Skip to main content
Log in

Oral Antidiabetic Agents

Current Role in Type 2 Diabetes Mellitus

Drugs Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus is a progressive and complex disorder that is difficult to treat effectively in the long term. The majority of patients are overweight or obese at diagnosis and will be unable to achieve or sustain near normoglycaemia without oral antidiabetic agents; a sizeable proportion of patients will eventually require insulin therapy to maintain long-term glycaemic control, either as monotherapy or in conjunction with oral antidiabetic therapy. The frequent need for escalating therapy is held to reflect progressive loss of islet β-cell function, usually in the presence of obesity-related insulin resistance.

Today’s clinicians are presented with an extensive range of oral antidiabetic drugs for type 2 diabetes. The main classes are heterogeneous in their modes of action, safety profiles and tolerability. These main classes include agents that stimulate insulin secretion (sulphonylureas and rapid-acting secretagogues), reduce hepatic glucose production (biguanides), delay digestion and absorption of intestinal carbohydrate (α-glucosidase inhibitors) or improve insulin action (thiazolidinediones).

The UKPDS (United Kingdom Prospective Diabetes Study) demonstrated the benefits of intensified glycaemic control on microvascular complications in newly diagnosed patients with type 2 diabetes. However, the picture was less clearcut with regard to macrovascular disease, with neither sulphonylureas nor insulin significantly reducing cardiovascular events. The impact of oral antidiabetic agents on atherosclerosis — beyond expected effects on glycaemic control — is an increasingly important consideration. In the UKPDS, overweight and obese patients randomised to initial monotherapy with metformin experienced significant reductions in myocardial infarction and diabetes-related deaths. Metformin does not promote weight gain and has beneficial effects on several cardiovascular risk factors. Accordingly, metformin is widely regarded as the drug of choice for most patients with type 2 diabetes. Concern about cardiovascular safety of sulphonylureas has largely dissipated with generally reassuring results from clinical trials, including the UKPDS. Encouragingly, the recent Steno-2 Study showed that intensive target-driven, multifactorial approach to management, based around a sulphonylurea, reduced the risk of both micro- and macrovascular complications in high-risk patients. Theoretical advantages of selectively targeting postprandial hyperglycaemia require confirmation in clinical trials of drugs with preferential effects on this facet of hyperglycaemia are currently in progress. The insulin-sensitising thiazolidinedione class of antidiabetic agents has potentially advantageous effects on multiple components of the metabolic syndrome; the results of clinical trials with cardiovascular endpoints are awaited.

The selection of initial monotherapy is based on a clinical and biochemical assessment of the patient, safety considerations being paramount. In some circumstances, for example pregnancy or severe hepatic or renal impairment, insulin may be the treatment of choice when nonpharmacological measures prove inadequate. Insulin is also required for metabolic decompensation, that is, incipient or actual diabetic ketoacidosis, or non-ketotic hyperosmolar hyperglycaemia. Certain comorbidities, for example presentation with myocardial infarction during other acute intercurrent illness, may make insulin the best option.

Oral antidiabetic agents should be initiated at a low dose and titrated up according to glycaemic response, as judged by measurement of glycosylated haemoglobin (HbA1c) concentration, supplemented in some patients by self monitoring of capillary blood glucose. The average glucose-lowering effect of the major classes of oral antidiabetic agents is broadly similar (averaging a 1–2% reduction in HbA1c), α-glucosidase inhibitors being rather less effective. Tailoring the treatment to the individual patient is an important principle. Doses are gradually titrated up according to response. However, the maximal glucose-lowering action for sulphonylureas is usually attained at appreciably lower doses (approximately 50%) than the manufacturers’ recommended daily maximum. Combinations of certain agents, for example a secretagogue plus a biguanide or a thiazolidinedione, are logical and widely used, and combination preparations are now available in some countries. While the benefits of metformin added to a sulphonylurea were initially less favourable in the UKPDS, longer-term data have allayed concern. When considering long-term therapy, issues such as tolerability and convenience are important additional considerations.

Neither sulphonylureas nor biguanides are able to appreciably alter the rate of progression of hyperglycaemia in patients with type 2 diabetes. Preliminary data suggesting that thiazolidinediones may provide better long-term glycaemic stability are currently being tested in clinical trials; current evidence, while encouraging,is not conclusive.

Delayed progression from glucose intolerance to type 2 diabetes in high-risk individuals with glucose intolerance has been demonstrated with troglitazone, metformin and acarbose. However, intensive lifestyle intervention can be more effective than drug therapy, at least in the setting of interventional clinical trials. No antidiabetic drugs are presently licensed for use in prediabetic individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1
Fig. 2
Table III
Table IV
Fig. 3
Table V
Fig. 4
Table VI
Fig. 5
Table VII
Table VIII

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–53

    Article  Google Scholar 

  2. European Diabetes Policy Group. A desktop guide to type 2 diabetes mellitus. Diabetic Med 1999; 16: 716–30

    Article  Google Scholar 

  3. Tuomilheto J. Controlling glucose and blood pressure in type 2 diabetes. BMJ 2000; 321: 394–6

    Article  Google Scholar 

  4. Krentz AJ, Bailey CJ. Type 2 diabetes in practice. London: Royal Society of Medicine Press, 2001

    Google Scholar 

  5. Adler AI. Cardiovascular risk reduction in diabetes: under-emphasized and overdue: messages from major trials. Clin Med 2001; 1: 472–7

    PubMed  CAS  Google Scholar 

  6. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology and management. JAMA 2002; 287: 2570–81

    Article  PubMed  CAS  Google Scholar 

  7. Gray A, Clarke P, Farmer A, et al. Implementing intensive control of blood glucose concentration and blood pressure in type 2 diabetes in England: cost analysis. United Kingdom Prospective Diabetes Study (UKPDS) Group. BMJ 2002; 325: 860–3

    Google Scholar 

  8. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003; 348: 383–93

    Article  PubMed  Google Scholar 

  9. Turner RC, Cull CA, Frighi V, et al. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirements for multiple therapies. JAMA 1999; 281: 2005–12

    Article  PubMed  CAS  Google Scholar 

  10. Evans AJ, Krentz AJ. Benefits and risks of transfer from oral antidiabetic agents to insulin in type 2 diabetes. In: Krentz AJ, editor. Drug treatment of type 2 diabetes. Auckland: Adis Books, 2000: 85–101

    Google Scholar 

  11. Seltzer HS. A summary of criticisms of the findings and conclusions of the University Group Diabetes Program. Diabetes 1972; 21: 976–9

    PubMed  CAS  Google Scholar 

  12. Krentz AJ. Sulfonylureas in the prevention of vascular complications: from UKPDS to the ADVANCE study. Proceedings of the VIIIth European symposium on metabolism. Amsterdam: Elsevier Science International Congress Series 1253; 2003: 261–77

    Google Scholar 

  13. Evans AJ, Krentz AJ. Glimepiride: a new sulphonylurea. Prescriber 1999; 10: 51–8

    Google Scholar 

  14. Ashcroft FM, Gribble FM. ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia 1999; 42: 903–19

    Article  PubMed  CAS  Google Scholar 

  15. Gribble FM, Reimann F. Pharmacological modulation of KATP channels. Biochem Soc Trans 2002; 30: 333–9

    Article  PubMed  CAS  Google Scholar 

  16. Rorsman P, Renstrom E. Insulin granule dynamics in pancreatic beta cells. Diabetologica 2003; 46: 1029–45

    Article  CAS  Google Scholar 

  17. Groop LC. Sulfonylureas in NIDDM. Diabetes Care 1992; 15: 1737–54

    Google Scholar 

  18. Rendell M. The role of sulfonylureas in the management of type 2 diabetes. Drugs 2004; 64(12): 1339–58

    Article  PubMed  CAS  Google Scholar 

  19. Bailey CJ, Day C. Antidiabetic drugs. Br J Cardiol 2003; 10: 128–36

    Google Scholar 

  20. Yki-Järvinen H. Combination therapies with insulin in type 2 diabetes. Diabetes Care 2001; 24: 758–67

    Article  PubMed  Google Scholar 

  21. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999; 131: 281–303

    Google Scholar 

  22. Lebovitz HE. Insulin secretagogues: old and new. Diabetes Revs 1999; 7: 139–53

    Google Scholar 

  23. Krentz AJ, Ferner RE, Bailey CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf 1994; 11: 223–41

    Article  PubMed  CAS  Google Scholar 

  24. Krentz AJ, Boyle PJ, Justice K, et al. Successful treatment of severe refractory sulfonylurea-induced hypoglycemia with octreotide. Diabetes Care 1993; 16: 184–6

    Article  PubMed  CAS  Google Scholar 

  25. Wilson SH, Kennedy FP, Garratt KN. Optimisation of the management of patients with coronary heart disease and type 2 diabetes mellitus. Drugs Aging 2001; 18: 325–33

    Article  PubMed  CAS  Google Scholar 

  26. Schernthaner G, Grimaldi A, Di Mario U, et al. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest 2004; 34: 535–42

    Article  PubMed  CAS  Google Scholar 

  27. Landgraf R. Meglitinide analogues in the treatment of type 2 diabetes mellitus. Drugs Aging 2000; 17(5): 411–25

    Article  PubMed  CAS  Google Scholar 

  28. Dornhorst A. Insulotropic meglitinide analogues. Lancet 2001; 358: 1709–15

    Article  PubMed  CAS  Google Scholar 

  29. Davies M. Nateglinide: better post-prandial glucose control. Prescriber 2002; 13: 17–27

    Google Scholar 

  30. Qiao Q, Tuomilehto J, Borch-Johnsen K. Post-challenge hyperglycaemia is associated with premature death and macrovascular complications. Diabetologia 2002; 46 Suppl. 1: M17–21

    PubMed  Google Scholar 

  31. Lebovitz HE. α-Glucosidase inhibitors as agents in the treatment of diabetes. Diabetes Revs 1998; 6: 132–45

    Google Scholar 

  32. Chiasson JL, Josse RG, Gomis R, et al. Acarbose for the prevention of diabetes mellitus: the STOP-NIDDM randomised trial. STOP-NIDDM Trial Research Group. Lancet 2002; 359: 2072–7

    CAS  Google Scholar 

  33. Holman RR, Cull CA, Turner RC. A randomised double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (UK Prospective Diabetes Study 44). Diabetes Care 1999; 22: 960–4

    Article  PubMed  CAS  Google Scholar 

  34. Chiasson J-L, Josse RG, Gomis R, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. The STOP-NIDDM Trial Research Group. JAMA 2003; 290: 486–94

    CAS  Google Scholar 

  35. Scheen A. Is there a role for alpha-glucosidase inhibitors in the prevention of type 2 diabetes mellitus? Drugs 2003; 63(10): 933–51

    Article  PubMed  CAS  Google Scholar 

  36. Reaven GM. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595–607

    Article  PubMed  CAS  Google Scholar 

  37. Krentz AJ. Insulin resistance. Oxford: Blackwell Science, 2002

    Book  Google Scholar 

  38. Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest 2000; 106: 453–8

    Article  PubMed  CAS  Google Scholar 

  39. Campbell IW. Antidiabetic drugs past and future: will improving insulin resistance benefit cardiovascular risk in type 2 diabetes mellitus? Drugs 2000; 60(5): 1017–28

    Article  PubMed  CAS  Google Scholar 

  40. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996; 334: 574–9

    Article  PubMed  CAS  Google Scholar 

  41. Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann Intern Med 2002; 137: 25–33

    PubMed  CAS  Google Scholar 

  42. Cusi K, DeFronzo RA. Metformin: a review of its metabolic effects. Diabetes Rev 1998; 6: 89–131

    Google Scholar 

  43. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in the mechanism of action of metformin. J Clin Invest 2001; 108: 1167–74

    PubMed  CAS  Google Scholar 

  44. Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 1999; 277: E1–E10

    PubMed  CAS  Google Scholar 

  45. Lord JM, Flight IHK, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ 2003; 327: 951–5

    Article  PubMed  CAS  Google Scholar 

  46. Howlett HCS, Bailey CJ. A risk-benefit assessment of metformin in type 2 diabetes mellitus. In: Krentz AJ, editor. Drug treatment of type 2 diabetes. Auckland: Adis Books, 2000: 61–76

    Google Scholar 

  47. UK Prospective Diabetes Study Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854–65

    Article  Google Scholar 

  48. The Oxford Centre for Diabetes, Endocrinology and Metabolism: Diabetes Trials Unit. UK Prospective Diabetes Study [online]. Available from URL: http://www.dtu.ox.ac.uk/ukpds/index.html [Accessed 2004 Nov 23]

  49. Hermann LS, Lindberg G, Lindblad U, et al. Efficacy, effectiveness and safety of sulphonylurea-metformin combination therapy in patients with type 2 diabetes. Diabetes Obes Metab 2002; 4: 296–304

    Article  PubMed  CAS  Google Scholar 

  50. Johnson JA, Majumdar SR, Simpson SH, et al. Decreased mortality associated with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care 2002; 25: 2244–8

    Article  PubMed  CAS  Google Scholar 

  51. Diabetes Prevention Program Research Group. Reduction of the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393–403

    Article  Google Scholar 

  52. Sulkin T, Bosman D, Krentz AJ. Contraindications to metformin therapy in patients with NIDDM. Diabetes Care 1997; 20: 925–8

    Article  PubMed  CAS  Google Scholar 

  53. Holt HB, Krentz AJ. Metabolic emergencies in type 2 diabetes. In: Goldstein B, Müller-Wieland D, editors. Textbook of type 2 diabetes. London: Martin Dunitz, 2003: 183–98

    Google Scholar 

  54. Lalau J-D, Race J-M. Metformin and lactic acidosis in diabetic humans. Diabetes Obes Metab 2000; 2: 131–7

    Article  PubMed  CAS  Google Scholar 

  55. Day C. Thiazolidinediones: a new class of antidiabetic drugs. Diabetic Med 1999; 16: 1–14

    Article  Google Scholar 

  56. Krentz AJ, Bailey CJ, Melander A. Thiazolidinediones for type 2 diabetes. BMJ 2000; 321: 252–3

    Article  PubMed  CAS  Google Scholar 

  57. Rosen ED, Spiegelman BM. PPAR-γ: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 2001; 276: 37731–4

    Article  PubMed  CAS  Google Scholar 

  58. Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia 2003; 46: 1594–1603

    Article  PubMed  CAS  Google Scholar 

  59. Baldwin SJ, Clarke SE, Chenery RJ. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone. Br J Clin Pharmacol 1999; 48: 424–32

    Article  PubMed  CAS  Google Scholar 

  60. Bailey CJ, Day C, Krentz AJ. Nice timing for glitazones. Br J Diabetes Vasc Dis 2003; 3: 366–7

    Article  Google Scholar 

  61. Buch HN, Baskar V, Barton DM, et al. Combination of insulin and thiazolidinedione therapy in massively obese patients with type 2 diabetes. Diabetic Med 2002; 19: 572–4

    Article  PubMed  CAS  Google Scholar 

  62. Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and the American Diabetes Association. Circulation 2003; 108: 2941–8

    Article  PubMed  Google Scholar 

  63. Parulkar AA, Pendergrass ML, Granda-Ayala R, et al. Nonhypoglycemic effects of thiazolidinediones. Ann Intern Med 2001; 134: 61–71

    PubMed  CAS  Google Scholar 

  64. Yki-Järvinen H. Thiazolidinedions. N Engl J Med 2004; 351: 1106–18

    Article  PubMed  Google Scholar 

  65. Marten FMAC, Visseren FLJ, Lemay J, et al. Metabolic and additional vascular effects of thiazolidinediones. Drugs 2002; 62(10): 1463–80

    Article  Google Scholar 

  66. Buchanan TA, Xiang AH, Peters RK, et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes 2002; 51: 2796–803

    Article  PubMed  CAS  Google Scholar 

  67. Bell DSH. B-cell rejuvenation with thiazolidinediones. Am J Med 2003; 115(8A): 20–23S

    Article  Google Scholar 

  68. Roberts AW, Thomas A, Rees A, et al. Peroxisome proliferator activated receptor-γ agonists in atherosclerosis: current evidence and future directions. Curr Opin Lipidol 2003; 14: 567–73

    Article  PubMed  CAS  Google Scholar 

  69. Schoonjans K, Auwerx J. Thiazolidinediones: an update. Lancet 2000; 355: 1008–10

    Article  PubMed  CAS  Google Scholar 

  70. Inzucchi SE. Oral antihyperglycemic therapy for type 2 diabetes. JAMA 2002; 287: 360–72

    Article  PubMed  CAS  Google Scholar 

  71. Kendall H. Trends in prescribing of drugs used to treat diabetes. Prescriber 2003; 14(24): 38–9

    Google Scholar 

  72. Cuthbertson D, Leese G. Managing type 2 diabetes: oral antidiabetic drugs. Prescriber 2003; 14(13): 47–53

    Google Scholar 

  73. Bell DSH. Type 2 diabetes mellitus: what is the optimal treatment regimen? Am J Med 2004; 116(5A): 23S–9S

    Article  PubMed  Google Scholar 

  74. Kaufman FR. Type 2 diabetes mellitus in children and youth: a new epidemic. J Pediatr Endocrinol Metab 2002; 15 Suppl. 2: 737–44

    PubMed  Google Scholar 

  75. Huizar JF, Gonzalez LA, Alderman J, et al. Sulfonylureas attenuate electrocardiographic ST-segment elevation during a myocardial infarction. J Am Coll Cardiol 2003; 42: 1017–21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Krentz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krentz, A.J., Bailey, C.J. Oral Antidiabetic Agents. Drugs 65, 385–411 (2005). https://doi.org/10.2165/00003495-200565030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565030-00005

Keywords

Navigation