Skip to main content

Advertisement

Log in

Pacing Strategy and Athletic Performance

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bangsbo J, Michalsik L, Petersen A. Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes. International Journal of Sports Medicine 14: 207–213, 1993

    Article  PubMed  CAS  Google Scholar 

  • Bar-Or O. The Wingate anaerobic test: an update on methodology, reliability and validity. Sports Medicine 4: 381–394, 1987

    Article  PubMed  CAS  Google Scholar 

  • Cheetham ME, Boobis LH, Brooks S, Williams C. Human muscle metabolism during sprint running. Journal of Applied Physiology 61: 54–60, 1986

    PubMed  CAS  Google Scholar 

  • de Koning JJ. Biomechanical aspects of speed skating, pp. 43–58, Free University Press, Amsterdam, 1991

    Google Scholar 

  • di Prampero PE, Cortilli G, Mognoni P, Saibene F. Equation of motion of a cyclist. Journal of Applied Physiology 47: 201–206, 1979

    PubMed  Google Scholar 

  • Foster C, Green MA, Snyder AC, Thompson NN. Physiological responses during simulated competition. Medicine and Science in Sports and Exercise 25: 877–882, 1993a

    Article  PubMed  CAS  Google Scholar 

  • Foster C, Snyder AC, Thompson NN, Green MA, Foley M, et al. Effect of pacing strategy on cycle time trial performance. Medicine and Science in Sports and Exercise 25: 383–388, 1993b

    PubMed  CAS  Google Scholar 

  • Foster C, Thompson NN. Physiology of speed skating. In Casey et al. (Eds) Winter sports medicine, pp. 221–240, FA Davis Co, Philadelphia, 1991

    Google Scholar 

  • Harris RC, Sahlin K, Hultman E. Phosphagen and lactate contents of m. quadriceps femoris of man after exercise. Journal of Applied Physiology 43: 852–857, 1977

    PubMed  CAS  Google Scholar 

  • Jacobs I, Bar-Or O, Karlsson J, Dotan R, Tesch P, et al. Changes in muscle metabolites in females with 30s exhaustive exercise. Medicine and Science in Sports and Exercise 14: 457–460, 1982

    Article  PubMed  CAS  Google Scholar 

  • Jacobs I, Tesch PA, Bar-Or O, Karlsson J, Dotan R. Lactate in human skeletal muscle after 10 and 30s of supramaximal exercise. Journal of Applied Physiology 55: 365–367, 1983

    PubMed  CAS  Google Scholar 

  • Karlsson J, Diamant B, Saltin B. Muscle metabolites during sub-maximal and maximal exercise in man. Scandinavian Journal of Clinical Laboratory Investigation 26: 385–394, 1971

    Article  Google Scholar 

  • Karlsson J, Nordesjo L-O, Jorfeldt L, Saltin B. Muscle lactate, ATP and CP levels during exercise after physical training in man. Journal of Applied Physiology 33: 199–203, 1972

    PubMed  CAS  Google Scholar 

  • Karlsson J, Saltin B. Lactate, ATP, and CP in working muscles during exhaustive exercise in man. Journal of Applied Physiology 29: 598–602, 1970

    Google Scholar 

  • Kostka CE, Cafarelli E. Effect of pH on sensation and vastus lateralis electromyogram during cycling exercise. Journal of Applied Physiology 52: 1181–1185, 1982

    PubMed  CAS  Google Scholar 

  • Léger LA, Ferguson RJ. Effect of pacing on oxygen uptake and peak lactate for a mile run. European Journal of Applied Physiology and Occupational Physiology 32: 251–257, 1974

    Article  PubMed  Google Scholar 

  • Margaria R. Biomechanics and energetics of muscular exercise, Clarendon Press, Oxford, 1966

    Google Scholar 

  • Matson LG, Tran ZV. Effects of sodium bicarbonate ingestion on anaerobic performance: a meta-analytic review. International Journal of Sports Nutrition 3: 2–28, 1993

    CAS  Google Scholar 

  • McCartney N, Heigenhauser GJF, Sargeant AJ, Jones NL. A constant velocity cycle ergometer for the study of dynamic muscle function. Journal of Applied Physiology 55: 212–217, 1983

    PubMed  CAS  Google Scholar 

  • Medbø JI, Mohn A-C, Tabata I, Bahr R, Vaage O, et al. Anaerobic capacity determined by the maximal accumulated O2 deficit. Journal of Applied Physiology 64: 50–60, 1988

    PubMed  Google Scholar 

  • Morehouse LE, Miller AT. Physiology of exercise, pp. 246–247, 6th ed., CV Mosby Co, St Louis, 1971

    Google Scholar 

  • Olds TS, Norton KI, Craig NP. Mathematical model of cycling performance. Journal of Applied Physiology 75: 730–737, 1993

    PubMed  CAS  Google Scholar 

  • Olesen HL. Accumulated oxygen deficit increases with inclination of uphill running. Journal of Applied Physiology 73: 1130–1134, 1992

    PubMed  CAS  Google Scholar 

  • Robinson S, Robinson DL, Mountjoy RJ, Bullard RW. Influence of fatigue on the efficiency of men during exhausting runs. Journal of Applied Physiology 12: 197–201, 1958

    PubMed  CAS  Google Scholar 

  • Staab JS, Agnew JW, Siconolfi SF. Metabolic and performance responses to uphill and downhill running in distance runners. Medicine and Science in Sports and Exercise 24: 124–127, 1992

    PubMed  CAS  Google Scholar 

  • Tesch P. Muscle fatigue in man: with special reference to lactate accumulation during short term intense exercise. Acta Physiologica Scandinavica (Suppl. 480), 1980

    Google Scholar 

  • Tesch PA, Karlsson J. Muscle metabolite accumulation following maximal exercise: a comparison between short term and prolonged kayak performance. European Journal of Applied Physiology and Occupational Physiology 52: 243–246, 1984

    Article  PubMed  CAS  Google Scholar 

  • van Ingen Schenau GJ. The influence of air friction in speed skating. Journal of Biomechanics 15: 449–458, 1982

    Article  Google Scholar 

  • van Ingen Schenau GJ, Cavanagh PR. Power equations in endurance sports. Journal of Biomechanics 23: 865–881, 1990

    Article  Google Scholar 

  • van Ingen Schenau GJ, de Koning JJ, de Groot G. A simulation of speed skating performances based on a power equation. Medicine and Science in Sports and Exercise 22: 718–728, 1990

    Article  Google Scholar 

  • van Ingen Schenau GJ, de Koning JJ, de Groot G. The distribution of anaerobic energy in 1000 and 4000 metre cycling bouts. International Journal of Sports Medicine 13: 447–451, 1992

    Article  Google Scholar 

  • van Ingen Schenau GJ, Hollander AP. Comment on ‘A mathematical theory of running’ and the applications of this theory. Journal of Biomechanics 20: 91–95, 1987

    Article  Google Scholar 

  • Ward-Smith AJ. A mathematical theory of running based on the first law of thermodynamics and its application to the performance of world class athletes. Journal of Biomechanics 18: 337–350, 1985

    Article  PubMed  CAS  Google Scholar 

  • Williams MH, Wesseldine S, Somma T, Schuster R. The effect of induced erythrocythemia upon 5 mile treadmill run time. Medicine and Science in Sports and Exercise 13: 169–175, 1981

    Article  PubMed  CAS  Google Scholar 

  • Withers RT, Sherman WM, Clark DG, Esselbach PC, Nolan SR, et al. Muscle metabolism during 30, 60, and 90s of maximal cycling on an air-braked ergometer. European Journal of Applied Physiology and Occupational Physiology 63: 354–362, 1991

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, C., Schrager, M., Snyder, A.C. et al. Pacing Strategy and Athletic Performance. Sports Medicine 17, 77–85 (1994). https://doi.org/10.2165/00007256-199417020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199417020-00001

Keywords

Navigation