Skip to main content
Log in

Guillain-Barré Syndrome

Epidemiology, Pathophysiology and Management

  • Therapy In Practice
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Guillain-Barré syndrome (GBS) is clinically defined as an acute peripheral neuropathy causing limb weakness that progresses over a time period of days or, at the most, up to 4 weeks. GBS occurs throughout the world with a median annual incidence of 1.3 cases per population of 100 000, with men being more frequently affected than women. GBS is considered to be an autoimmune disease triggered by a preceding bacterial or viral infection. Campylobacter jejuni, cytomegalovirus, Epstein-Barr virus and Mycoplasma pneumoniae are commonly identified antecedent pathogens.

In the acute motor axonal neuropathy (AMAN) form of GBS, the infecting organisms probably share homologous epitopes to a component of the peripheral nerves (molecular mimicry) and, therefore, the immune responses cross-react with the nerves causing axonal degeneration; the target molecules in AMAN are likely to be gangliosides GM1, GM1b, GD1a and Ga1NAc-GD1a expressed on the motor axolemma. In the acute inflammatory demyelinating polyneuropathy (AIDP) form, immune system reactions against target epitopes in Schwann cells or myelin result in demyelination; however, the exact target molecules in the case of AIDP have not yet been identified. AIDP is by far the most common form of GBS in Europe and North America, whereas AMAN occurs more frequently in east Asia (China and Japan).

The prognosis of GBS is generally favourable, but it is a serious disease with a mortality of approximately 10% and approximately 20% of patients are left with severe disability. Treatment of GBS is subdivided into: (i) the management of severely paralysed patients with intensive care and ventilatory support; and (ii) specific immunomodulating treatments that shorten the progressive course of GBS, presumably by limiting nerve damage. High-dose intravenous immunoglobulin (IVIg) therapy and plasma exchange aid more rapid resolution of the disease. The predominant mechanisms by which IVIg therapy exerts its action appear to be a combined effect of complement inactivation, neutralisation of idiotypic antibodies, cytokine inhibition and saturation of Fc receptors on macrophages. Corticosteroids alone do not alter the outcome of GBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Olive JM, Castillo C, Castro RG, et al. Epidemiologic study of Guillain-Barré syndrome in children <15 years of age in Latin America. J Infect Dis 1997; 175 Suppl. 1: S160–4

    Article  PubMed  Google Scholar 

  2. Hahn AF. Guillain-Barré syndrome. Lancet 1998; 352(9128): 635–41

    Article  PubMed  CAS  Google Scholar 

  3. Asbury AK, Arnarson BG, Adams RD. The inflammatory lesion in idiopathic polyneuritis: its role in pathogenesis. Medicine 1969; 48(3): 173–215

    Article  PubMed  CAS  Google Scholar 

  4. Ropper AH. Diseases of spinal cord, peripheral nerve, and muscle. In: Victor M, Ropper AH, editors. Principle of neurology. New York: McGraw-Hill, 2001: 1380–7

    Google Scholar 

  5. Rees JH, Thompson RD, Smeeton NC, et al. Epidemiological study of Guillain-Barré syndrome in south east England. J Neurol Neurosurg Psychiatry 1998; 64(1): 74–7

    Article  PubMed  CAS  Google Scholar 

  6. Hughes RA, Rees JH. Clinical and epidemiologic features of Guillain-Barré syndrome. J Infect Dis 1997; 176 Suppl. 2: S92–8

    Article  PubMed  Google Scholar 

  7. Mori M, Kuwabara S, Fukutake T, et al. Clinical features and prognosis of Miller Fisher syndrome. Neurology 2001; 56(8): 1104–6

    Article  PubMed  CAS  Google Scholar 

  8. Nachamkin I. Epidemiology of Campylobacter jejuni infections in the United States and other industrial nations. In: Tauxe RV, Nachamkin I, Blaser MJ, et al., editors. Campyiobacter jejuni: current status and future trends. Washington, DC: American Society for Microbiology, 1992: 9–19

    Google Scholar 

  9. Sheikh KA, Nachamkin I, Ho TW, et al. Campyiobacter jejuni lipopolysaccharides in Guillain-Barré syndrome: molecular mimicry and host susceptibility. Neurology 1998; 51(2): 371–8

    Article  PubMed  CAS  Google Scholar 

  10. Feasby TE, Hughes RAC. Campyiobacter jejuni, anti-ganglioside antibodies, and Guillain-Barré syndrome. Neurology 1998; 51(2): 340–2

    Article  PubMed  CAS  Google Scholar 

  11. Yuki N, Sato S, Fujimoto S, et al. Serotype of Campyiobacter jejuni, HLA, and the Guillain-Barré syndrome. Muscle Nerve 1992; 15(8): 968–9

    Article  PubMed  CAS  Google Scholar 

  12. Ma JJ, Nishimura M, Mine H, et al. HLA and T-cell receptor gene polymorphisms in Guillain-Barré syndrome. Neurology 1998; 51(2): 379–84

    Article  PubMed  CAS  Google Scholar 

  13. Hadden RD, Cornblath DR, Hughes RA, et al. Electrophysiological classification of Guillain-Barré syndrome: clinical associations and outcome: Plasma Exchange/Sandglobulin Guillain Barré Syndrome Trial Group. Ann Neurol 1998; 44(5): 780–8

    Article  PubMed  CAS  Google Scholar 

  14. Feasby TE, Gilbert JJ, Brown WF, et al. An acute axonal form of Guillain-Barré polyneuropathy. Brain 1986; 109 (Pt 6): 1115–26

    Article  PubMed  Google Scholar 

  15. Griffin JW, Li CY, Ho TW, et al. Guillain-Barré syndrome in northern China: the spectrum of neuropathological changes in clinically defined cases. Brain 1995; 118 (Pt 3): 577–95

    Article  PubMed  Google Scholar 

  16. Griffin JW, Li CY, Macko C, et al. Early nodal changes in the acute motor axonal neuropathy pattern of Guillain-Barré syndrome. J Neurocytol 1996; 25(1): 33–51

    Article  PubMed  CAS  Google Scholar 

  17. Prineas JW. Acute idiopathic polyneuritis: an electron microscope study. Lab Invest 1972; 26(2): 133–47

    PubMed  CAS  Google Scholar 

  18. Prineas JW. Pathology of the Guillain-Barré syndrome. Ann Neurol 1981; 9 Suppl.: 6–19

    Article  PubMed  Google Scholar 

  19. Ho TW, Mishu B, Li CY, et al. Guillain-Barré syndrome in northern China: relationship to Campyiobacter jejuni infection and anti-glycolipid antibodies. Brain 1995; 118 (Pt 3): 597–605

    Article  PubMed  Google Scholar 

  20. McKhann GM, Cornblath DR, Ho TW, et al. Clinical and electrophysiological aspects of acute paralytic disease of children and young adults in northern China. Lancet 1991; 338(8767): 593–7

    Article  PubMed  CAS  Google Scholar 

  21. McKhann GM, Cornblath DR, Griffin JW, et al. Acute motor axonal neuropathy: a frequent cause of acute flaccid paralysis in China. Ann Neurol 1993; 33(4): 333–42

    Article  PubMed  CAS  Google Scholar 

  22. Kuwabara S, Yuki N, Koga M, et al. IgG anti-GM1 antibody is associated with reversible conduction failure and axonal degeneration in Guillain-Barré syndrome. Ann Neurol 1998; 44(12): 202–8

    Article  PubMed  CAS  Google Scholar 

  23. Ogawara K, Kuwabara S, Mori M, et al. Axonal Guillain-Barré syndrome: relation to anti-ganglioside antibodies and Campylobacter jejuni infection in Japan. Ann Neurol 2000; 48(4): 624–31

    Article  PubMed  CAS  Google Scholar 

  24. Griffin JW, Li CY, Ho TW, et al. Pathology of the motorsensory axonal Guillain-Barré syndrome. Ann Neurol 1996; 39(1): 17–28

    Article  PubMed  CAS  Google Scholar 

  25. Fisher CM. An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia, and areflexia). N Engl J Med 1956; 225: 57–75

    Article  Google Scholar 

  26. Yuki N, Taki T, Inagaki F, et al. A bacterium lipopolysaccharide that elicits Guillain-Barré syndrome has a GM1 ganglioside-like structure. J Exp Med 1993; 178(5): 1771–5

    Article  PubMed  CAS  Google Scholar 

  27. Winer JB, Hughes RA, Anderson MJ, et al. A prospective study of acute idiopathic neuropathy. II: antecedent events. J Neurol Neurosurg Psychiatry 1988; 51(5): 613–8

    Article  CAS  Google Scholar 

  28. Jacobs BC, Rothbarth PH, van der Meche FG, et al. The spectrum of antecedent infections in Guillain-Barré syndrome: a case control study. Neurology 1998; 51(4): 1110–5

    Article  PubMed  CAS  Google Scholar 

  29. Chiba A, Kusunoki S, Obata H, et al. Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain-Barré syndrome: clinical and immunohistochemical studies. Neurology 1993; 43(10): 1991–7

    Article  Google Scholar 

  30. Jacobs BC, Endtz HP, van der Meche FG, et al. Serum anti-GQ1b antibodies recognize surface epitopes on Campylobacter jejuni from patients with Miller Fisher syndrome. Ann Neurol 1995; 37: 260–5

    Article  PubMed  CAS  Google Scholar 

  31. Kuroki S, Saida T, Nukina M, et al. Campylobacter jejuni strains from patients with Guillain-Barré syndrome belong mostly to Penner serogroup 19 and contain beta-N-acetylglucosamine residues. Ann Neurol 1993; 33(3): 243–7

    Article  PubMed  CAS  Google Scholar 

  32. Rees JH, Vaughan RW, Kondeatis E, et al. HLA-class II alleles in Guillain-Barré syndrome and Miller Fisher syndrome and their association with preceding Campylobacter jejuni infection. J Neuroimmunol 1995; 62(1): 53–7

    Article  PubMed  CAS  Google Scholar 

  33. Hadden RDM, Karch H, Hartung HP, et al. Preceding infections, immune factors, and outcome in Guillain-Barré syndrome. Neurology 2001; 56(6): 758–65

    Article  PubMed  CAS  Google Scholar 

  34. Irie S, Saito T, Nakamura K, et al. Association of anti-GM2 antibodies in Guillain-Barré syndrome with acute cytomegalovirus infection. J Neuroimmunol 1996; 68(1–2): 19–26

    Article  PubMed  CAS  Google Scholar 

  35. Mori M, Kuwabara S, Miyake M, et al. Haemophilus influenzae infection and Guillain-Barré syndrome. Brain 2000; 123 (Pt 10): 2171–8

    Article  PubMed  Google Scholar 

  36. Mori M, Kuwabara S, Miyaké M, et al. Haemophilus influenzae has a GM1 ganglioside-like structure and elicits Guillain-Barré syndrome. Neurology 1999; 52(6): 1282–4

    Article  PubMed  CAS  Google Scholar 

  37. Hemachudha T, Griffin DE, Chen WW, et al. Immunologic studies of rabies vaccination-induced Guillain-Barré syndrome. Neurology 1988; 38(3): 375–8

    Article  PubMed  CAS  Google Scholar 

  38. Safranek TJ, Lawrence DN, Kurkland LT, et al. Reassessment of the association between Guillain-Barré syndrome and receipt of swine influenza vaccine in 1976–1977: results of a two-state study. Expert Neurology Group. Am J Epidemiol 1991; 133: 952–5

    Google Scholar 

  39. Roscelli JD, Bass JW, Pang R. Guillain-Barré syndrome and influenza vaccination in the US Army, 1980–1988. Am J Epidemiol 1991; 133(9): 952–5

    PubMed  CAS  Google Scholar 

  40. Salisbury DM. Association between oral poliovaccine and Guillain-Barré syndrome? Lancet 1998; 351(9096): 79–80

    Article  PubMed  CAS  Google Scholar 

  41. Wijdicks EFM, Fletcher DD, Lawn ND. Influenzae vaccine and the risk of Guillain-Barré syndrome. Neurology 2000; 55(3): 452–3

    Article  PubMed  CAS  Google Scholar 

  42. Pritchard R, Mukherjee R, Hughes RA. Risk of relapse of Guillain-Barré syndrome or chronic inflammatory demyelinating polyradiculoneuropathy following immunization. J Neurol Neurosurg Psychiatry 2002; 73: 348–9

    Article  PubMed  CAS  Google Scholar 

  43. Kuwabara S, Ogawara K, Koga M, et al. Hyperreflexia in Guillain-Barré syndrome: relation with acute motor axonal neuropathy and anti-GM1 antibody. J Neurol Neurosurg Psychiatry 1999; 67(2): 180–4

    Article  PubMed  CAS  Google Scholar 

  44. Kuwabara S, Nakata M, Sung JY, et al. Hyperreflexia in axonal Guillain-Barré syndrome subsequent to Campylobacter jejuni enteritis. J Neurol Sci 2002; 199(1–2): 89–92

    Article  PubMed  Google Scholar 

  45. Ho TW, Lin CY, Cornblath DR, et al. Patterns of recovery in the Guillain-Barré syndromes. Neurology 1997; 48: 695–700

    Article  PubMed  CAS  Google Scholar 

  46. Kuwabara S, Asahina M, Mori M, et al. Two patterns of clinical recovery in Guillain-Barré syndrome with anti-GMl antibody. Neurology 1998; 51: 1656–60

    Article  PubMed  CAS  Google Scholar 

  47. Guillain-Barré Syndrome Steroid Trial Group. Double-blind trial of intravenous methylprednisolone in Guillain-Barré syndrome. Lancet 1993; 341: 586–90

    Google Scholar 

  48. The Guillain-Barré Syndrome Study Group. Plasmapheresis and acute Guillain-Barré syndrome. Neurology 1985; 35: 1096–2004

    Article  Google Scholar 

  49. French Cooperative Group on Plasma Exchange in Guillain-Barré Syndrome. Efficiency of plasma exchange in Guillain-Barré syndrome: role of replacement fluids. Ann Neurol 1987; 22: 753–61

    Article  Google Scholar 

  50. French Cooperative Group on Plasma Exchange in Guillain-Barré Syndrome. Plasma exchange in Guillain-Barré syndrome: one-year follow up. Ann Neurol 1992; 32: 94–7

    Article  Google Scholar 

  51. French Cooperative Group on Plasma Exchange in Guillain-Barré Syndrome. Appropriate number of plasma exchange in Guillain-Barré syndrome. Ann Neurol 1997; 41: 298–306

    Article  Google Scholar 

  52. Raphael JC, Chevret S, Hughes RAC. Plasma exchange for Guillain-Barré Syndrome. Cochrane Database of Systematic Review. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 3. Oxford: Update Software, 2003

  53. Kleyweg RP, van der Meche FG. Treatment related fluctuations in Guillain-Barré syndrome after high-dose immunoglobulins or plasma exchange. J Neurol Neurosurg Psychiatry 1991; 54(11): 957–60

    Article  PubMed  CAS  Google Scholar 

  54. Rudnicki S, Vriesendorp F, Koski CL, et al. Electrophysiologic studies in the Guillain-Barré syndrome: effects of plasma exchange and antibody rebound. Muscle Nerve 1992; 15(1): 57–62

    Article  PubMed  CAS  Google Scholar 

  55. Imbach P, Barundun S, d’Appuzo V, et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1981; I(8232): 1228–31

    Article  Google Scholar 

  56. van der Meché FGA, Schmitz PI. A randomized trial comparing intravenous immune globulin and plasma exchange in Guillain-Barré syndrome. N Engl J Med 1992; 326(17): 1123–9

    Article  PubMed  Google Scholar 

  57. Plasma Exchanges/Sandoglobulin Guillain-Barré Syndrome Trial Group. Randomized trial of plasma exchange, intravenous immunoglobulin, and combined treatments in Guillain-Barré syndrome. Lancet 1997; 349: 225–30

    Article  Google Scholar 

  58. Dalakas MC. Mechanisms of action of IVIg and therapeutic considerations in the treatment of acute and chronic demyelinating neuropathies. Neurology 2002; 59 (12 Suppl. 6): S13–21

    Article  PubMed  CAS  Google Scholar 

  59. Jacobs BC, van Doom PA, Schmitz PI, et al. Campylobacter jejuni infections and anti-GM1 antibodies in Guillain-Barré syndrome. Ann Neurol 1996; 40(2): 181–7

    Article  PubMed  CAS  Google Scholar 

  60. Kuwabara S, Mori M, Ogawara K, et al. Intravenous immunoglobulin therapy for Guillain-Barré syndrome with IgG anti-GM1 antibody. Muscle Nerve 2001; 24(1): 54–8

    Article  PubMed  CAS  Google Scholar 

  61. Hughes RA, van der Meche FG. Corticosteroids for Guillain-Barré syndrome. Cochrane Database of Systematic Reviews. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 3. Oxford: Update Software, 2003

  62. Heininger K, Schafer D, Hartung P, et al. The role of macrophages in experimental allergic neuritis induced by P2-specific T-cell line. Ann Neurol 1988; 23: 326–31

    Article  PubMed  CAS  Google Scholar 

  63. Rich MM, Pinter MJ. Sodium channel inactivation in an animal model of acute quadriplegic myopathy. Ann Neurol 2001; 50: 26–33

    Article  PubMed  CAS  Google Scholar 

  64. Van Koningsveld R, van der Meche FG, Schmitz PI, et al. Combined therapy of intravenous immunoglobulin and methylprednisolone in patients with Guillain-Barré syndrome: the results of a multicentre double blind placebo controlled clinical trial. J Peripher Nerv Syst 2001; 6: 186–7

    Google Scholar 

  65. Wollinsky KH, Hulser PJ, Brinkmeier H, et al. CSF filtration is an effective treatment of Guillain-Barré syndrome: a randomized clinical trial. Neurology 2002; 57(5): 774–80

    Article  Google Scholar 

  66. Schaller B, Radziwill AJ, Steck AJ. Successful treatment of Guillain-Barré syndrome with combined administration of interferon-beta-1a and intravenous immunoglobulin. Eur Neurol 2001; 46(3): 167–8

    Article  PubMed  CAS  Google Scholar 

  67. Miyamoto K, Oka N, Kawasaki T, et al. New cyclooxygenase-2 inhibitors for treatment of experimental autoimmune neuritis. Muscle Nerve 2002; 25(2): 280–2

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kuwabara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwabara, S. Guillain-Barré Syndrome. CNS Drugs 64, 597–610 (2004). https://doi.org/10.2165/00003495-200464060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200464060-00003

Keywords

Navigation