Skip to main content
Log in

Standard Anaerobic Exercise Tests

  • Research Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Anaerobic tests are divided into tests measuring anaerobic power and anaerobic capacity. Anaerobic power tests include force-velocity tests, vertical jump tests, staircase tests, and cycle ergometer tests. The values of maximal anaerobic power obtained with these different protocols are different but generally well correlated. Differences between tests include factors such as whether average power or instantaneous power is measured, active muscle mass is the same in all the protocols, the legs act simultaneously or successively, maximal power is measured at the very beginning of exercise or after several seconds, inertia of the devices and body segments are taken into account.

Force-velocity tests have the advantage of enabling the estimation of the force and velocity components of power, which is not possible with tests such as a staircase test, a vertical jump, the Wingate test and other long-duration cycle ergometer protocols. Maximal anaerobic capcity tests are subdivided into maximal oxygen debt test, ergometric tests (all-out tests and constant load tests), measurement of oxygen deficit during a constant load test and measurement of peak blood lactate. The measurement of the maximal oxygen debt is not valid and reliable enough to be used as an anaerobic capacity test. The aerobic metabolism involvement during anaerobic capacity tests, and the ignorance of the mechanical efficiency, limit the validity of the ergometric tests which are only based on the measurement of work. The amount of work performed during the Wingate test depends probably on glycolytic and aerobic power as well as anaerobic capacity. The fatigue index (power decrease) of the all-out tests is not reliable and depends probably on aerobic power as well as the fast-twich fibre percentage. Reliability of the constant load tests has seldom been studied and has been found to be rather low. In theory, the measure of the oxygen deficit during a constant load test is more valid than the other tests but its reliability is unknown. The validity and reliability of postexercise blood lactate as a test of maximal anaerobic capacity are probably not better than that of the current ergometric tests. The choice of an anaerobic test depends on the aims and subjects of a study and its practicability within a testing session.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adamson GT, Whitney RJ. Critical appraisal of jumping as a measure of human power. In Vredenbregt and Warteinweiler (Eds), Medicine and sport, Vol. 6, Biomechanics II, pp. 208–211, Karger, Basel, 1971

    Google Scholar 

  • Avis FJ, Hoving A, Toussaint HM. A dynamometer for the measurement of force, velocity, work and power during an explosive leg extension. European Journal of Applied Physiology 54: 210–215, 1985

    Article  CAS  Google Scholar 

  • Ayalon A, Inbar O, Bar-Or O. Relationships among measurements of explosive strength and anaerobic power. In RC Nelson and CA Morehouse (Eds) International series on sport sciences, Vol. 1, Biomechanic IV, pp. 572–577, University Press, Baltimore, 1974

    Google Scholar 

  • Bar-Or O. A new aerobic capacity test. Characteristics and applications. 21st World Congress in Sport Medicine, Brasilia, September 1978

    Google Scholar 

  • Bar-Or O, Dotan R, Inbar O. A 30 second all-out ergometric test — its reliability and validity for anaerobic capacity. Israel Journal of Medical Sciences 13: 126, 1977

    Google Scholar 

  • Bar-Or O, Dotan R, Inbar O, Rothstein A, Karlsson J, Tesch P. Anaerobic capacity and muscle fiber type distribution in man. International Journal of Sports Medicine 1: 82–85, 1980

    Article  Google Scholar 

  • Binkhorst RA, Hoofd L, Vissers ACA. Temperature and forcevelocity relationship of human muscles. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 42: 471–475, 1977

    CAS  Google Scholar 

  • Boobis C, Williams C, Wootton SA. Human muscle metabolism during brief maximal exercise. Journal of Physiology (London) 338: 21P–22P, 1983

    Google Scholar 

  • Bosco C, Komi PV. Mechanical characteristics and fiber composition of human leg extensor muscles. European Journal of Applied Physiology 41: 275–284, 1979

    Article  CAS  Google Scholar 

  • Bosco C, Komi PV. Influence of aging on the mechanical behavior of leg extensor muscles. European Journal of Applied Physiology 45: 209–219, 1980

    Article  CAS  Google Scholar 

  • Bosco C, Luhtanen P, Komi PV. A simple method for measurement of mechanical power in jumping. European Journal of Applied Physiology 50: 273–282, 1983a

    Article  CAS  Google Scholar 

  • Bosco C, Komi PV, Tihanyi J, Fekete G, Apor P. Mechanical power test and fiber composition of human leg extensor muscles. European Journal of Applied Physiology 51: 129–135, 1983b

    Article  CAS  Google Scholar 

  • Bosco C, Mognoni P, Luhtanen P. Relationship between isokinetic performance and ballistic movement. European Journal of Applied Physiology 51: 357–364, 1983c

    Article  CAS  Google Scholar 

  • Bouchard C, Taylor AW, Dulac S. Testing maximal anaerobic power and capacity. In McDougall et al. (Eds), Physiological testing of the elite athlete, pp. 61–73, Canadian Association of Sport Sciences. 1982

    Google Scholar 

  • Bouisset S, Cnockaert JC, Pertuzon E. Sur la vitesse maximale de raecoucissement du muscle au court d’un mouvement monoarticulaire simple. Journal of Physiology (Paris) 58: 474, 1966

    Google Scholar 

  • Brooks GA, Gaessar GA. End points of lactate and glucose metabolism after exhausting exercise. Journal of Applied Physiology: Respiratory. Environmental and Exercise Physiology 49: 1057–1069, 1980

    CAS  Google Scholar 

  • Brue F, Melin B. The direct determination of maximal aerobic and anaerobic power using a new mechanical cycle ergometer. North Atlantic Treaty Organisation. Summary of the proceedings of the 5th meeting of RSG 4. Brussels, 11–15 Sept., 1983

    Google Scholar 

  • Brue F, Melin B, Lamande JP, Philippe Y. Exploration du métabolisme anaérobie en salle d’effort. Colloque de Toulouse, Bulletin Médical de la Fédération Française d’Athlétisme No. 6. 1985

    Google Scholar 

  • Burke ER, Levine DN, Zajac FE, Tsairis P, Engel WK. Mammalian motor units: physiological histochemical correlation in 3 years of cat gastrocnemius. Science 174: 709–712, 1971

    Article  PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Kyle CR. The effect of external loading upon power output in stair climbing. European Journal of Applied Physiology 44: 217–222, 1980

    Article  CAS  Google Scholar 

  • Caiozzo VJ, Perrine JJ, Edgerton VR. Training-induced alteration of the in vivo force-velocity relationship of human muscle. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 51: 750–7543, 1981

    CAS  Google Scholar 

  • Coggan AR, Costill DL. Biological and technological variability of three anaerobic ergometer tests. International Journal of Sports Medicine 5: 142–145, 1984

    Article  PubMed  CAS  Google Scholar 

  • Crielaard JM, Pirnay F. Anaerobic and aerobic power of top athletes. European Journal of Applied Physiology 47: 295–300, 1981

    Article  CAS  Google Scholar 

  • Crielaard JM, Pirnay F. Étude longitudinale des puissances aérobie et anaérobie alactique. Médecine du Sport 59: 4–6, 1985

    Google Scholar 

  • Crielaard JM, Franchimont P. La mesure de la capacité anaérobie lactique: mise au point actuelle. Medecine de Sport 59: 150–152, 1985

    Google Scholar 

  • Crielaard JM, Franchimont P, Merken P, Petit JM, Pirnay F. Evaluation de la capacité anaérobie lactique en athlétisme. Médecine du Sport 60: 239–244, 1986b

    Google Scholar 

  • Crielaard JM, Ledent P, Grosjean M, Pirnay F, Franchimont P. Evaluation en laboratoire de la capacité anaerobie lactique. Mise au point d’un test. Medecine du Sport 60: 66–71, 1986a

    Google Scholar 

  • Cumming GR. Correlation of athletic performance and aerobic power in 12–17 year-old children with bone age, calf muscle, total body potassium, heart volume and two indices of anaerobic power. In Bar-Or O (Ed.) Pediatric work physiology, pp. 109–134, Wingate Institute, Natanya, 1975

    Google Scholar 

  • Cunningham DA, Faulkner JA. The effect of training on aerobic and anaerobic metabolism during a short exhaustive run. Medicine and Science in Sports 1: 65–69, 1969

    Google Scholar 

  • Cureton TK. Physical fitness of champion athletes. University of Illinois Press, Urbana, 1951

    Google Scholar 

  • Davies CTM, Rennie R. Human power output. Nature 217: 770, 1968

    Article  PubMed  CAS  Google Scholar 

  • Davies CTM. Human power output in exercise of short duration in relation to body size and composition. Ergonomics 14: 245–256, 1971

    Article  PubMed  CAS  Google Scholar 

  • Davies CTM, Young K. Effects of external loading on short term power output in children and young male adults. European Journal of Applied Physiology 52: 351–354, 1984

    Article  CAS  Google Scholar 

  • Debruyn-Prevost P. Essai de mise au point d’une épreuve anaerobie sur bicyclette ergométrique. Medecine du Sport 49: 202–206, 1975

    Google Scholar 

  • Debruyn-Prévost P. Sturbois X. Physiological response of girls to aerobic and anaerobic endurance tests. Journal of Sports Medicine 24: 149–154, 1984

    Google Scholar 

  • De Koning FL, Binkhorst RA, Vos JA, Van’t Hof MA. The forcevelocity relationship of arm flexion in untrained males and females and arm-trained athletes. European Journal of Applied Physiology 54: 89–94, 1985

    Article  Google Scholar 

  • Dotan R, Bar-Or O. Load optimisation for the Wingate anaerobic test. European Journal of Applied Physiology 51: 409–417, 1983

    Article  CAS  Google Scholar 

  • Dolan P, Sargeant AJ. Maximal short-term (anaerobic) power output following submaximal exercise. International Journal of Sports Medicine 5 (Suppl.): 133–134, 1984

    Article  Google Scholar 

  • Edström L, Hultman E, Sahlin K, Sjöholm H. The content of high energy phosphate in different fibre types in skeletal muscle from rat. guinea pig and man. Journal of Physiology (London) 332: 47–58, 1982

    Google Scholar 

  • Essen B, Häggmark T. Lactate concentration in type I and II muscle fibres during muscular contraction in man. Acta Physiologica Scandinavica 95: 344–346, 1975

    Article  PubMed  CAS  Google Scholar 

  • Evans JA, Quinney HA. Determination of resistance settings for an anaerobic power testing. Canadian Journal of Applied Sport Sciences 6: 53–56, 1981

    CAS  Google Scholar 

  • Fenn WO, Marsh BS. Muscular force at different speeds of shortening. Journal of Physiology (London) 85: 277–297, 1935

    CAS  Google Scholar 

  • Freund H, Gendry P. Lactate kinetics after strenuous exercise in man. European Journal of Applied Physiology 39: 123–135, 1978

    Article  CAS  Google Scholar 

  • Fujitsuka N, Yamamoto T, Ohkuwa T, Santo M, Miyarnura M. Peak blood lactate after short periods of maximal treadmill running. European Journal of Applied Physiology 48: 289–296, 1982

    Article  CAS  Google Scholar 

  • Fox EL, Mathews DK. Interval training: conditioning for sports and general fitness, W.B. Saunders, Philadelphia, 1974

    Google Scholar 

  • Geron E, Inbar O. Motivation and anaerobic performance. In U Simri (Ed.) The art and science of coaching: Proceedings of an international seminar. The Wingate Institute for Education and Sport, Netanya, 1980

    Google Scholar 

  • Glencross DJ. The nature of the vertical jump test and the standing broad jump. Research Quarterly 37: 353–359, 1966

    PubMed  CAS  Google Scholar 

  • Godikh MA. Control of training and contest loads. Fiscultura i Sport, Moscow, 1980

    Google Scholar 

  • Goslin BR, Graham TE. A comparison of anaerobic components of O2 debt and the Wingate test. Canadian Journal of Applied Sports Sciences 10: 134–140, 1985

    CAS  Google Scholar 

  • Graham TE, Andrew GM. The variability of repeated measurements of oxygen debt in man following a maximal treadmill exercise. Medicine and Science in Sports 5: 73–78, 1973

    PubMed  CAS  Google Scholar 

  • Gray RK, Start KB, Glencross DJ. A test of leg power. Research Quarterly 33: 44–50, 1962

    Google Scholar 

  • Gregor RJ, Edgerton R, Perrine JJ, Campion DS, De Bus C. Torque-velocity relationships and muscle fiber composition in elite female athletes. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 47: 388–392, 1979

    CAS  Google Scholar 

  • Harris P. Oxygen debt does not exist. In Moret et al. (Eds) Lactate, physiologic, methodologic and pathologic approach, Springer Verlag, Berlin, 1980

    Google Scholar 

  • Hebbelinck M. Ergometry in physical research. Journal of Sports Medicine 9: 69–79, 1969

    CAS  Google Scholar 

  • Hermansen L. Anaerobic energy release. Medicine and Science in Sports 1: 32–38, 1969

    Google Scholar 

  • Hermansen L. Lactate production during exercise. In Pernow B, Saltin B (Eds), Muscle métablism during exercise, pp. 401–407, Advance in experimental medicine and biology, Vol. 11, Plenum Press, New York-London, 1971

    Article  CAS  Google Scholar 

  • Hermansen L, Medbo JI. The relative significance of aerobic and anaerobic processes during maximal exercise of short duration. Medicine and Sport Vol. 17, pp. 56–57, Karger, Basel, 1984

    Google Scholar 

  • Hermansen L, Vaage O. The quantitative significance of the ‘Himwich-Cori Cycle’ for removal of lactate during recovery after maximal exercise in man. In Moret et al. (Eds) Lactate, physiological, methodologic and pathologic approach, pp. 46–66, Springer Verlag, Berlin, 1980

    Google Scholar 

  • Heyters C, Poortmans JR. Evaluation de la capacité anaérobique: étude de la reproductibilité et de la validité d’un test de laboratoire. Canadian Journal of Applied Sport Sciences 2: 183–187, 1977

    Google Scholar 

  • Hill AV, Long CNH, Lupton H. Muscular exercise, lactic acid and the supply and utilisation of oxygen. Part VII to VIII. Proceedings of the Royal Society of London 97: 155–176, 1924

    Article  CAS  Google Scholar 

  • Hill AV. The heat of shortening and the dynamic constant of muscle. Proceedings of the Royal Society of London 126: 136–195, 1938

    Article  Google Scholar 

  • Inbar O, Dotan R, Bar-Or O. Aerobic and anaerobic components of a thirty second supramaximal cycling test. Medicine and Science in Sports 8: 51, 1976

    Google Scholar 

  • Inbar O, Dotan R, Trousil T, Dvir Z. The effect of bicycle crank-length variation upon power performance. Ergonomics 26: 1139–1146, 1983

    Article  PubMed  CAS  Google Scholar 

  • Ingemann-Hansen T, Halkjaer-Kristensen J. Force-velocity relationships in the human quadriceps muscles. Scandinavian Journal of Rehabilitative Medicine 11: 85–89, 1979

    CAS  Google Scholar 

  • Jacobs I. Blood lactate, implication for training and sports performance. Sports Medicine 3: 10–25, 1986

    Article  PubMed  CAS  Google Scholar 

  • Jacobs I, Kaiser P. Lactate in blood, mixed skeletal muscle, and FT or ST fibres during cycle exercise in man. Acta Physiologica Scandinavica 114: 461–466, 1982

    Article  PubMed  CAS  Google Scholar 

  • Jacobs I, Tesch PA, Bar-Or O, Karlsson J, Dotan R. Lactate in human skeletal muscle after 10 and 30/s of supramaximal exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 55: 365–367, 1983

    CAS  Google Scholar 

  • Jones NL, McCartney N, Graham T, Spriet L, Kowalchuk JM, et al. Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. Journal of Applied Physiology 59: 132–136, 1985

    PubMed  CAS  Google Scholar 

  • Jorfeldt L, Juhlin-Dannfelt A, Karlson J. Lactate release in relation to tissue lactate in human skeletal muscle during exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 44: 350–352, 1978

    CAS  Google Scholar 

  • Jorgensen K, Bankov S. Maximum strength of elbow flexors with pronated and supinated forearm. In Medicine and sport, Vol. 6, Biomechanics II, pp. 174–180, Karger, Basel, 1971

    Google Scholar 

  • Kaneko M, Yamazaki T. Internal mechanical work due to velocity changes of the limb in working on a bicycle ergometer. In Asmunssen E, Jorgensen K (Eds), Biomechanics VI-A, pp. 86–92, University Park Press, Baltimore, 1978

    Google Scholar 

  • Kalamen J. Measurement of maximum muscular power in man. Doctoral dissertation, Ohio State University, 1968

    Google Scholar 

  • Karlsson J, Saltin B. Lactate, ATP, and CP in working muscles during exhaustive exercise in man. Journal of Applied Physiology 29: 598–602, 1970

    Google Scholar 

  • Katch VL. Kinetics of oxygen uptake and recovery for supramaximal work of short duration. International Zeitschrift für Angewandte Physiologie 31: 197–207, 1973

    CAS  Google Scholar 

  • Katch V. Body weight, leg volume, leg weight and leg density as determiners of short duration work performance on the bicycle ergometer. Medicine and Science in Sports 6: 267–268, 1974

    PubMed  CAS  Google Scholar 

  • Katch VL, Weltman A, Traeger L. All out versus steady-paced cycling strategy for maximal work output of short duration. Research Quarterly 47: 164–168, 1976

    PubMed  CAS  Google Scholar 

  • Katch VL, Weltman A, Martin R, Gray L. Optimal test characteristics for maximal anaerobic work on the bicycle ergometer. Research Quarterly 48: 319–327, 1977

    PubMed  CAS  Google Scholar 

  • Katch VL, Weltman A. Interrelationship between anaerobic power output, anaerobic capacity and aerobic power. Ergonomics 22: 325–332, 1979

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K, Suzuki M, Miyashita M. Anaerobic power output of young obese men: comparison with non obese men and the role of excess fat. European Journal of Applied Physiology 43: 229–234, 1980

    Article  CAS  Google Scholar 

  • Komi PV. Measurement of the force-velocity relationship in human muscle under concentric and eccentric contractions. In Medicine and Sport, Vol. 8, Biomechanics III, pp. 224–229, Karger, Basel, 1973

    Google Scholar 

  • Kowalchuk JM, Heigenhauser GJF, Jones NL. Gas exchange and metabolism during maximal short term constant velocity cycle ergometer exercise. Medicine and Science in Sports and Exercise 16: 180, 1984

    Google Scholar 

  • Kyle CR, Caizzo VJ. A comparison of the effect of external loading upon power output in stair climbing and running up a ramp. European Journal of Applied Physiology 54: 99–103, 1985

    Article  CAS  Google Scholar 

  • Kyle CR, Caiozzo VJ. Experiments in human ergometry as applied to the design of human powered vehicles. International Journal of Sport Biomechanics 2: 6–19, 1986

    Google Scholar 

  • Lakomy HKA. Measurement of work and power output using friction-loaded cycle ergometers. Ergonomics 29: 509–517, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lavoie N, Dallaire J, Brayne S, Barrett D. Anaerobic testing using the Wingate and the Evans-Quinney protocols with and without toe stirrups. Canadian Journal of Applied Sport Sciences 9: 1–5, 1984

    CAS  Google Scholar 

  • Mader A, Heck H, Liesen H, Hollmann W. Simulative Berechnungen der dynamischen Anderungen von Phosphorylierungspotential, Laktatbildung und Laktatverteilung beim Sprint. Deutsche Zeitschrift für Sportmedizin 34: 14–22, 1983

    CAS  Google Scholar 

  • Marechal R, Pirnay F, Crielaard JM, Petit JM. Influence de l’age sur la puissance anaerobie. Primier colloque médical international de gymnastique, Strasbourg, October, 1978, Economica Paris, 1979

    Google Scholar 

  • Margaria R, Aghemo P, Sassi G. Lactic acid production in supramaximal exercise. Pflügers Archiv 326: 152–161, 1971

    Article  PubMed  CAS  Google Scholar 

  • Margaria R, Edwards HT, Dill TB. The possible mechanism of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. American Journal of Physiology 106: 689–715, 1933

    CAS  Google Scholar 

  • Margaria R, Aghemo P, Rovelli E. Measurement of muscular power (anaerobic) in man. Journal of Applied Physiology 21: 1662–1664, 1966

    PubMed  CAS  Google Scholar 

  • Mayers N, Gutin B. Physiological characteristics of elite prepubertal cross country runners. Medicine and Science in Sports 11: 172–176, 1979

    PubMed  CAS  Google Scholar 

  • McCartney N, Heigenhauser GJF, Sargeant A, Jones NL. A constant-velocity ergometer for the study of dynamic muscle function. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 55: 212–217, 1983a

    CAS  Google Scholar 

  • McCartney N, Heigenhauser GJF, Jones NL. Power output and fatigue of human muscle in maximal cycling exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 55: 218–224, 1983b

    CAS  Google Scholar 

  • McCartney N, Heigenhauser GJF, Jones NL. Effects of pH on maximal power output and fatigue during short-term maximal exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 55: 225–229, 1983c

    CAS  Google Scholar 

  • McCartney N, Obminski G, Heigenhauser GJF. Torque-velocity relationship in isokinetic cycling exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 58: 1459–1462, 1985

    CAS  Google Scholar 

  • Maud PJ, Schultz BB. Gender comparisons in anaerobic power and capacity tests. British Journal of Sports Medicine 20: 51–54, 1986

    Article  PubMed  CAS  Google Scholar 

  • Minvielle-Moncla G, Lacouture P. Deux tests de detente verticale (Abalakow et Sargent); étude comparée sur le terrain et au laboratoire. Proceeding of he 3rd meeting of A.C.A.P.S., Beaune, October 1985

    Google Scholar 

  • Nadeau M, Cuerrier JP, Brassard A. The bicycle ergometer for muscle power testing. Canadian Journal of Applied Sport Sciences 8: 41–46, 1983

    CAS  Google Scholar 

  • Nakamura Y, Mutoh Y, Miyashita M. Determination of the peak power output during maximal brief pedalling bouts. Journal of Sport Sciences 3: 181–187, 1985

    Article  CAS  Google Scholar 

  • Offenbacher EL. Physics and the vertical jump. American Journal of Physics 38: 7, 1970

    Article  Google Scholar 

  • Okhuwa T, Kato Y, Katsumata K, Nakao T, Miyamura M. Blood lactate and glycerol after 400m and 3000m runs in sprint and long distance runners. European Journal of Applied Physiology 53: 213–218, 1984

    Article  Google Scholar 

  • Parkhouse WS, McKenzie DC, Hochochka PW, Mommsen TP, Ovalle WK, et al. The relationship between carnosine level, buffering capacity fiber type and anaerobic capacity in athletes. In Knuttgen HG, et al. (Eds) Biochemistry of exercise, pp. 590–594, Human Kinetics, Champaign, 1983

    Google Scholar 

  • Paterson DH, Cunningham DA, Bumstead LA. Recovery of O2 and blood lactic acid: longitudinal analysis in boys aged 11 to 15 years. European Journal of Applied Physiology 55: 93–99, 1986

    Article  CAS  Google Scholar 

  • Patton JF, Murphy MM, Frederick FA. Maximal power outputs during the Wingate anaerobic test. International Journal of Sports Medicine 6: 82–85, 1985

    Article  PubMed  CAS  Google Scholar 

  • Pérès G, Vandewalle H, Monod H. Aspect particulier de la relation charge vitesse lors du pédalage sur cycloergomètre. Journal of Physiology (Paris) 77: 10A, 1981a

    Google Scholar 

  • Pérès G, Vandewalle H, Monod H. Comparaison de trois méthodes de mesure de la puissance maximale anaérobie alactique des membres inférieurs. Congrès National Scientifique de Médecine du Sport, Grenoble, 1981b

    Google Scholar 

  • Pérès G. Surveillance médicale de l’entrainement. In Guillet & Genety (Eds.) Abrégé de médecine du sport, 4th ed., Masson, Paris, 1984

    Google Scholar 

  • Pérès G, Chastang JF, Vandewalle H, Goldberg M, Monod H. Relation force de freinage-pic de vitesse sur ergocycle dans differentes populations. Journal of Physiology (Paris) 80: 4A, 1986

    Google Scholar 

  • Perrine JJ, Edgerton VR. Muscle force-velocity and power-velocity relationships under isokinetic loading. Medicine and Science in Sports 10: 159–166, 1978

    PubMed  CAS  Google Scholar 

  • Pertuzon E, Bouisset S. Maximum velocity of movement and maximum velocity of muscle shortening. In Medicine and sport, Vol. 6, Biomechanics II, pp. 170–173, Karger, Basel, 1971

    Google Scholar 

  • Pertuzon E, Bouisset S. Instantaneous force-velocity relationship in human muscle. In Medicine and sport, Biomechanics III, pp. 230–234, Karger, Basel, 1973

    Google Scholar 

  • Pertuzon E, Lestienne F. Caractères électromyographiques d’un mouvement monoarticulaire exécuté à vitesse maximale. Journal de Physiologie (Paris) 60 (supplement 2) 513, 1968

    Google Scholar 

  • Pirnay F, Crielaard JM. Mesure de la puissance anaerobie alactique. Medecine de Sport 53: 13–16, 1979

    Google Scholar 

  • Ralston HJ, Polissar MJ, Inman VT, Close JA, Feinstein B. Dynamic features of human isolated voluntary muscle in isometric and free contractions. Journal of Applied Physiology 1: 526–533, 1949

    PubMed  CAS  Google Scholar 

  • Raveneau S. Étude comparative de différents tests anaérobies sur ergocycle. Doctoral thesis of Medicine, Faculté de Médecine Paris-Ouest, 1986

    Google Scholar 

  • Robert AD, Morton AR. Total and alactic oxygen debt after supra-maximal work. European Journal of Applied Physiology 38: 281–289, 1978

    Article  Google Scholar 

  • Sahlin K, Alvestrand A, Brandt R, Hultman E. Acid-base balance in blood during exhaustive bicycle exercise and the following recovery period. Acta Physiologica Scandinavica 104: 370–372, 1978

    Article  PubMed  CAS  Google Scholar 

  • Sapega AA, Nicholas JA, Sockolow D, Saraniti A. The nature of torque overshoot in Cybex isokinetic dynamometer. Medicine and Science in Sports and Exercise 14: 368–375, 1982

    PubMed  CAS  Google Scholar 

  • Sargeant AJ, Davies CTM. Forces applied to cranks of a bicycle ergometer during one- and two-leg cycling. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 42: 514–518, 1977

    CAS  Google Scholar 

  • Sargeant AJ, Hoinville E, Young A. Maximum leg force and power output during short-term dynamic exercise. Journal of Applied Physiology 51: 1175–1182, 1981

    PubMed  CAS  Google Scholar 

  • Sargeant AJ, Dolan P, Thorne A. Isokinetic measurement of maximal leg force and anaerobic power output in children. In Ilmarinen & Välimäki (Eds) Children and sports, paediatric work physiology. Springer Verlag, Berlin, 1984a

    Google Scholar 

  • Sargeant AJ, Dolan P, Young A. Velocity for maximal short-term (anaerobic) power output in cycling. International Journal of Sports Medicine 5: 124–125, 1984b

    Article  Google Scholar 

  • Sargent DA. The physical test of a man. American Physical Education Review 26: 188–194, 1921

    Google Scholar 

  • Sargent LW. Some observations on the Sargent test of neuromuscular efficiency. American Physical Education Review 29: 47–56, 1924

    Google Scholar 

  • Sawka MN, Knowlton RG, Miles DS, Critz JB. Post competition blood lactate concentrations in collegiate swimmers. European Journal of Applied Physiology 41: 93–99, 1979

    Article  CAS  Google Scholar 

  • Sawka NS, Tahamont MV, Fitzgerald PI, Miles DS, Knowlton RG. Alactic capacity and power: reliability and interpretation. European Journal of Applied Physiology 45: 109–116, 1980

    Article  CAS  Google Scholar 

  • Schnabel A, Kindermann W. Assessment of anaerobic capacity in runners. European Journal of Applied Physiology 52: 42–46, 1983

    Article  CAS  Google Scholar 

  • Sharp RL, Costill DL, Fink WJ, King DS. Effects of eight weeks of bicycle ergometer sprint training on human muscle buffer capacity. International Journal of Sports Medicine 7: 13–17, 1986

    Article  PubMed  CAS  Google Scholar 

  • Simoneau JA, Lortie G, Boulay MR, Bouchard C. Tests of anaerobic alactacid and lactacid capacities: description and reliability. Canadian Journal of Applied Sport Sciences 8: 266–270, 1983

    CAS  Google Scholar 

  • Sjogaard G. Force-velocity curve for bicycle work. In Asmunssen & Jorgensen (Eds), Biomechanics VI-A, pp. 93–99, University Park Press, Baltimore, 1978

    Google Scholar 

  • Tamayo M, Sucec A, Phillips W, Buono M, Laubach L, Frey M. The Wingate anaerobic power test, peak blood lactate, and maximal oxygen debt in elite volleyball players: a validation study. Medicine and Science in Sports and Exercise 16: 126, 1984

    Google Scholar 

  • Tesch P. Lactate and exhaustion. Acta Physiologica Scandinavica 104: 373–374, 1978

    Article  PubMed  CAS  Google Scholar 

  • Tesch P. Muscle fatigue in man with special reference to lactate accumulation during short term intense exercise. Acta Physiologica Scandinavica (Suppl. 480), 1980

  • Tesch PA, Daniels WL, Sharp DS. Lactate accumulation in muscle and blood during submaximal exercise. Acta Physiologica Scandinavica 114: 441–446, 1982

    Article  PubMed  CAS  Google Scholar 

  • Tesch PA, Wright JE. Recovery from short term intense exercise: its relation to capillary supply and blood lactate concentration. European Journal of Applied Physiology 52: 98–103, 1983

    Article  CAS  Google Scholar 

  • Thomson JM, Garvie KJ. A laboratory method for determination of anaerobic energy expenditure during sprinting. Canadian Journal of Applied Sport Sciences 6: 21–26, 1981

    CAS  Google Scholar 

  • Thorstensonn A, Grimby G, Karlsonn J. Force-velocity relationships and fiber composition in human extensor muscle. Journal of Applied Physiology 40: 12–16, 1976a

    Google Scholar 

  • Thorstensonn A, Karlsson J. Fatiguability and fibre composition of human skeletal muscle. Acta Physiologica Scandinavica 98: 318–322. 1976

    Article  Google Scholar 

  • Vandewalle H, Pérès G, Monod H. Relation force-vitesse lors d’exercises cycliques réalisés avec les membres superieurs. Motrieité Humaine 2: 22–25, 1983

    Google Scholar 

  • Vandewalle H, Pérès G, Monod H. Puissance maximale et capacité de travail pour des exercices de brève durée. Journal of Physiology (Paris) 79: 36A–37A, 1984

    Google Scholar 

  • Vandewalle H, Pérès G, Heller J, Monod H. All out anaerobic capacity test on cycle ergometers. European Journal of Applied Physiology 54: 222–229, 1985a

    Article  CAS  Google Scholar 

  • Vandewalle H, Heller J, Pérès G, Monod H. Effects of crank length on force velocity and maximal power on cyclo-ergometers (young boys and women). Proceedings of the IVth European Congress of Sports Medicine, Prague, 1985b

    Google Scholar 

  • Vandewalle H, Heller J, Pérès G, Monod H. Effets de la longueur des manivelles sur la puissance maximale et la relation forcevitesse sur ergocycle. Journal of Physiology (Paris) 80: 5A–6A, 1985c

    Google Scholar 

  • Vandewalle H, Pérès G, Heller J, Panel J, Monod H. Force-velocity relationship and maximal power on a cycle ergometer. Correlation with a vertical jump. Submitted for publication, 1987a

    Google Scholar 

  • Vandewalle H, Pérès G, Heller J, Monod H. Puissance maximale des membres inferieurs et relation force-vitesse sur ergocycle. Effets du protocole et de l’orientation sportive. 4ème congres scientifique de medecine du sport. Limoges] 1985. Médecine du Sport 60: 152

    Google Scholar 

  • Volkov VM. Recovery processes in sport. Fiscultura i sport, Moscow, 1977

    Google Scholar 

  • Wilkie DR. The relation between force and velocity in human muscle. Journal of Physiology (London) 110: 249–280, 1950

    Google Scholar 

  • Wilkie DR. Man as a source of mechanical power. Ergonomics 3: 1–8, 1960

    Article  Google Scholar 

  • Wilmore JH. Influence of motivation on physical work capacity and performance. Journal of Applied Physiology 24: 459–463, 1968

    PubMed  CAS  Google Scholar 

  • Winter DA, Wells RP, Orr GW. Errors in the use of isokinetic dynamometers. European Journal of Applied Physiology and Occupational Physiology 46: 397–408, 1981

    Article  PubMed  CAS  Google Scholar 

  • Zatzioskii VM, Arouin AS, Selouyanov VN. Biomécanique de l’appareil locomoteur chez Thomme. (In Russian.) Fiscultura i Sport, Moscow, 1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandewalle, H., Péerès, G. & Monod, H. Standard Anaerobic Exercise Tests. Sports Medicine 4, 268–289 (1987). https://doi.org/10.2165/00007256-198704040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198704040-00004

Keywords

Navigation