CAS  Google Scholar 

  100. Waterfield RL. The effect of posture on the volume of the leg. J Physiol (Lond) 1931; 72: 121–31

    CAS  Google Scholar 

  101. Jacobsson S, Kjellmer I. Flow and protein content of lymph in resting and exercising skeletal muscle. Acta Physiol Scand 1964; 60: 278–85

    PubMed  CAS  Google Scholar 

  102. Olszewski W, Engeset A, Jæger PM, et al. Flow and composition of leg lymph in normal men during venous stasis, muscular activity and local hyperthermia. Acta Physiol Scand 1977; 99: 149–55

    PubMed  CAS  Google Scholar 

  103. Greenleaf JE, Convertino VA, Stremel RW, et al. Plasma [Na+], [Ca2+], and volume shifts and thermoregulation during exercise in man. J Appl Physiol 1977; 43: 1026–32

    PubMed  CAS  Google Scholar 

  104. Moyses C, Cederholm-Williams SA, Michel CC. Haemoconcentration and accumulation of white cells in the feet during venous stasis. Int J Microcirc Clin Exp 1987; 5: 311–20

    PubMed  CAS  Google Scholar 

  105. Pottier M, Dubreuil A, Monod H. The effects of sitting posture on the volume of the foot. Ergonomics 1969; 12: 753–8

    PubMed  CAS  Google Scholar 

  106. Laciga P, Koller EA. Respiratory, circulatory, and ECG changes during acute exposure to high altitude. J Appl Physiol 1976; 41: 159–67

    PubMed  CAS  Google Scholar 

  107. Simons R, Krol J. Jet leg, pulmonary embolism, and hypoxia. Lancet 1996; 348: 416

    PubMed  CAS  Google Scholar 

  108. Shreeniwas R, Koga S, Karakurum M, et al. Hypoxia-mediated induction of endothelial cell interleukin-1 alpha: an autocrine mechanism promoting expression of leukocyte adhesion molecules on the vessel surface. J Clin Invest 1992; 90: 2333–9

    PubMed  CAS  Google Scholar 

  109. Hartmann G, Tschop M, Fischer R, et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine 2000; 12: 246–52

    PubMed  CAS  Google Scholar 

  110. Klausen T, Olsen NV, Poulsen TD, et al. Hypoxemia increases serum interleukin-6 in humans. Eur J Appl Physiol 1997; 76: 480–2

    CAS  Google Scholar 

  111. Goldsby RA, Kindt TJ, Osborne BA. Kuby immunology. New York: WH Freeman, 2000

    Google Scholar 

  112. Slipman CW, Lipetz JS, Jackson HB, et al. Deep venous thrombosis and pulmonary embolism as a complication of bed rest for low back pain. Arch Phys Med Rehabil 2000; 81: 127–9

    PubMed  CAS  Google Scholar 

  113. Bendz B, Rostrup M, Sevre K, et al. Association between acute hypobaric hypoxia and activation of coagulation in human beings. Lancet 2000; 356: 1657–8

    PubMed  CAS  Google Scholar 

  114. Maher JT, Levine PH, Cymerman A. Human coagulation abnormalities during acute exposure to hypobaric hypoxia. J Appl Physiol 1976; 41: 702–7

    PubMed  CAS  Google Scholar 

  115. Gertler JP, Perry L, L’Italien G, et al. Ambient oxygen tension modulates endothelial fibrinolysis. J Vasc Surg 1993; 18: 939–46

    PubMed  CAS  Google Scholar 

  116. Isabayeva VA, Ponomareva TA. State of hemocoagulation and thrombocytes during hypokinesia after adaptation to high-mountain conditions. Kosm Biol Med 1973; 7: 53–8

    Google Scholar 

  117. Bird AD. The effect of surgery, injury, and prolonged bed rest on calf blood flow. Aust N Z J Surg 1972; 41: 374–9

    PubMed  CAS  Google Scholar 

  118. Lorentsen E, Eika C, Godal HC. Coagulation studies in chronically bedridden patients. Acta Med Scand 1974; 195: 79–80

    PubMed  CAS  Google Scholar 

  119. Martin DG, Convertino VA, Goldwater D, et al. Plasma viscosity elevations with simulated weightlessness. Aviat Space Environ Med 1986; 57: 426–31

    PubMed  CAS  Google Scholar 

  120. Buczyñski A, Kedziora J, Wachowicz B, et al. Effect of bed rest on the adenine nucleotides concentration in human blood platelets. J Physiol Pharmacol 1991; 42: 389–95

    PubMed  Google Scholar 

  121. McDonald JK, Reilly TJ, Zeitman BB, et al. Effect of prolonged bed rest and +Gz centrifugation on blood fibrinolytic activity in males and females and its possible use as a measure of vascular deconditioning [abstract]. Alexandria (VA): Aerospace Medical Association, 1974: 167–8

    Google Scholar 

  122. McKenzie MA, Greenleaf JE, Looft-Wilson R, et al. Leucocytosis, thrombocytosis, and plasma osmolality during rest and exercise: an hypothesis. J Physiol Pharmacol 1999; 50: 259–73

    PubMed  CAS  Google Scholar 

  123. Filatova LM, Anashkin OD. Changes in the human blood clotting system caused by prolonged hypokinesia. Biull Eksp Biol Med 1968; 65: 36–8

    PubMed  CAS  Google Scholar 

  124. Anashkin OD. Effect of hypokinesia, acceleration and reduced nutrition on the state of the blood-coagulation system in man. Kosm Biol Med 1969; 3: 89–94

    Google Scholar 

  125. Landgraf H, Vanselow B, Schulte-Huermann D, et al. Economy class syndrome: rheology, fluid balance, and lower leg edema during a simulated 12-hour long distance flight. Aviat Space Environ Med 1994; 65: 930–5

    PubMed  CAS  Google Scholar 

  126. Zöller B, Svensson PJ, He X, et al. Identification of the same factor V gene mutation in 47 of 50 thrombosis-prone families with inherited resistance to activated protein C. J Clin Invest 1994; 94: 2521–4

    PubMed  Google Scholar 

  127. Eschwège V, Robert A. Strikes in French public transport and resistance to activated protein C. Lancet 1996; 347: 206

    PubMed  Google Scholar 

  128. Emonson DL. Activated protein C resistance as a ‘new’ cause of deep venous thrombosis in aviators. Aviat Space Environ Med 1997; 68: 606–8

    PubMed  CAS  Google Scholar 

  129. Levi M, Kraaijenhagen RA. Lange vliegreizen en het risico op veneuze trombose. Ned Tijdschr Geneeskd 2001; 145: 292–4

    PubMed  CAS  Google Scholar 

  130. Voorhoeve R, Bruyninckx CMA. Travellers’ thrombosis. Travel Med Int 1990: 18–9

    Google Scholar 

  131. Ernst E, Schmidt-Pauly E, Muhlig P, et al. Blood viscosity in patients with bone fractures and long term bed-rest. Br J Surg 1987; 74: 301–2

    PubMed  CAS  Google Scholar 

  132. Cadroy Y, Pillard F, Sakariassen KS, et al. Strenuous but not moderate exercise increases the thrombotic tendency in healthy sedentary male volunteers. J Appl Physiol 2002; 93: 829–33

    PubMed  Google Scholar 

  133. Woman dies after Air NZ flight to US. The Press (Christchurch, New Zealand); 2002 Sep 27, 5

  134. Lawsuit blames flying in coach for heart attack. Marin Independent J 2002 Apr 13: Sect. A1, A5

  135. Sahiar F, Mohler SR. Economy class syndrome. Aviat Space Environ Med 1994; 65: 957–60

    PubMed  CAS  Google Scholar 

  136. Shulman LP. Update on contraception: oral contraceptives — risks. Obstet Gynecol Clin North Am 2000; 27: 695–704

    PubMed  CAS  Google Scholar 

  137. Silver D. An overview of venous thromboembolism prophylaxis. Am J Surg 1991; 161: 537–40

    PubMed  CAS  Google Scholar 

  138. Persson AV, Davis RJ, Villavicencio JL. Prophylaxis of deep venous thrombosis in surgical patients. Surg Clin North Am 1991; 71: 1195–209

    PubMed  CAS  Google Scholar 

  139. Trottman M. Fear of flying: international carriers address new threat — coach-class syndrome. Wall St J 2001 Jun 27, Sect A6

    Google Scholar 

  140. Hauty GT, Adams T. Pilot fatigue: intercontinental jet flight. Oklahoma City (OK): Civil Aeromedical Research Institute, 1965: AM 65-16; 1–22

    Google Scholar 

  141. Cho K. Chronic ‘jet lag’ produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci 2001; 4: 567–8

    PubMed  CAS  Google Scholar 

  142. Denison DM, Ledwith F, Poulton EC. Complex reaction times at simulated cabin altitudes of 5,000 feet and 8,000 feet. Aerosp Med 1966; 37: 1010–3

    PubMed  CAS  Google Scholar 

  143. Dodge R. Circadian rhythms and fatigue: a discrimination of their effects on performance. Aviat Space Environ Med 1982; 53: 1131–6

    PubMed  CAS  Google Scholar 

  144. Reilly T, Atkinson G, Budgett R. Effect of low-dose temazepam on physiological variables and performance tests following a westerly flight across five time zones. Int J Sports Med 2001; 22: 166–74

    PubMed  CAS  Google Scholar 

  145. Claybaugh JR, Brooks DP, Cymerman A. Hormonal control of fluid and electrolyte balance at high altitude in normal subjects. In: Sutton JR, Coates G, Houston CS, editors. Hypoxia and mountain medicine. New York: Pergamon Press, 1992: 61–72

    Google Scholar 

  146. Westerterp KR. Energy and water balance at high altitude. News Physiol Sci 2001; 16: 134–7

    PubMed  CAS  Google Scholar 

  147. Bärtsch P. High altitude pulmonary edema. Med Sci Sports Exerc 1999; 31: S23–7

    PubMed  Google Scholar 

  148. Kesteven PJL, Robinson BJ. Clinical risk factors for venous thrombosis associated with air travel. Aviat Space Environ Med 2001; 72: 125–8

    PubMed  CAS  Google Scholar 

  149. Colón VF. To help prevent circulatory problems on long trips. Med Times 1977; 105: 52–4

    PubMed  Google Scholar 

  150. Rege K. Risk factors and thrombosis after airline flight. Thromb Haemost 1999; 81: 995–6

    PubMed  CAS  Google Scholar 

  151. Geerts WH, Heit JA, Clagett GP, et al. Prevention of venous thromboembolism. Chest 2001; 119: 132S–75S

    PubMed  CAS  Google Scholar 

  152. Johnson HD. Traveller’s ankle. BMJ 1973; 3: 109

    PubMed  CAS  Google Scholar 

  153. Paganin F, Bourdé A, Yvin J-L, et al. Venous thromboembolism in passengers following a 12-h flight: a case-controlled study. Aviat Space Environ Med 2003; 74: 1277–80

    PubMed  Google Scholar 

  154. Gold H, Dock W. Use and abuse of bed rest. N Y State J Med 1944; 44: 724–30

    Google Scholar 

  155. Greenleaf JE. Problem: thirst, drinking behavior, and involuntary dehydration. Med Sci Sports Exerc 1992; 24: 645–56

    PubMed  CAS  Google Scholar 

  156. Aerospace Medical Association. Medical guidelines for airline travel. 2nd ed [online]. Available from URL: http://www.as-ma.org/Publication/medguide.pdf [Accessed 2004 Aug 19]

Download references

Acknowledgements

The authors thank Ester Johnson and Beth Little for reprint acquisition. Supported by NASA Task UPN 11-10-20 and The Ames Associate Fellow Fund for 2000. The authors have no conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenleaf, J.E., Rehrer, N.J., Mohler, S.R. et al. Airline Chair-Rest Deconditioning. Sports Med 34, 705–725 (2004). https://doi.org/10.2165/00007256-200434110-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200434110-00002

Keywords

Navigation