Skip to main content
Log in

Therapeutic Potential of Vasopressin Receptor Antagonists

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Arginine vasopressin (AVP) is a neuropeptide hormone that plays an important role in circulatory and sodium homeostasis, and regulating serum osmolality. Several clinical conditions have been associated with inappropriately elevated levels of AVP including heart failure, cirrhosis of the liver and the syndrome of inappropriate secretion of antidiuretic hormone. Three receptor subtypes that mediate the actions of AVP have been identified (V1A, V2 and V1b).

Activation of V1A receptors located in vascular smooth muscle cells and the myocardium results in vasoconstriction and increased afterload and hypertrophy. The V2 receptors located primarily in the collecting tubules mediate free water absorption. The V1B receptors are located in the anterior pituitary and mediate adrenocorticotropin hormone release.

The cardiovascular and renal effects of AVP are mediated primarily by V1A and V2 receptors. Antagonism of V1A receptors results in vasodilatation and antagonism of V2 receptors resulting in aquaresis, an electrolyte-sparing water excretion. Several non-peptide AVP antagonists (vasopressin receptor antagonists [VRAs]) also termed ‘vaptans’ have been developed and are vigorously being studied primarily for treating conditions characterised by hyponatraemia and fluid overload.

Conivaptan is a combined V1A/V2-receptor antagonist that induces diuresis as well as haemodynamic improvement. It has been shown in clinical trials to correct euvolaemic and hypervolaemic hyponatraemia, and has been approved by the US FDA for the treatment of euvolaemic hyponatraemia as an intravenous infusion. Tolvaptan, a selective V2-receptor antagonist, has undergone extensive clinical studies in the treatment of hyponatraemia and heart failure. It has been shown to effectively decrease fluid in volume overloaded patients with heart failure and to correct hyponatraemia. A large outcome study (n = 4133 patients) will define its role in the management of heart failure. Lixivaptan and satavaptan (SR-121463) are other selective V2-receptor antagonists being evaluated for the treatment of hyponatraemia.

In addition, a potential role for the vaptans in attenuating polyuria in nephrogenic diabetes insipidus and cyst development in polycystic kidney disease is being explored.

Ongoing clinical trials should further define the scope of the potential therapeutic role of VRAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guyton AC. The body fluids and kidneys. In: Guyton AC, Hall JE, editors. Textbook of medical physiology. Philadelphia (PA): WB Saunders Company, 2006: 291–414

    Google Scholar 

  2. Burrell LM, Risvanis J, Johnston CI, et al. Vasopressin receptor antagonism: a therapeutic option in heart failure and hypertension. Exp Physiol 2000; 85: 259S–65S

    Article  PubMed  CAS  Google Scholar 

  3. Hupf H, Grimm D, Riegger GAJ, et al. Evidence for a vasopressin system in the rat heart. Circ Res 1999; 84: 365–70

    Article  PubMed  CAS  Google Scholar 

  4. Brooks VL, Keil LC, Reid IA. Role of the renin-angiotensin system in the control of vasopressin secretion in conscious dogs. Circ Res 1986; 58: 829–38

    Article  PubMed  CAS  Google Scholar 

  5. Verbalis JG. Vasopressin V2 receptor antagonists. J Mol Endocrinol 2002; 29: 1–9

    Article  PubMed  CAS  Google Scholar 

  6. Tahara A, Tomura Y, Wada K, et al. Effects of YM087, a potent nonpeptide vasopressin antagonist, on vasopressin-induced protein synthesis in neonatal rat cardiomyocyte. Cardiovasc Res 1998; 38: 198–205

    Article  PubMed  CAS  Google Scholar 

  7. Fukuzawa J, Haneda T, Kikuchi K. Arginine vasopressin increases the rate of protein synthesis in isolated perfused adult rat heart via the V1 receptor. Mol Cell Biochem 1999; 195: 93–8

    Article  PubMed  CAS  Google Scholar 

  8. Nakamura Y, Haneda T, Osakie J, et al. Hypertrophic growth of cultured neonatal rat heart cells mediated by vasopressin V, a receptor. Eur J Pharmacol 2000; 39: 39–48

    Article  Google Scholar 

  9. Nielsen S, Kwon TH, Christensen BM, et al. Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol 1999; 10: 647–63

    PubMed  CAS  Google Scholar 

  10. Sonnenburg WK, Smith WL. Regulation of cyclic AMP metabolism in rabbit cortical collecting tubule cells by prostaglandins. J Biol Chem 1988; 263: 6155–60

    PubMed  CAS  Google Scholar 

  11. Bernat A, Hoffmann P, Dumas A, et al. V2 receptor antagonism of DDAVP-induced release of hemostasis factors in conscious dogs. J Pharmacol Exp Ther 1997; 282: 597–602

    PubMed  CAS  Google Scholar 

  12. Lolait SJ, O’Carroll AM, Mahan LC, et al. Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Natl Acad Sci USA 1995; 92: 6783–7

    Article  PubMed  CAS  Google Scholar 

  13. Rouleau J-L, Packer M, Moye L, et al. Prognostic value of neurohumoral activation in patients with an acute myocardial infarction: effect of captopril. J Am Coll Cardiol 1994; 24: 583–91

    Article  PubMed  CAS  Google Scholar 

  14. Francis GS, Benedict C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure: a substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 1990; 82: 1724–9

    Article  PubMed  CAS  Google Scholar 

  15. Goldsmih SR, Francis GS, Cowley AW, et al. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol 1983; 1: 1385–90

    Article  Google Scholar 

  16. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med 2000; 342: 1581–9

    Article  PubMed  CAS  Google Scholar 

  17. Palmer BF, Gates JR, Lader M. Causes and management of hyponatremia. Ann Pharmacother 2003; 37: 1694–702

    Article  PubMed  Google Scholar 

  18. Upadhyay A, Jaber B, Madias N. Incidence and prevalence of hyponatremia. Am J Med 2006; 119: S30–5

    Article  PubMed  CAS  Google Scholar 

  19. Lee DS, Austin PC, Rouleau JL, et al. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA 2003; 40: 1801–7

    Google Scholar 

  20. Barter FC, Schwartz WB. The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med 1967; 42: 790–806

    Article  Google Scholar 

  21. Bichet D, Szatalowicz V, Chaimovitz C, et al. Role of vasopressin in abnormal water excretion in cirrhotic patients. Ann Intern Med 1982; 96: 413–7

    PubMed  CAS  Google Scholar 

  22. Schrier RW, Ecder T. Unifying hypothesis of body fluid volume regulation: implications for cardiac failure and cirrhosis. Mt Sinai J Med 2001; 68: 350–61

    PubMed  CAS  Google Scholar 

  23. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med 1999; 341: 577–85

    Article  PubMed  CAS  Google Scholar 

  24. Domanski M, Tian X, Haigney M, et al. Diuretic use, progressive heart failure, and death in patients in the DIG study. J Cardiac Failure 2006; 12 (5): 327–32

    Article  CAS  Google Scholar 

  25. Domanski M, Norman J, Pitt B, et al. Diuretic use, progressive heart failure and death in patients in the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 2003; 42: 705–8

    Article  PubMed  CAS  Google Scholar 

  26. Cooper HA, Dries DL, Davis CE, et al. Diuretics and risk of arrhythmic death in patients with left ventricular dysfunction. Circulation 1999; 100: 1311–5

    Article  PubMed  CAS  Google Scholar 

  27. Greenberg A, Verbalis JG. Vasopressin receptor antagonists. Kidney Int 2006; 69: 2124–1

    Article  PubMed  CAS  Google Scholar 

  28. Zerbe R, Stropes L, Robertson G. Vasopressin function in the syndrome of inappropriate antidiuresis. Ann Rev Med 1980; 31: 315–27

    Article  PubMed  CAS  Google Scholar 

  29. Fujiwara TM, Bichet DG. Molecular biology of hereditary diabetes insipisus. J Am Soc Nephrol 2005; 16: 2836–46

    Article  PubMed  CAS  Google Scholar 

  30. Bernier V, Morello JP, Zarruk A, et al. Pharmacologic chaperones as a potential treatment for x-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 2006; 17: 232–43

    Article  PubMed  CAS  Google Scholar 

  31. Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system,part 1: receptor physiology. Crit Care 2003; 7 (6): 427–34

    Article  PubMed  Google Scholar 

  32. Dunser MW, Mayr AL, Ulmer H, et al. Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation 2003; 107 (18): 2313–9

    Article  PubMed  Google Scholar 

  33. Lindner KH, Dirks B, Strohmenger HU, et al. Randomized comparison of epinephrine and vasopressin in patients with out-of-hospital ventricular fibrillation. Lancet 1997 Feb 22; 349 (9051): 535–7

    Article  PubMed  CAS  Google Scholar 

  34. Gavras I, Gavras H. Role of vasopressin in hypertensive disorders. In: Laragh JH, Brenner BM, editors. Hypertension: pathophysiology, diagnosis, and management. 2nd ed. New York: Raven Press Ltd, 1995

    Google Scholar 

  35. Ribiero A, Mulinasi R, Gavras I, et al. Sequential elmination of pressor mechanisms in severe hypertention in humans. Hypertension 1986; Suppl. I: 1169-73

  36. Burrell LM, Phillips PA, Stephenson JM, et al. Blood pressure-lowering effect of an orally active vasopressin V1 receptor antagonist in mineralocorticoid hypertension in the rat. Hypertension 1994; 23 (Pt 1): 737–43

    Article  PubMed  CAS  Google Scholar 

  37. Bursztyn M, Breshnahan M, Gavras I, et al. Pressor hormones in elderly hypertensive persons. Racial Differ Hypertens 1990; 15: 188–92

    Google Scholar 

  38. Bakris G, Bursztyn M, Gavras I, et al. Role of vasopressin in essential hypertension: racial differences. J Hypertens 1997; 15: 545–50

    Article  PubMed  CAS  Google Scholar 

  39. Torres VE. Vasopressin antagonists in polycystic kidney disease. Kidney Int 2005; 68: 2405–18

    Article  PubMed  Google Scholar 

  40. Gattone VH, Wang X, Harris PC, et al. Inhibition of renal cystic disease development and progression by vasopressin V2 receptor antagonist. Nat Med 2003; 9: 1323–6

    Article  PubMed  CAS  Google Scholar 

  41. Yamamura Y, Ogawa H, Yamashita H, et al. Characterization of a novel aquaretic agent, OPC-31260, as an orally effective, nonpeptide vasopressin V2 receptor antagonist. Br J Pharmacol 1992; 105: 787–91

    Article  PubMed  CAS  Google Scholar 

  42. Lee CR, Watkins ML, Patterson JH, et al. Vasopressin: a new target for the treatment of heart failure. Am Heart J2003; 146: 9–181

    Article  PubMed  CAS  Google Scholar 

  43. Clair MJ, King MK, Goldberg A, et al. Selective vasopressin, angiotensin II, or dual receptor blockade with developing congestive heart failure. J Pharmacol Exp Ther 2000; 293: 852–60

    PubMed  CAS  Google Scholar 

  44. Share L. Interrelations between vasopressin and the rennin-angiotensin system. Fed Proc 1979; 38: 2267–71

    PubMed  CAS  Google Scholar 

  45. Cowley AW Jr, Lieard JF. Vasopressin and arterial pressure regulation. Hypertension 1988; 11: 125–32

    Google Scholar 

  46. Tabrizchi R, King K, Pang C. Vascular role of vasopressin in the presence and absence of influence from angiotensin II or alpha adrenergic system. Can J Physiol Pharmacol 1986; 64: 1143–8

    Article  PubMed  CAS  Google Scholar 

  47. Gavras H, Ribeiro AB, Kohlmann O, et al. Effects of a specific inhibitor of the vascular action of vasopressin in humans. Hypertension 1984; 6 Suppl. II: 56–60

    Google Scholar 

  48. Burrell LM, Phillips PA, Rolls KA, et al. Vascular responses to vasopressin antagonists in man and rat. Clin Sci 1994; 87: 389–95

    PubMed  CAS  Google Scholar 

  49. Hirano T, Yamamura Y, Nakamura S, et al. Effects of the V2-receptor and antagonist OPC-41061 and the loop diuretic furosemide alone and in combination in rats. J Pharmacol Exp Ther 2000; 292: 288–94

    PubMed  CAS  Google Scholar 

  50. Gheorghiade M, Niazi I, Ouyang J, et al. Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation 2003; 107: 2690–6

    Article  PubMed  CAS  Google Scholar 

  51. Gheorghiade M, Gattis WA, O’Connor CM, et al., on behalf of the Acute and Chronic Therapeutic Impact of a Vasopressin Antagonist in Congestive HF (ACTIV in CHF) Investigators. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening HF: a randomized controlled trial. JAMA 2004; 291 (16): 1963–71

    Article  PubMed  CAS  Google Scholar 

  52. Udelson JE, Orlandi C, O’Brien T, et al. Vasopressin receptor blockade in patients with congestive heart failure: results from a placebo-controlled, randomized study comparing the effects of tolvaptan, furosemide, and their combination [abstract]. J Am Coll Cardiol 2002; 39: 156A

    Article  Google Scholar 

  53. Udelson JE, the METEOR Trial Investigators. Multicenter, randomized double-blind, placebo-controlled, efficacy study on the effects of oral tolvaptan on LV dilatation and function in patients with HF and LV systolic dysfunction. The 9th Annual Scientific Meeting of Heart Failure Society of America; 2005 Sep 18–21; Boca Raton (FL)

  54. Gheorghiade M, Orlanid C, Burnett J, et al., on behalf of the EVERST Study Investigators. Rationale and design of the multicenter, randomized double-blind, placebo-controlled study to evaluate the efficacy of Vasopressin antagonism in Heart Failure: Outcome Study with Tolvaptan (EVEREST). J Card Fail 2005; 11: 260–9

    Article  PubMed  CAS  Google Scholar 

  55. Thibonnier M. Vasopressin receptor antagonists in heart failure. Curr Opin Pharmacol 2003; 3: 683–7

    Article  PubMed  CAS  Google Scholar 

  56. Abraham WT, Shamshiraz AA, McFann K, et al. Aquaretic effect of lixivaptan, an oral, non-peptide, selective V2 receptor vasopressin antaonist, in New York Heart Association Functional Class II and III chronic heart failure patients. J Am Coll Cardiol 2006; 47: 1615–21

    Article  PubMed  CAS  Google Scholar 

  57. Wong F, Blei AT, Blendis LM, et al. A vasopressin receptor antagonist (VPA-985) improves serum sodium concentration in patients with hyponatremia: a multicenter, randomized, plavebo-controlled trial. Hepatology 2003; 37: 182–91

    Article  PubMed  CAS  Google Scholar 

  58. Gerbes AL, Gulberg V, Gines P, et al., on behalf of the VPA Study Group. Therapy of hyponatremia in cirrhosis with a vasopressin receptor antagonist: a randomized double-blind multicenter trial. Gastroenterology 2003; 124: 933–9

    Article  PubMed  CAS  Google Scholar 

  59. Soupart A, Gross P, Legros JJ, et al. Successful long-term treatment of hyponatremia in syndrome of inappropriate antidiuretic hormone secretion with SR 121 463 B, an orally active, nonpeptide, vasopressin V-2 receptor antagonist [abstract no. SU-PO140]. J Am Soc Nephrol 2004; 15: 563A

    Google Scholar 

  60. Yatsu T, Tomura Y, Tahara A, et al. Pharmacological profile of YM087, a novel nonpeptide dual vasopressin V1a and V2 receptor antagonist, in dogs. Eur J Pharmacol 1997; 321: 225–30

    Article  PubMed  CAS  Google Scholar 

  61. Tahara A, Tomura Y, Wada K, et al. Pharmacological profile of YM087, a novel potent vasopressin V1a and V2 receptor antagonist, in vitro and in vivo. J Pharmacol Exp Ther 1997; 282: 301–8

    PubMed  CAS  Google Scholar 

  62. Yatsu T, Tomura Y, Tahara A, et al. Cardiovascular and renal effects of conivaptan hydrochloride (YM087), a vasopressin V1a and V2 receptor antagonist, in dogs with pacing-induced congestive heart failure. Eur J Pharmacol 1999; 376: 239–46

    Article  PubMed  CAS  Google Scholar 

  63. Verbalis JG, Bisaha JG, Smith N. Novel vasopressin V-1A and V2 antagonist (conivaptan) increases serum sodium concentration and effective water clearance in patients with hyponatremia. Circulation 2004; 110 (17I): 723

    Google Scholar 

  64. Ghali J, Koren MJ, Taylor JR, et al., on behalf of the Conivaptan Study Group. Efficacy and safety of oral conivaptan: a V1A/V2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic of hypervolemic hyponatremia. J Clin Endocrinol Metab 2006; 91: 2145–52

    Article  PubMed  CAS  Google Scholar 

  65. Russell S, Selaru P, Pyne DA, et al. Rationale for use of an exercise end point and design for the ADVANCE (A Dose evaluation of a Vasopressin Antagonist in CHF patients undergoing Exercise) trial. Am Heart J 2003; 145: 179–86

    Article  PubMed  CAS  Google Scholar 

  66. Udelson JE, Smith WB, Hendrix GH, et al. Acute hemodynamic effects of conivaptan, a dual V1A and V2 vasopressin receptor antagonist, in patients with advanced heart failure. Circulation 2001; 104: 2417–23

    Article  PubMed  CAS  Google Scholar 

  67. Ghali JK, Verbalis JG, Gross P, et al. Conivaptan, a novel arginine vasopressin antagonist, increased serum sodium concentration in patients with heart failure and euvolemic or hypervolemic hyponatremia [abstract]. J Am Coll Cardiol 2006; 47: 62A

    Google Scholar 

Download references

Acknowledgements

F. Ali, M. Guglin and P. Vaitkevicius have nothing to disclose. J.K. Ghali has received research grants from Astellas Pharma US, Inc., Deerfield (IL) and Otsuka Maryland Research Institute, Rockville (MD). We would like to thank Saiyeda S. Ali for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal K. Ghali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, F., Guglin, M., Vaitkevicius, P. et al. Therapeutic Potential of Vasopressin Receptor Antagonists. Drugs 67, 847–858 (2007). https://doi.org/10.2165/00003495-200767060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200767060-00002

Keywords

Navigation